
Datenbanken II A: DB-Entwurf

Chapter 10: Object-Relational
Constructs

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Wintersemester 2022/23

http://www.informatik.uni-halle.de/˜brass/dd22/

10. Object-Relational Constructs 10-1 / 51

http://www.informatik.uni-halle.de/~brass/dd22/

Objectives

After completing this chapter, you should be able to:

name some features of object-relational databases,

define an object-type in Oracle,

10. Object-Relational Constructs 10-2 / 51

Contents

1 Introduction

2 UDTs in PostgreSQL

3 Inheritance in PostgreSQL

4 Object Types in Oracle

5 References

6 Collection Types

10. Object-Relational Constructs 10-3 / 51

Motivation for ODBMS (1)

Object-DBMS were introduced around 1985.
There was a lot of research and system development in the 1980s and 1990s.
Systems were, e.g., Gemstone, ObjectStore, ORION, O2, ONTOS, Poet.
Standards for object-oriented database systems where developed by the
ODMG (Object Database Management Group).
[https://en.wikipedia.org/wiki/Object Data Management Group]
[https://cs.ulb.ac.be/public/ media/teaching/odmg.pdf]

DB applications consist of program code and persistantly
stored data, and the interface between SQL and a
programming language is not smooth.

One of the origins of object-oriented databases were persistant programming
languages, and one can view some ODBMS as C++ extended with the possibility
to store objects persistently on disk (including objects referenced from these
objects via pointers).

10. Object-Relational Constructs 10-4 / 51

https://en.wikipedia.org/wiki/Object_Data_Management_Group
https://cs.ulb.ac.be/public/_media/teaching/odmg.pdf

Motivation for ODBMS (2)

Abstract data types and the object-oriented approach
have shown that it is advantageous to see data and
operations on the data as a unit.

One possibility for enforcing complex integrity constraints is to permit
changes to the data only via procedures stored in the database. This can
be also helpful for logical data independence (changing the logical schema
while still supporting the old interface for legacy applications).

However, one must separate the basic data storage layer,
which is shared between all applications, from the code of
a single application.

Physical data independence (decoupling between programs and data
storage structures) was one of the achievements of the relational model.
Also simplifies the understanding of the data.

10. Object-Relational Constructs 10-5 / 51

Motivation for ODBMS (3)

The type structure of a classical relational system is very
simple: Only relations with columns of predefined data types.

And often, lots of columns that are null.

Types can help to reduce the number of bugs in programs.
They give a better documentation, and thus help in understanding.
Furthermore, tools such as the compiler can do more checks.

As discussed above, subtypes/subclasses are useful in
describing the real world, but they are difficult to express
in the relational model.

10. Object-Relational Constructs 10-6 / 51

Motivation for ODBMS (4)

When objects with a complex inner structure must be
stored in a relational database, they often have to be split
into many tuples, stored in different disk blocks.

This results in a suboptimal performance.
Oracle has “clusters” as a storage structure for relations, which permits to
store tuples of different relations in the same disk block.

Furthermore, one must write code for composing and
decomposing an application object.

There are tools and libraries (frameworks) for this.

10. Object-Relational Constructs 10-7 / 51

Why ODBMS failed (1)

Although OQL (from ODMG) was a good proposal for a
declaractive query language, it seems that many OODBMS
did not support it.

E.g. ONTOS had only a very restricted query language. Most processing of
the data had to be done in program code. Even if a system offers a good
declarative query language, efficient evaluation needs a lot of work on the
query optimizer. It is not easy to catch up with the well established
relational systems.

The visualization of data in tables is very intuitive and
compact notation (much data on one screen).

How should a set of linked objects be visualized? Hypertext does not work
on printed paper (reports), and even if one uses a web browser, one might
get lost in following links and miss something important.

10. Object-Relational Constructs 10-8 / 51

Why ODBMS failed (2)

Companies had just made investments in relational
technology.

Programmers were trained in relational databases.

There is a risk in switching to a new technology.
E.g., most ODBMS have vanished and are no longer supported, let alone
developed further.

Some systems were linked to a single language.
E.g., C++. ODMG has defined bindings to different languages. But
supporting a new language is more diffcullt than in the relational case.
While an SQL database has a different type system than most
programming languages, one would expect from an ODBMS that it
supports the object-oriented language of one’s choice very well.

10. Object-Relational Constructs 10-9 / 51

Why ODBMS failed (3)

Object/relational mappers (e.g., Hibernate, LINQ) offer a
similar interface to the programmer, but are based on a
standard relational database.

The big relational vendors integrated some object-oriented
features into their DBMS:

This gives object-relational database systems.

It permits a gradual change from an existing relational
database to trying and using some object-oriented features
where they seem useful.

10. Object-Relational Constructs 10-10 / 51

Object-Relational DBs (1)

Postgres (developed by Michael Stonebreaker and his group
at Berkeley) was probably the first object-relational system.

From the [VLDB 1987 paper]: “The data model is a relational model that
has been extended with abstract data types including user-defined
operators and procedures, relation attributes of type procedure, and
attribute and procedure inheritance. These mechanism can be used to
simulate a wide variety of semantic and object-oriented data modeling
constructs including aggregation and generalization, complex objects with
shared subobjects, and attributes that reference tuples in other relations.”

Object-relational systems have grown out of

extensible database systems (addition of new data types)
and

systems that stored nested relations with more general
collection types (“structurally object-oriented systems”).

10. Object-Relational Constructs 10-11 / 51

http://www.vldb.org/conf/1987/P083.PDF

Object-Relational DBs (2)

The main features of object-relational DBs are:

The possibility to defined own data types and use them
for columns of relations.

In particular, one can use also collection types, so that
table entries are no longer forced to be atomic.

Inheritance/subclasses

The possibility to define own operations, i.e. program code
that is executed in the server, and can be used in SQL
statements.

10. Object-Relational Constructs 10-12 / 51

Object-Relational DBs (3)

Object-relational constructs were introduced in the
SQL-99 standard.

There were small extensions in the SQL:2003 standard.

But systems still differ quite a lot.

I personally wonder how much object-relational features
are really used in practice.

Object-relational constructs are important for non-standard databases,
e.g. CAD-databases and GIS-systems. For managing customers and orders,
they seem less important.

OR constructs offer new possibilities for translating from
a conceptual model to the DBMS.

10. Object-Relational Constructs 10-13 / 51

Contents

1 Introduction

2 UDTs in PostgreSQL

3 Inheritance in PostgreSQL

4 Object Types in Oracle

5 References

6 Collection Types

10. Object-Relational Constructs 10-14 / 51

Composite Types in PostgreSQL (1)

The following defines a new type “Instructor” with four
attributes/components:

CREATE TYPE INSTRUCTOR AS (
NO NUMERIC(5),
FIRST_NAME VARCHAR(30),
LAST_NAME VARCHAR(30),
EMAIL VARCHAR(80));

This is conforming to the SQL-2003 syntax.

NOT NULL or any other constraints cannot be used.
E.g., one cannot specify a CHECK-constraint that the value of NO must be
positive. Constraints can only be specified on the level of tables.

10. Object-Relational Constructs 10-15 / 51

Composite Types in PostgreSQL (2)

For each CREATE TABLE statement, PostgreSQL
automatically defines a type with the same name.

Therefore, in stored procedures, entire rows can be
assigned to variables or arguments.

And a row can also be the result of a function.

In PostgreSQL, values of such “composite types” can be
seen as “objects”.

Tables are understood in PostgreSQL as classes, e.g. they
are documented in the data dictionary table pg_class.

10. Object-Relational Constructs 10-16 / 51

Composite Types in PostgreSQL (3)

The defined type can be used as a column type like the
standard SQL types:

CREATE TABLE INST_COL_TAB(
SCHOOL VARCHAR(20),
INST INSTRUCTOR);

Such objects are called “column objects”.

It is also possible to create a table that directly stores
objects of a given type:

CREATE TABLE INST_TYPE_TAB OF INSTRUCTOR;

This is similar to a “one-column table”. The user-defined type is used here
as row type of the table.

10. Object-Relational Constructs 10-17 / 51

Composite Types in PostgreSQL (4)

It is possible to define CHECK-Constraints that refer to
parts of the composed type:

CREATE TABLE INST_COL_TAB(
SCHOOL VARCHAR(20),
INST INSTRUCTOR,
CHECK((INST).NO > 0));

The parenthesis are necessary in (INST).NO. Otherwise PostgreSQL thinks
that INST is a tuple variable and one gets the error message “missing

FROM-clause entry for table "inst"”. If one tries three parts such as
INST_COL_TAB.INST.NO, PostgreSQL thinks that the first part is a schema
name and complains that the schema does not exist.

Keys can only be direct columns of the table.
It is possible to declare the entire INST-value as a key, but not the NO

inside the INST-value.

10. Object-Relational Constructs 10-18 / 51

Composite Types in PostgreSQL (5)

The table that directly contains objects of the type is
basically a standard table, one can add the usual
constraints (in “table constraint syntax”):

CREATE TABLE INST_TYPE_TAB OF INSTRUCTOR
((CHECK(NO > 0),
PRIMARY KEY(NO));

One even can add further columns.

SELECT * FROM INST_TYPE_TAB
lists the four columns as usual.

An INSERT-Statement requires the four single values for
the four attributes as usual, not a single value of type
INSTRUCTOR.

10. Object-Relational Constructs 10-19 / 51

Composite Types in PostgreSQL (6)

When inserting into a table with a column of a composed
type (“row type”), one must write a corresponding value:

INSERT INTO INST_COL_TAB
VALUES(’SIS’,

ROW(1,’Stefan’,’Brass’,NULL));

Null values are allowed for all columns. It is possible to insert
(NULL,NULL,NULL,NULL). One can use CHECK-constraints
with IS NOT NULL in the table declaration.

The keyword “ROW” is not necessary if the composite value
has more than one column:

INSERT INTO INST_COL_TAB
VALUES(’SIS’,

(1,’Stefan’,’Brass’,NULL));
10. Object-Relational Constructs 10-20 / 51

Composite Types in PostgreSQL (7)

One can also write an explicit type conversion:

INSERT INTO INST_COL_TAB
VALUES(’SIS’,

(1,’Stefan’,’Brass’,NULL)::INSTRUCTOR);

Or a type conversion with the standard SQL CAST:

INSERT INTO INST_COL_TAB
VALUES(’SIS’,

CAST((1,’Stefan’,’Brass’,NULL)
AS INSTRUCTOR));

10. Object-Relational Constructs 10-21 / 51

Composite Types in PostgreSQL (8)

PostgreSQL automatically converts String literals with a
specific format to the required composite types:

INSERT INTO INST_COL_TAB
VALUES(’SIS’,

’(1,"Stefan","Brass",NULL)’);
I.e. string constants for the components of the composite value are written
in double quotes inside the main string constant. In this syntax, the
keyword NULL is not needed, one can leave the field empty (but the comma
must be written).

10. Object-Relational Constructs 10-22 / 51

Composite Types in PostgreSQL (9)

The query “SELECT * FROM INST_COL_TAB” gives
SCHOOL INST
SIS (1, ’Stefan’, ’Brass’, NULL)

As explained already for CHECK-constraints above, when
single components of a composite type are selected, the
column of the composite type must be written in (...)
SELECT INST.NO -- Error: No tuple variable INST
FROM INST_COL_TAB

PostgreSQL complains about a “missing FROM-clause entry”.

This works:
SELECT (INST).NO
FROM INST_COL_TAB

Also (INST).* is possible to get all components as result columns.

10. Object-Relational Constructs 10-23 / 51

Methods in PostgreSQL (1)

PostgreSQL has no methods in the CREATE TYPE.

However, one can declare functions that take a parameter
of the composed type:

CREATE FUNCTION FULL_NAME(I INSTRUCTOR)
RETURNS VARCHAR

LANGUAGE SQL
AS $$

SELECT I.FIRST_NAME || ' ' || I.LAST_NAME;
$$ IMMUTABLE;

This function can be called like an attribute access:
SELECT (INST).FULL_NAME
FROM INST_COL_TAB

10. Object-Relational Constructs 10-24 / 51

Methods in PostgreSQL (2)

Unfortunately, this special syntax does not work with
additional arguments.

Only a function with a single argument can be called in this “dot-notation”.
By the way, SELECT (1).INC also works (the parentheses are not only
necessary because 1. is a valid number, e.g. 1 .inc gives a syntax error).

Of course, a standard function call is always possible:

SELECT FULL_NAME(INST)
FROM INST_COL_TAB

It is also possible to define type casts for the new types.
This would permit a different syntax than (...,...).
[https://www.postgresql.org/docs/current/sql-createcast.html]

10. Object-Relational Constructs 10-25 / 51

https://www.postgresql.org/docs/current/sql-createcast.html

Contents

1 Introduction

2 UDTs in PostgreSQL

3 Inheritance in PostgreSQL

4 Object Types in Oracle

5 References

6 Collection Types

10. Object-Relational Constructs 10-26 / 51

Inheritance in PostgreSQL (1)

Example for “superclass table” (“parent table”):

CREATE TABLE INST(
NO NUMERIC(5) NOT NULL,
FIRST_NAME VARCHAR(30) NOT NULL,
LAST_NAME VARCHAR(30) NOT NULL,
EMAIL VARCHAR(80),
PRIMARY KEY(NO));

Example for “subclass table” (“child table”):

CREATE TABLE PROF(
TENURE CHAR(1),
CHECK(TENURE IN (’Y’,’N’)))

INHERITS (INST);

10. Object-Relational Constructs 10-27 / 51

Inheritance in PostgreSQL (2)

The subclass/child table PROF has automatically all
columns of the superclass/parent table INST.

Multiple inheritance is possible. Columns with the same name are merged
if their data type is equal. Otherwise, one gets an error message.

Table rows from the subclass/child table PROF appear
also in the superclass/parent table” INST.

As usual, objects of the subclass are also objects of the superclass.

Therefore, the following query lists also professors (subclass):
SELECT * FROM INST

Of course, only the columns of INST are shown.

The keyword ONLY excludes rows from subclasses:
SELECT * FROM ONLY INST

10. Object-Relational Constructs 10-28 / 51

Inheritance in PostgreSQL (3)

With the system column “tableoid” it is possible to
query the real class/table to which a row belongs:

SELECT p.*, p.tableoid::regclass
FROM PROF p

The type conversion to regclass shows the name of the table, otherwise
tableoid is an integer. Alternatively, tableoid can be joined with the
column oid of pg_class. The column relname of pg_class is the table
name.

CHECK-constraints and NOT NULL constraints are
automatically inherited from the “superclass table” to all
“subclass tables”.

Unfortunately, this does not hold for keys. See next slide. Foreign keys are
not inherited, too, but they can be declared for each subclass/child table.

10. Object-Relational Constructs 10-29 / 51

Inheritance in PostgreSQL (4)

Indexes belong to a single table only.

I.e. an index created for the superclass/parent table can
enforce a key for all rows that directly belong to that table.

However, rows from subclass/child tables are not inserted
into that index. They can violate the key constraint on
the superclass/parent table.

Of course, one can declare a key also on the subclass/child
table, but it enforces uniqueness only for rows that
directly belong to that table.

Thus, there can be a general instructor (object of the
superclass) and a professor (object of the subclass) with
the same number (similar to Subclass Translation Method 2).

10. Object-Relational Constructs 10-30 / 51

Inheritance in PostgreSQL (5)

In the same way, foreign keys referencing the
superclass/parent
table INST are a problem:

Only direct objects of the superclass can be referenced.
Not objects of the subclass/child table, that belong indirectly to the
superclass/parent table, but are not included in the index for the key
of the superclass/parent table.

The “superclass” table cannot be dropped as long as
there are “subclass tables”. If necessary, use:

DROP TABLE INST CASCADE;

This deletes the table including all dependent objects.

10. Object-Relational Constructs 10-31 / 51

Contents

1 Introduction

2 UDTs in PostgreSQL

3 Inheritance in PostgreSQL

4 Object Types in Oracle

5 References

6 Collection Types

10. Object-Relational Constructs 10-32 / 51

Object Types (1)

The following defines an object type “Instructor” with
four attributes:

CREATE TYPE INSTRUCTOR AS OBJECT(
NO NUMERIC(5),
FIRST_NAME VARCHAR(30),
LAST_NAME VARCHAR(30),
EMAIL VARCHAR(80));

/
The “/” on a line by itself is necessary to mark the end of the statement.
NOT NULL cannot be used. If there is a syntax error, SQL*Plus will only
print “Warning: Type created with compilation errors.” Enter
“show errors” in this case. Methods are discussed below.

10. Object-Relational Constructs 10-33 / 51

Object Types (2)

The defined type can be used as a column type like the
standard SQL types (in a “relational table”):

CREATE TABLE INST_RELTAB(
SCHOOL VARCHAR(20),
INST INSTRUCTOR);

Such objects are called “column objects”.

It is also possible to create a table that directly stores
objects of a given type (an “object table”):

CREATE TABLE INST_OBJTAB OF INSTRUCTOR;

Similar to a “one-column table”. The objects are called “row objects”. The
user-defined type is used here as row type of the table.

10. Object-Relational Constructs 10-34 / 51

Object Types (3)

When inserting into a table with an object column, one
calls a constructor method (which is implicitly defined in
this case):

INSERT INTO INST_RELTAB
VALUES(’SIS’,

INSTRUCTOR(1,’Stefan’,’Brass’,NULL));

The query “SELECT * FROM INST_RELTAB” gives

SCHOOL INST(NO, FIRST_NAME, LAST_NAME, EMAIL)
SIS INSTRUCTOR(1, ’Stefan’, ’Brass’, NULL)

Use “column inst format a60” and “column school format a10” to
make the display width of the columns smaller (so they fit into one line).

10. Object-Relational Constructs 10-35 / 51

Object Types (4)

For inserting rows, the object table can be treated like a
one-column table:

INSERT INTO INST_OBJTAB
VALUES(INSTRUCTOR(1,’Stefan’,’Brass’,NULL));

But one can also treat it like a table with the attributes
as columns:

INSERT INTO INST_OBJTAB
VALUES(2, ’Michael’, ’Spring’, ’ms@pitt.edu’);

The constructor is implicitly called in this case.

10. Object-Relational Constructs 10-36 / 51

Object Types (5)

“SELECT * FROM INST_OBJTAB” shows the attributes as
columns:

NO FIRST_NAME LAST_NAME EMAIL
1 Stefan Brass
2 Michael Spring ms@pitt.edu

In order to see the objects, write
SELECT VALUE(I) FROM INST_OBJTAB I;

VALUE(I)(NO, FIRST_NAME, LAST_NAME, EMAIL)
INSTRUCTOR(1, ’Stefan’, ’Brass’, NULL)
INSTRUCTOR(2, ’Michael’, ’Spring’, ’ms@pitt.edu’)

10. Object-Relational Constructs 10-37 / 51

Object Types (6)

The object table can be used in queries like a table with
the attributes as columns, e.g.

SELECT LAST_NAME
FROM INST_OBJTAB
WHERE NO = 1

The data dictionary view COLS lists the attributes of the type like columns
of other tables. However, TABS contains entries only for relational tables.
USER_ALL_TABLES lists also object tables (it has e.g. columns TABLE_NAME

and TABLE_TYPE, which is INSTRUCTOR in this case).
USER_TYPES lists the types owned by the current user.
USER_DEPENDENCIES shows that the table INST_OBJTAB depends on the
type INSTRUCTOR.
USER_TYPE_ATTRS lists attributes, USER_TYPE_METHODS lists methods.

10. Object-Relational Constructs 10-38 / 51

Object Types (7)

If a column of an object type is used, it is mandatory to
use an explicit tuple variable (table alias):

SELECT INST.LAST_NAME -- Invalid Identifier
FROM INST_RELTAB

However, this works:

SELECT I.INST.LAST_NAME
FROM INST_RELTAB I

The rule is: If an attribute reference contains a dot “.”, it must start with
a tuple variable (table alias). Note that the table name is not sufficient,
one must explicitly define a tuple variable (e.g. “SELECT INST_RELTAB.INST.NO

FROM INST_RELTAB” does not work). For more information, search for
“Name Resolution” in the Oracle manuals.

10. Object-Relational Constructs 10-39 / 51

Methods (1)

As in object-oriented programming languages, an object
type can also have methods:

CREATE TYPE INSTRUCTOR AS OBJECT(
NO NUMERIC(5),
FIRST_NAME VARCHAR(30),
LAST_NAME VARCHAR(30),
EMAIL VARCHAR(80),
MAP MEMBER FUNCTION NAME RETURN VARCHAR

);
/

One of the methods (“member fuctions”) can be a “map function”. This is
special, because the result is used for comparisons.

10. Object-Relational Constructs 10-40 / 51

Methods (2)

The implementation of the methods (in PL/SQL) must
be specified separately:

CREATE TYPE BODY INSTRUCTOR AS
MAP MEMBER FUNCTION NAME RETURN VARCHAR IS

BEGIN
RETURN LAST_NAME || ’, ’ || FIRST_NAME;

END;
END;
/

Note that for the return type of the method, one can only write “VARCHAR”
without size.

10. Object-Relational Constructs 10-41 / 51

Methods (3)

One can call the function in SQL statements, e.g.

SELECT I.INST.NAME()
FROM INST_RELTAB I

Note that the explicit tuple variable and the “()” for the empty argument
list are required.

Another example (function call under WHERE):

SELECT I.NO
FROM INST_OBJTAB I
WHERE I.NAME() = ’Brass, Stefan’

Note that this is the object table version, thus I is the object (in contrast
to the above query, where I.INST is the object).

10. Object-Relational Constructs 10-42 / 51

Methods (4)

Because NAME() was declared as the “MAP” member
functions, objects are comparable (by mapping them to
strings with this function):

SELECT I.SCHOOL, J.SCHOOL
FROM INST_RELTAB I, INST_RELTAB J
WHERE I.INST = J.INST

Objects will be considered identical if the have the same NAME() value —
even if they differ in other attributes. It is probably a bad map function, if
this can happen.

One can also use <, > and ORDER BY for a class with map
function.

10. Object-Relational Constructs 10-43 / 51

Methods (5)

It is also possible to define procedures in classes which
can have side effects.

Also static methods are available.

One can also define own constructors.

It seems that everything in the CREATE TYPE is public,
and one cannot define attributes in the private
CREATE TYPE BODY.

10. Object-Relational Constructs 10-44 / 51

Subtypes (1)

If one wants to define a subtype of a type, the supertype
must be explicitly marked as “NOT FINAL”:

CREATE TYPE INSTRUCTOR AS OBJECT(
NO NUMERIC(5),
FIRST_NAME VARCHAR(30),
LAST_NAME VARCHAR(30),
EMAIL VARCHAR(80))

NOT FINAL;
/

Now one can define a subtype:

CREATE TYPE FACULTY_MEMBER UNDER INSTRUCTOR AS (
PROF_TYPE CHAR(1));

/
10. Object-Relational Constructs 10-45 / 51

Subtypes (2)

An object of the subtype FACULTY_MEMBER can be
inserted into a table with the declared type INSTRUCTOR:

INSERT INTO INST_OBJTAB VALUES (
FACULTY_MEMBER(3,’Paul’,’Munro’,NULL,’A’))

“SELECT * FROM INST_OBJTAB” shows only the
attributes of the type declared for the table:

NO FIRST_NAME LAST_NAME EMAIL
1 Stefan Brass
2 Michael Spring ms@pitt.edu
3 Paul Munro

10. Object-Relational Constructs 10-46 / 51

Subtypes (3)

The full objects are shown as follows:
SELECT VALUE(I) FROM INST_OBJTAB I;

VALUE(I)(NO, FIRST_NAME, LAST_NAME, EMAIL)
INSTRUCTOR(1, ’Stefan’, ’Brass’, NULL)
INSTRUCTOR(2, ’Michael’, ’Spring’, ’ms@pitt.edu’)
FACULTY_MEMBER(3, ’Paul’, ’Munro’, NULL, ’A’)

10. Object-Relational Constructs 10-47 / 51

Contents

1 Introduction

2 UDTs in PostgreSQL

3 Inheritance in PostgreSQL

4 Object Types in Oracle

5 References

6 Collection Types

10. Object-Relational Constructs 10-48 / 51

References

A table or attribute can also contain references to objects
(pointers):

CREATE TABLE COURSES(
CRN NUMBER(5),
TITLE VARCHAR(20),
INST REF INSTRUCTOR);

In SQL, one can use REF(I) to get a reference to object I,
e.g.

INSERT INTO COURSES
SELECT 10001, ’Database Management’, REF(I)
FROM INST_OBJTAB I
WHERE I.NO = 1

10. Object-Relational Constructs 10-49 / 51

Contents

1 Introduction

2 UDTs in PostgreSQL

3 Inheritance in PostgreSQL

4 Object Types in Oracle

5 References

6 Collection Types

10. Object-Relational Constructs 10-50 / 51

References

Jeffrey D. Ullman: Object-Relational Features of Oracle
[http://infolab.stanford.edu/˜ullman/fcdb/oracle/or-objects.html]
Jeffrey D. Ullman: CS145 - Introduction to Databases (Autumn 2007)
[http://infolab.stanford.edu/˜ullman/fcdb/aut07/]
Lecture Notes: Object-Relational SQL
[http://infolab.stanford.edu/˜ullman/fcdb/aut07/slides/or.pdf]
PostgreSQL Documentation: CREATE TYPE.
[https://www.postgresql.org/docs/current/sql-createtype.html]
PostgreSQL Documentation: Composite Types.
[https://www.postgresql.org/docs/current/rowtypes.html]
PostgreSQL Documentation: Inheritance.
[https://www.postgresql.org/docs/current/ddl-inherit.html]
Oracle: Database Object-Relational Developer’s Guide
[https://docs.oracle.com/database/121/ADOBJ/adobjint.htm#ADOBJ7025]
Oracle: Oracle8 Concepts, 12. Using User-Defined Datatypes
[https://docs.oracle.com/cd/A64702 01/doc/server.805/a58227/ch objs.htm]
Oracle: Advanced Topics for Oracle Objects
[https://docs.oracle.com/cd/E11882 01/appdev.112/e11822/adobjadv.htm]
Oracle: Using PL/SQL Object Types.
[https://docs.oracle.com/cd/B13789 01/appdev.101/b10807/10 objs.htm]

10. Object-Relational Constructs 10-51 / 51

http://infolab.stanford.edu/~ullman/fcdb/oracle/or-objects.html
http://infolab.stanford.edu/~ullman/fcdb/aut07/
http://infolab.stanford.edu/~ullman/fcdb/aut07/slides/or.pdf
https://www.postgresql.org/docs/current/sql-createtype.html
https://www.postgresql.org/docs/current/rowtypes.html
https://www.postgresql.org/docs/current/ddl-inherit.html
https://docs.oracle.com/database/121/ADOBJ/adobjint.htm#ADOBJ7025
https://docs.oracle.com/cd/A64702_01/doc/server.805/a58227/ch_objs.htm
https://docs.oracle.com/cd/E11882_01/appdev.112/e11822/adobjadv.htm
https://docs.oracle.com/cd/B13789_01/appdev.101/b10807/10_objs.htm

	Introduction
	Introduction

	UDTs in PostgreSQL
	Inheritance in PostgreSQL
	Inheritance in PostgreSQL

	Object Types in Oracle
	Object Types
	Subtypes

	References
	References

	Collection Types
	Collection Types
	References

