Datenbanken Il A: DB-Entwurf

Chapter 6: Logical Design Il

Prof. Dr. Stefan Brass
Martin-Luther-Universitat Halle-Wittenberg

Wintersemester 2022/23

http://www.informatik.uni-halle.de/~brass/dd22/

6-1/46

http://www.informatik.uni-halle.de/~brass/dd22/

Objectives

After completing this chapter, you should be able to:

@ translate given ER-schemas (including subclasses)
manually into the relational model.

@ explain and compare the alternatives for translating
subclasses.

6-2 /46

Subclasses
°

Contents

© Subclasses

© Special Cases, Final Steps

6-3 /46

Subclasses

9000000000000 0000O000O0000O0000000000

Subtypes/Specialization (1)

/ INSTRUCTOR \ COURSE
teacher of
4 NAME ~ taught by 4 CRN
+ EMAIL « TITLE

FACULTY
* TENURED
EXTERNAL
k « ADDRESS /

| composed of # CNAME

6-4 /46

Subclasses
0®00000000000000000000000000000000

Subtypes/Specialization (2)

Method 1 (Table for the Supertype):

@ One big relation is created that contains all attributes of
the supertype and of all subtypes.

Including possibly indirect subtypes.

@ In the example, the result is:

INSTRUCTORS (NAME, EMAIL, TYPE,
TENURED®, ADDRESS®)

@ The column “TYPE" identifies to which subtype the entity
belongs, e.g. “F" for Faculty and “E" for External:
CHECK(TYPE = ’F’ OR TYPE = ’E’).

6-5 /46

Subclasses
00®0000000000000000000000000000000

Subtypes/Specialization (3)

@ Example State:

| INSTRUCTORS

‘ NAME EMAIL TYPE | TENURED | ADDRESS
Brass sba@. .. F N
Spring | spring@... | F Y
Mundie | mundie@... | E CMU

@ Attributes of subtypes are defined only for rows
corresponding to elements of the subtype.

@ This means that the corresponding columns in the table
must permit null values.

6-6 /46

Subclasses

000@0000000000000O000O0O0000O000000000

Subtypes/Specialization (4)

@ With the following constraints one can make sure that
subtype attribute columns are really defined only for the
subtype:

CHECK (TYPE
CHECK (TYPE

’F’ OR TENURED IS NULL)
’E’ OR ADDRESS IS NULL)

@ Conversely, if an attribute was not optional in the
ER-schema, one must add a CHECK-constraint to make
sure that the corresponding column is not null for
elements of this subtype:

CHECK(TYPE <> ’F’ OR TENURED IS NOT NULL)
CHECK(TYPE <> ’E’ OR ADDRESS IS NOT NULL)

6-7 /46

Subclasses
0000@00000000000000000000000000000

Subtypes/Specialization (5)

@ Such constraints can be developed by thinking in
“if-then” rules:

If TYPE = ’F’ then TENURED IS NOT NULL

@ Since SQL has no “if-then” condition, one must use the
equivalence of A — B to “AV B:

NOT (TYPE = ’F’) OR TENURED IS NOT NULL

@ This can be simplified to

TYPE <> ’F’ OR TENURED IS NOT NULL

Since there are only two types in the example, TYPE <> ’F’ is equivalent

to TYPE = ’E’.

6-8 /46

Subclasses
00000e0000000000000000000000000000

Subtypes/Specialization (6)

@ It might be simpler to all constraints in a single formula
in DNF (disjunctive normal form) with one case per subclass:

CHECK ((TYPE

’F? AND TENURED IS NOT NULL
AND ADDRESS IS NULL)

’E’ AND TENURED IS NULL
AND ADDRESS IS NOT NULL))

OR (TYPE

The parentheses inside the formula are not needed, since AND binds

stronger than OR, but they might improve the readability.

If an attribute is optional in a subclass, the corresponding IS NOT NULL

condition is simply left out in the case for that subclass.

6-9 /46

Subclasses
000000e000000000000000000000000000

Subtypes/Specialization (7)

@ It might be useful to declare views for the subtypes:

CREATE VIEW FACULTY AS
SELECT NAME, EMAIL, TENURED
FROM INSTRUCTORS
WHERE TYPE = °F’

@ Sometimes, the “TYPE"” column is not really needed.

E.g. in the example, all instructors where “TENURED" is a null value are

external instructors.

@ But it might be clearer to retain it. This might also help
to adapt the schema to additional subtypes.

6-10 /46

Subclasses
0000000e00000000000000000000000000

Subtypes/Specialization (8)

@ With this method, relationships refering to the supertype
are no problem:

COURSES(CRN, TITLE, INST_NAME—INSTRUCTOR)

e Example State:

| COURSES |

CRN TITLE INST_NAME
11111 | Database Management | Brass
22222 | DB Analysis&Design | Brass
33333 | Client-Server Spring
44444 | Document Processing | Mundie

6-11/46

Subclasses
00000000e0000000000000000000000000

Subtypes/Specialization (9)

@ Relationships with a subtype can only be translated in the
same way as a relationship to the supertype:

COMMITTEE MEMBERS (CNAME—COMMITTEES,
FAC_NAME— INSTRUCTOR)

| COMMITTEE_MEMBERS |

| CNAME

FAC_NAVE |

PhD Admissions
PhD Admissions

Spring
Brass

@ The table declaration does not prevent that an external
instructor is entered as a committee member.

6-12 /46

Subclasses
000000000e000000000000000000000000

Subtypes/Specialization (10)

@ The standard constraints of the relational model do not
help in this case.
As mentioned before, one can run a query that finds violations from time
to time, one can do checks in application programs or stored procedures, or
one can use triggers. Note that a foreign key cannot reference a view. One
can hope that in future DBMS vendors will implement more general
constraints. In this case one needs something like a foriegn key that

specifies in addition a condition on the referenced tuple.

@ If there are relationships on subclasses, one should
consider using one of the other translation methods (or
do the trick on the next page).

6-13 /46

Subclasses
0000000000e00000000000000000000000

Subtypes/Specialization (11)

@ In the special case that one uses artificial keys
(i.e. numbers that one can assign), one can reserve
different ranges for the different subtypes.

e E.g. faculty members have IDs from 100 to 499, external
instructs have IDs from 500 to 999:

| INSTRUCTORS
ID | NAME EMAIL TYPE | TENURED | ADDRESS
101 | Brass | sb@... F N
102 | Spring | spring@... | F Y
501 | Mundie | mundie@... | E CMU

6-14 /46

Subclasses
00000000000e0000000000000000000000

Subtypes/Specialization (12)

@ The column “TYPE" should now be removed, since it is
redundant.

Of course, one can define a view that reconstructs it. If one really wants to
retain it, one must add at least a CHECK constraint that ensures that IDs

are in the correct range for the instructor type.

@ Some designers would leave part of the possible range of
IDs for future subtypes.

6-15 /46

Subclasses

000000000000 @000000000000000000000

Subtypes/Specialization (13)

@ Now relationships defined on subtypes are no problem.
Consider again:

COMMITTEE_ MEMBERS (CNAME—COMMITTEES,
FAC_ID—INSTRUCTOR)

| COMMITTEE MEMBERS |

| CNAME FAC_ID
PhD Admissions | 101
PhD Admissions | 102

@ This constraint ensures that only the subtype is
referenced: CHECK(FAC_ID BETWEEN 100 AND 499)

6-16 /46

Subclasses
0000000000000e00000000000000000000

Subtypes/Specialization (14)

@ This method can be easily adapted for partial or
overlapping specialization:

o If specialization is partial, one simply has one more TYPE
value for elements of the supertype that do not belong
to any subtype.

Actually, partial specialization is never a problem: One can always
add an “Other"” subclass.

e If specialization is overlapping, one uses instead of the
TYPE column one boolean column for each subtype
(e.g. IS_FACULTY, IS_EXTERNAL).

6-17 /46

Subclasses
00000000000000eV000000000000000000

Subtypes/Specialization (15)

Method 2 (Tables for the Subtypes):

@ In this case, one table is created for each subtype.
It contains the attributes of the subtype plus all inherited
attributes.

@ In the example, the result is:
FACULTY (NAME, EMAIL, TENURED)
EXTERNAL (NAME, EMAIL, ADDRESS)

@ Since each entity of the supertype belongs to only one
subtype, no data is stored redundantly.

This method would not work for overlapping specialization.

6-18 /46

Subclasses
000000000000000e000000000000000000

Subtypes/Specialization (16)

e Example State:

| FACULTY

| NAME | EMAIL TENURED

Brass | sb@... N
Spring | spring@... | Y

| EXTERNAL
NAME | EMAIL ADDRESS
Mundie | mundie@. .. | CMU

@ This method does not need null values and the
corresponding CHECK-constraints like Method 1.

6-19 /46

Subclasses
0000000000000000eO0000000000000000

Subtypes/Specialization (17)

@ One can define a view for the supertype:

CREATE VIEW INSTRUCTOR(NAME, EMAIL) AS
SELECT NAME, EMAIL FROM FACULTY
UNION ALL
SELECT NAME, EMAIL FROM EXTERNAL

Without the view, queries will often be more complicated than with the
first method. In any case, queries refering to the supertype will run a bit

slower, although UNION ALL is only concatenation.

@ Queries refering only to a subtype are slightly simpler and
will run slightly faster than with Method 1.

If there are subtypes that contain only a small fraction of the entities of

the supertype, queries to these subtypes will be significantly faster.

6-20 /46

Subclasses
00000000000000000e0000000000000000

Subtypes/Specialization (18)

@ This method cannot enforce the uniqueness of keys
between subtypes: E.g. a faculty member and an external
instructor with the same name can exist.

The constraint that the values in the NAME columns of the tables FACULTY
and EXTERNAL must be disjoint is not one of the standard constraints and
cannot be specified (today) in the CREATE TABLE statement.

@ If one can assign numbers as key values, one can use
CHECK constraints that enforce that the key value ranges
in the two tables are disjoint.

E.g. FACULTY uses only IDs 100 to 499, EXTERNAL only 500 to 999.

6-21/46

Subclasses
000000000000000000e000000000000000

Subtypes/Specialization (19)

@ For Method 2, relationships with a subtype are no
problem (since each subtype has its own table):

COMMITTEE MEMBERS (CNAME—COMMITTEES,
FAC_NAME—FACULTY)

| COMMITTEE_MEMBERS |

| CNAME FAC_NAVME |
PhD Admissions | Spring
PhD Admissions | Brass

@ However, the translation of relationships with a supertype
is significantly more complicated.

6-22 /46

Subclasses
0000000000000000000e00000000000000

Subtypes/Specialization (20)

@ Since there is no table for the supertype, one must split
foreign keys that are generated for relationships with the
supertype:

COURSES(CRN, TITLE, FAC_NAME°—FACULTY,
EXT_NAME°—EXTERNAL)

COURSES

CRN TITLE FAC_NAME | EXT_NAME
11111 | Database Management | Brass
22222 | DB Analysis&Design | Brass
33333 | Client-Server Spring
44444 | Document Processing Mundie

6-23 /46

Subclasses
00000000000000000000e0000000000000

Subtypes/Specialization (21)

@ Only one of the two foreign keys can be defined:
CHECK(FAC_NAME IS NULL OR EXT_NAME IS NULL)

@ In addition, one must be defined (because the relationship
has mandatory participation):

CHECK (FAC_NAME IS NOT NULL
OR EXT_NAME IS NOT NULL)

@ Queries become more complicated in this way.

It would be possible to hide these complications with another view defined
for COURSES that merges the two columns (using UNION ALL). But in any
case, query evaluation will be slower (with today’s query optimizers). Of

course, if the tables are small, this is no problem.

6-24 /46

Subclasses
000000000000000000000e000000000000

Subtypes/Specialization (22)

@ When the foreign key would be part of a primary key

(for many-to-many relationships or weak entities),
there are two options:

e Either one uses the splitting of foreign keys as above and

accepts null values in keys: This translation works only
for some DBMS.

DBMS differ in whether they support UNIQUE-constraints for
columns that can be null, and in the exact semantics for this. One
would need here that only exact copies are excluded. If necessary,

one could replace the null value by a single “invalid” faculty member

or external instructor.

6-25 /46

Subclasses
0000000000000000000000e00000000000

Subtypes/Specialization (23)

@ Translation of many-to-many and weak entity relationsships,
continued:

o Or one splits the entire table: E.g. suppose that
instructors can suggest students for awards (i.e. there is
a many-to-many relationship between instructors and
students).
AWARD1 (NAME—FACULTY, SSN—STUDENTS)
AWARD2 (NAME—EXTERNAL, SSN—STUDENTS)

@ Because of these problems, one would probably use one of
the other methods for translating specialization in this case.

6-26 /46

Subclasses
00000000000000000000000e0000000000

Subtypes/Specialization (24)

@ Method 2 can work also with partial specialization.

The trick is to add another subclass and works with any method.

o E.g. if there are instructors that are neither faculty
members nor external (e.g. PhD students), one would
simply add another table for them:

FACULTY(NAME, EMAIL, TENURED)
EXTERNAL (NAME, EMAIL, ADDRESS)
OTHER_INSTRUCTORS (NAME, EMAIL)

@ The OTHER INSTRUCTORS table contains only those
entities that are direct instances of the supertype, it does
not contain the subtype entities.

6-27 /46

Subclasses
000000000000000000000000e000000000

Subtypes/Specialization (25)

Method 3 (Tables for Supertype and Subtypes):
@ Method 3 creates

e a table for the supertype that contains all entities,
including those of subtypes, but has only columns for the
supertype attributes, and

e one table for each subtype which contains columns for
the attributes that are specific to the subtype, plus the
key of the supertype.

6-28 /46

Subclasses
0000000000000000000000000e00000000

Subtypes/Specialization (26)

@ In the example, the result is:

INSTRUCTORS (NAME, EMAIL)
FACULTY (NAME—INSTRUCTORS, TENURED)
EXTERNAL (NAME— INSTRUCTORS, ADDRESS)

@ One must use a join to get all attributes of an entity
together (the same entity is now represented in two
different tables):

CREATE VIEW FACULTY2(NAME, EMAIL, TENURED) AS
SELECT I.NAME, I.EMAIL, F.TENURED
FROM INSTRUCTORS I, FACULTY F
WHERE I.NAME = F.NAME

6-29 /46

Subclasses
00000000000000000000000000e0000000

Subtypes/Specialization (27)

e Example State:

| INSTRUCTORS |

| NAME | EMAIL |
Brass | sb@...
Spring | spring@. ..
Mundie | mundie@. ..

| FACULTY | EXTERNAL |

| NAME | TENURED | NAME | ADDRESS |
Brass | N ‘ Mundie | CMU ‘
Spring | Y

6-30 /46

Subclasses
000000000000000000000000000e000000

Subtypes/Specialization (28)

@ For Method 3, relationships defined on the supertype and
relationships defined on the subtypes are both no problem.

@ A problem of this method is that it really supports only

partial, overlapping specialization.

Nothing prevents that instructors are also entered in one or both of the
two subtype tables (needs a general constraint). With key value ranges, at

least disjoint specialization can be enforced.

@ Also the join can be a performance problem.

If one uses artificial numbers as keys, the join will be basically always

necessary whenever one accesses the subtype.

6-31/46

Subclasses
0000000000000000000000000000e00000

Subtypes/Specialization (29)

Method 4 (Variant of Method 3 Using an “Arc”):

@ Method 4 creates a table for the supertype and one table
for each subtype (like Method 3).

o Artificial keys are added to the subtype tables.

@ Foreign keys are added to the supertype table (one for
each subtype).

@ So the direction of the foreign keys is the real difference
to Method 3.

In Method 3, they point from the subclass tables to the superclass table,

here from the superclass table to sublass tables.

6-32 /46

Subclasses
00000000000000000000000000000e0000

Subtypes/Specialization (30)

@ In the example, the result is:

INSTRUCTORS (NAME, EMAIL,

FNO°—FACULTY, ENO°—EXTERNAL)
FACULTY (FNO, TENURED)
EXTERNAL (ENO, ADDRESS)

@ Check constraints are needed to ensure that exactly one
of the two columns FNO and ENO are defined (not null) in
INSTRUCTORS.

By adapting this constraint, Method 4 also works with partial or

overlapping specialization.

@ In this way, the problem of Method 3 is avoided.

6-33 /46

Subclasses
000000000000000000000000000000e000

Subtypes/Specialization (31)

@ Relationships on supertype and subtypes can be represented.

Although it is a bit strange that relationships defined on the subtypes now

have to use the artificial numbers.

@ This method does not prevent rows in the subtype tables
without entry in the supertype table.

Such rows are meaningless: One does not even have the name of the
instructor. One possibility would be to treat such rows as “not really
present’. Practically all queries have to join the subtype tables with the
supertype table, and then the problematic rows are filtered out. From time
to time, one can simply remove such rows. The drawback of this solution is
that one does not get an error message if one enters such a row. But if all

queries do the join, bad rows are never used.

6-34 /46

Subclasses
0000000000000000000000000000000e00

Subtypes/Specialization (32)

Comparison:

@ Method 1 is probably most often chosen, but:

o If one cannot assign key value ranges, and there are
relationships with subtypes, it does not work.

e The many null values might be a problem.

Real world designers are used to null values. One should not leave
out the CHECK-constraints that restrict them.

o If small subtypes (few rows) of a large supertype (many
rows) are accessed often, Method 1 might have a
performance problem.

Powerful DBMS offer partition features that solve this problem.

6-35 /46

Subclasses
00000000000000000000000000000000e0

Subtypes/Specialization (33)

@ Method 2 is good when one accesses the subtypes often,
but:

e Relationships with the supertype are a problem,
especially if these are many-to-many relationships or
weak entity relationships.

e Uniqueness of keys cannot be enforced between subtypes
unless one can assign key value ranges.

e Some people don't like UNION in their queries.

It is a bit uncommon, but one can hide it in views. UNION ALL
should really run fast. Modern optimizers should be able to work

with it, old might produce not very efficient query execution plans.

6-36 /46

Subclasses
000000000000000000000000000000000e

Subtypes/Specialization (34)

@ Method 3 can easily represent relationships on supertypes
and subtypes, but:

e This method works only for partial specialization.

e The joins are a performance problem.
@ Method 4 is similar, and also has problems:

o Integrity violations are possible (partial entity data), but
the invalid data is never used.

e Joins are needed as in Method 3.

@ There is no perfect solution!

6-37 /46

Special Cases, Final Steps
°

Contents

© Special Cases, Final Steps

6-38 /46

Special Cases, Final Steps
©000000

Unnecessary Tables (1)

@ Sometimes, tables generated for entity types might seem
unnecessary. E.g. consider this example:

FACULTY

4 NAME
« EMAIL

|_member of ‘ COMMITTEE
~ composed of # CNAME

@ The translation result is:
FACULTY(NAME, EMAIL)
COMMITTEES (CNAME)
COMMITTEE MEMBERS (CNAME—COMMITTEE,
FAC_NAME—FACULTY)

6-39 /46

Special Cases, Final Steps
©0®00000

Unnecessary Tables (2)

@ The entire contents of the table COMMITTEES can be
derived from the table COMMITTEE MEMBERS:

SELECT DISTINCT CNAME
FROM COMMITTEE_MEMBERS

@ This works because of the mandatory participation of
COMMITTEE in the relationship.

Therefore, all committee names must be present in COMMITTEE_MEMBERS.

@ It is also important in this example that the entity type
COMMITTEE has only the key attributes, and no
additional information.

6-40 /46

Special Cases, Final Steps
00®0000

Unnecessary Tables (3)

@ Formally, the table COMMITTEES is indeed redundant and
one must discuss to delete it.

@ However, deleting the table changes the behaviour of
updates:

e With the table, COMMITTEE entities are explicitly
created by inserting a row into COMMITTEES.

e Without the table, COMMITTEE entities are only
implicitly created by inserting a member of a new
committee.

6-41 /46

Special Cases, Final Steps
000@000

Unnecessary Tables (4)

@ Therefore, when inserting a committee member, a typing
error in the committee name would be detected with the
table, but maybe not without it.

@ However, this also depends on the application program:
Even without the table, one could distinguish

o Create a new committee and add its first member
(e.g. the chairman).

o Add a member to a committee (with all currently
existing committees shown in a selection box).

6-42 /46

Special Cases, Final Steps
0000®00

Unnecessary Tables (5)

@ With the COMMITTEES table, one has the problem how to
enforce the mandatory participation (see above).

@ The entire problem would vanish if it turns out that

o there can be committees without members (at least
temporarily or in exceptional situations), or

e some other information has to be stored about
committees.

It would be even interesting if such changes in the requirements can

be expected for future extensions.

@ Again, there is no unique, perfect solution.

6-43 /46

Special Cases, Final Steps
000000

Final Step: Check (1)

@ At the end, one should check the generated tables to see
whether they really make sense.

@ E.g. one should fill them with a few example rows.

This is also a useful part of the documentation.

@ A correct translation of a correct ER-schema results in a
correct relational schema.

@ However, a by-hand translation can result in mistakes,
and the ER-schema can contain hidden flaws.

6-44 / 46

Special Cases, Final Steps
©000000e

Final Step: Check (2)

@ Think a last time about renaming tables/columns.

Later changes will be difficult: The table/column names are already used in
the application programs, and the DBMS might not permit to rename

tables or columns (without deleting and recreating them).
@ Check for normal forms (see Chapter 13).
This is not an automatic step: It requires that the designer thinks about

possible functional dependencies.

@ If there are tables with the same key, one might consider
to merge them.

But this is not always the right thing to do: E.g. Methods 2—4 for
translating specialization generate such tables, merging them would move
back to Method 1.

6-45 / 46

Special Cases, Final Steps
°

References

®© 6 6 ¢

Teorey: Database Modeling & Design, 3rd Edition.
Morgan Kaufmann, 1999, ISBN 1-55860-500-2, ca. $32.

Elmasri/Navathe: Fundamentals of Database Systems, 3rd Ed.
Rauh/Stickel: Konzeptuelle Datenmodellierung (in German), Teubner, 1997.
Kemper/Eickler: Datenbanksysteme (in German), Oldenbourg, 1997.

Graeme C. Simsion, Graham C. Witt: Data Modeling Essentials, 2nd Edition.
Coriolis, 2001, ISBN 1-57610-872-4, 459 pages.

Barker: CASE*Method, Entity Relationship Modelling.
Addison-Wesley, 1990, ISBN 0-201-41696-4, ca. $61.

Koletzke/Dorsey: Oracle Designer Handbook, 2nd Edition.
ORACLE Press, 1998, ISBN 0-07-882417-6, ca. $40.

A. Lulushi: Inside Oracle Designer/2000.
Prentice Hall, 1998, ISBN 0-13-849753-2, ca. $50.

Oracle/Martin Wykes: Designer/2000, Release 2.1.1, Tutorial.
Part No. Z23274-02, Oracle, 1998.

Oracle Designer Model, Release 2.1.2 (Element Type List).
Oracle Designer Online Help System.

Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.
6-46 / 46

	Subclasses
	Subclasses

	Special Cases, Final Steps
	Special Cases, Final Steps
	References

