
Datenbanken II A: DB-Entwurf

Chapter 7: Logical Design III

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Wintersemester 2022/23

http://www.informatik.uni-halle.de/˜brass/dd22/

7. Logical Design III 7-1 / 78

http://www.informatik.uni-halle.de/~brass/dd22/

Objectives

After completing this chapter, you should be able to:

explain the steps in which a database schema is developed
with Oracle Designer and name the tools that are used in
this process.

write a short paragraph about the Database Design
Transformer of Oracle Designer: What it can do and what
its limitations are.

read Server Model Diagrams in Oracle Designer.

7. Logical Design III 7-2 / 78

Contents

1 Database Design Transformer

2 Server Model Diagrams

3 DB Admin.

4 DDL Generation

7. Logical Design III 7-3 / 78

Development Steps (1)

First (during the conceptual design phase), one develops
ER-diagrams with the ER-Diagrammer.

The Repository Object Navigator can be used to check the global schema
(and alter it, if necessary).

Actually, one might start with business process diagrams and then design
application program functions and the ER-schema concurrently.

Then the Database Design Transformer is used to
translate the ER-Schema (as stored in the Repository)
into the relational model.

One can choose to either translate the global schema or subsets of it step
by step. The first option seems clearer.

7. Logical Design III 7-4 / 78

Development Steps (2)

The resulting relational schema is stored in the repository.

One can then edit the relational schema (with the Design
Editor or the Repository Object Navigator).

E.g. rename certain tables and columns.

View definitions, indexes, triggers, and other information
that is not present in the ER-schema can be added at
this stage.

The DB Design Transformer does not generate certain constraints
that would be necessary for an exact translation of the given
ER-schema. These must be added manually in this step.

7. Logical Design III 7-5 / 78

Development Steps (3)

In the Design Editor, “Server Model Diagrams” can be
developed that are a graphical representation of the
relational schema.

Finally, one can generate SQL code (for various database
management systems) from the definitions stored in the
repository.

This is also done with the Design Editor.

7. Logical Design III 7-6 / 78

Development Steps (4)

ER-Diagrammer RON/Rep. Reports

Database Design Transformer

Design Editor: Server Model RON/Rep. Reports

Design Editor: Generate DB

SQL Files (CREATE TABLE etc.)

7. Logical Design III 7-7 / 78

7. Logical Design III 7-8 / 78

Example

INSTRUCTOR
FNAME
LNAME
◦ PHONE

teacher of
taught by

COURSE
CRN
* TITLE

STUDENT
SSN
* FNAME
* LNAME
◦ EMAIL

registered for

taken by

7. Logical Design III 7-9 / 78

DB Design Transformer (1)

As explained above, each entity type is transformed into a
table:

The plural form of the entity type name is used as table
name.

Spaces and punction characters in entity type and
attribute names are mapped to underscores.

If a name is a reserved word in SQL, that name is
modified (e.g. FROM becomes FROM_FROM).

Reserved words depend in part on the DBMS, which is a problem in
this step.

7. Logical Design III 7-10 / 78

DB Design Transformer (2)

Attributes of the entity type are translated into columns
of the corresponding table:

INSTRUCTORS(FNAME, LNAME, PHONE◦).
STUDENTS(SSN, FNAME, LNAME, EMAIL◦).

Columns are optional (null values allowed) if the
corresponding source attribute is optional.

The ER-Diagrammer permits optional attributes in primary keys. The DB
Design Transformer silently corrects this mistake and makes the column
not optional. Alternate key attributes remain optional.

Primary/Alternate keys (UIDs) of the entity type become
primary/alternate keys of the table.

7. Logical Design III 7-11 / 78

DB Design Transformer (3)

If an entity type has no primary key, a surrogate key is
automatically added.

E.g. for the INSTRUCTOR entity type, an attribute
INST_ID of type NUMBER(10) would be added (where
INST is the short name).

In addition, a sequence called INST_ID is generated (for producing unique
numbers). One can choose the domain for the ID columns.

An option of the Database Design Transformer is to
create a surrogate key for each table in this way.

Then the declared primary keys for the entity types become alternate keys
for the tables.

7. Logical Design III 7-12 / 78

DB Design Transformer (4)

For one-to-many relationships, foreign keys are added to
the table at the “many” side (as expected):
COURSES(CRN, TITLE,

(INST_FNAME, INST_LNAME) → INSTRUCTORS)

The Database Design Transformer is able to produce foreign keys
consisting of more than one column as in this case.

Foreign key column names are constructed from the short
name of the referenced entity type and the name of its
primary key attribute.

One can choose whether one wants the prefix. If the surrogate primary
keys already have prefixes, one gets names like INST_INST_ID.

7. Logical Design III 7-13 / 78

DB Design Transformer (5)

If there name clashes (the table already has a column of
that name), column names are made unique by adding
the name of the relationship end (if that still does not
help, numbers are added).

If the participation in the relationship is optional, the
foreign key attributes are declared as optional.

However, if the foreign key consists of more than one attribute, a check
constraint should be added that they can only be both null, or both not
null. But the Database Design Transformer does not generate such
constraints.

7. Logical Design III 7-14 / 78

DB Design Transformer (6)

If relationships are mutually exclusive (participate in an
arc), the corresponding arc is stored for the generated
foreign keys.

However, when SQL code is later generated, the corresponding CHECK

constraint is missing.

One can choose how the generated foreign keys behave in
case of deletions of the referenced row (restrict, cascade,
nullify).

One can also choose what happens in case of updates of the primary key
values of the referenced row. The default value is “restrict” for updates
and deletes, i.e. the deletion or update is not possible.

7. Logical Design III 7-15 / 78

DB Design Transformer (7)

For many-to-many relationships, a relationship table is
generated:

COURSES_STUDENTS(CRS_CRN→COURSES,
STUD_SSN→STUDENTS).

The name of the table for the relationship is composed
out of the plural forms of both entity types.

Probably it would have been nicer if the relationhip names were used in
some way. It is possible to change generated table and column names later
in the Design Editor. Also, I would have preferred “STUDENTS_COURSES”,
with the “from” side of the relationship first. But the Database Design
Transformer always uses the alphabetic sequence.

7. Logical Design III 7-16 / 78

Restrictions (1)

The alternate keys that would enforce one-to-one
relationships are not generated.

One-to-one relationships are translated by the DB Design Transformer in
the same way as one-to-many relationships.

Mandatory participation for many-to-many relationships
or on the “one” side of one-to-many relationships are also
lost in the translation.

As explained above, this is no fault of the Database Design Transformer,
since there is no good translation.

No warning is generated.

7. Logical Design III 7-17 / 78

Restrictions (2)

Of the nine types of relationships that can be used in the
ER-diagrammer, only three are exactly translated (see
next page), the other ones are approximated by more
liberal relationship types.

As explained above, it would have been possible to implement also the
three kinds of one-to-one relationships (except recursive ones).

Even constraints that cannot be enforced declaratively in
the CREATE TABLE statements should be documented in
the repository.

The DB Design Transformer does not generate such constraints for the
problematic cardinalities.

7. Logical Design III 7-18 / 78

Restrictions (3)

Exactly Translated Relationship Types:

Many-to-one, mandatory-to-optional:

COURSE taught by
teacher of INSTRUCTOR

Many-to-one, optional-to-optional:

COURSE taught by
teacher of INSTRUCTOR

Many-to-many, optional-to-optional:

STUDENT registered for
taken by COURSE

7. Logical Design III 7-19 / 78

7. Logical Design III 7-20 / 78

7. Logical Design III 7-21 / 78

7. Logical Design III 7-22 / 78

Translation of Weak Entities

The DB Design Transformer translates a hierarchy of
weak entities as expected:

TEST
TID
* DESC

QUESTION
QNO
* TEXT

ANSWER
LETTER
* TEXT
* CORRECT

TESTS(TID, TEST_DESC) -- DESC is a reserved word
QUESTIONS(TEST_TID→TESTS, QNO, TEXT)
ANSWERS((QUEST_TEST_TID, QUEST_QNO)→QUESTIONS,

LETTER, TEXT, CORRECT)

7. Logical Design III 7-23 / 78

Translation of Subtypes (1)

The Database Design Transformer supports

Method 1 (“Single Table Approach”)
This is the default. One can specify in the Database Design
Transformer which entity types are mapped to tables. Method 1
means that only the supertype is mapped to a table, the subtypes
are marked as “Included”.

Method 2 (“Separate Table Approach”)
One gets this transformation if one selects the subtypes to be
mapped to tables, but not the supertype. Select the radio button
“Customize the Database Design Transformer”. Then the tab “Table
Mappings” appears. There select the “In Set” checkbox for the
subtypes and deselect it for the supertype.

7. Logical Design III 7-24 / 78

7. Logical Design III 7-25 / 78

Translation of Subtypes (3)

Supported Translation Methods, continued:

Method 2, Variant for Partial Specialization
(“Implicit Sub-Type Approach”)

One gets this option if supertype and subtype are mapped to tables.
Instantiable supertypes can be selected in “Settings/Other Settings”.
But one gets this translation also if it is not selected.

Method 4 (“Arc Approach”).
For this transformation, the DB Design Transformer must be started
two times (only for the supertype and the subtype, other entity
types should be mapped in a third run): First map supertype and
subtypes (check “In Set”) but in the “Run Options” permit only the
generation of tables, not of columns or keys. In the second run,
permit to create and modify tables, columns, and keys. For each
subtype, the “Arc” flag must be set under “Table Mappings”.

7. Logical Design III 7-26 / 78

7. Logical Design III 7-27 / 78

7. Logical Design III 7-28 / 78

Translation of Subtypes (6)

Result of Method 1 (“Single Table Approach”):
COMMITTEES(CNAME)
COMMITTEES_FACULTY(COM_CNAME→COMMITTEES,

INST_NAME→INSTRUCTORS)
COURSES(CRN, TITLE, INST_NAME→INSTRUCTORS)
INSTRUCTORS(ADDRESSo, TENUREDo, NAME, EMAIL,

INST_TYPE)

The column “INST_TYPE” is declared to have values
“EXT” and “FAC” (the short names of the subtypes).

No CHECK-constraints are generated.

The column sequence in INSTRUCTORS is strange.

7. Logical Design III 7-29 / 78

Translation of Subtypes (7)

Result of Method 2 (“Separate Table Approach”):
COMMITTEES(CNAME)
COMMITTEES_FACULTY(COM_CNAME→COMMITTEES,

FAC_NAME→FACULTY)
COURSES(CRN, TITLE, EXT_NAMEo→EXTERNAL,

FAC_NAMEo→FACULTY)
EXTERNAL(NAME, EMAIL, ADDRESS)
FACULTY(NAME, EMAIL, TENURED)

An arc is generated for the foreign keys in COURSES.

The split table method for many-to-many relationships
with the supertype (“AWARD1/2”) is supported.

7. Logical Design III 7-30 / 78

Translation of Subtypes (8)

Result of “Implicit Sub-Type Approach”:

COMMITTEES(CNAME)
COMMITTEES_FACULTY(COM_CNAME→COMMITTEES,

FAC_NAME→FACULTY)
COURSES(CRN, TITLE, INST_NAMEo→INSTRUCTORS,

EXT_NAMEo→EXTERNAL, FAC_NAMEo→FACULTY)
EXTERNAL(NAME, EMAIL, ADDRESS)
FACULTY(NAME, EMAIL, TENURED)
INSTRUCTORS(NAME, EMAIL)

An arc is generated for the foreign keys in COURSES.

This is Method 2 for partial specialization.

7. Logical Design III 7-31 / 78

Translation of Subtypes (9)

Result of Method 4 (“Arc Approach”):

COMMITTEES(CNAME)
COMMITTEES_FACULTY(COM_CNAME→COMMITTEES,

FAC_1_FAC_ID→FACULTY)
COURSES(CRN, TITLE, INST_NAME→INSTRUCTORS)
EXTERNAL(ADDRESS, EXT_ID)
FACULTY(TENURED, FAC_ID)
INSTRUCTORS(NAME, EMAIL, EXT_EXT_IDo→EXTERNAL,

FAC_FAC_IDo→FACULTY)

The foreign keys in INSTRUCTORS are connected with an
(optional) arc and marked as non-transferable.

7. Logical Design III 7-32 / 78

Propagating Changes (1)

It is probably best to start the DB Design Transformer
only when one is finished with the ER-design.

If one has already changed the relational schema, and
then changes the ER-schema and runs the DB Design
Transformer again, it is a difficult problem to merge both
changes into one version.

In general, it is important that the ER-Schema and the
relational schema remain in sync — otherwise the
ER-schema loses its value as a documentation for the
created tables.

7. Logical Design III 7-33 / 78

Propagating Changes (2)

Of course, if one has not yet worked on the relational
schema, one can simply delete it and run the DB Design
Transformer again.

Actually, it is not so simple to delete table definitions from the repository
since they might be referenced in foreign keys. One must delete the foreign
keys first. If one wants to delete all table definitions, one can click on the
first, shift-click on the last, and then press the delete key. This will give an
error message if a table is deleted that is still referenced by a foreign key.
However, in Designer 6i (not Designer 6.0), one can choose to continue.
After this is done, one simply presses “delete” again to remove the
remaining tables (more runs might be needed, but if there are no cyclic
foreign keys, finally all tables are deleted). In case of cyclic references, one
must first delete at least one foreign key in the cycle before one can start
to delete the tables.

7. Logical Design III 7-34 / 78

Propagating Changes (3)

Deleting the entire relational schema and running the DB
Design Transformer again is the only completely automatic
way that is guaranteed to keep both schemas in sync.

The DB Design Transformer will never

remove existing tables (from a previous run) even if the
corresponding entity type was deleted in the meantime,

remove columns from tables when the corresponding
attribute was deleted.

7. Logical Design III 7-35 / 78

Propagating Changes (4)

The reason is probably that for denormalization, one
could add columns and tables to the relational schema
which are not present in the ER-schema.

This should be a big exception, only if the performance requirements
cannot be met with a good schema. But in earlier times it was done quite
often (programmer time was cheap compared to hardware).

The DB Design Transformer protects this work.
The real reason probably is that in order to propagate deletions from the
ER-schema to the relational schema, one must keep information about
deleted schema elements. Also, the DB Design Transformer can be applied
to a subset of the entity types. If one wants to delete tables, transforming
the subset consisting of all entity types would be different from
transforming the entire schema.

7. Logical Design III 7-36 / 78

Propagating Changes (5)

Under “Run Options” one can specify what the DB Design
Transformer is allowed to modify.

E.g. table names, column names, column sequence, column datatypes, etc.

With the default (nothing can be modified) the DB
Design Transformer remembers which elements in the
ER-diagram are already mapped, and translates only new
elements.

E.g. if an attribute is added to an existing entity, it will be mapped to a
new column in the existing table.

7. Logical Design III 7-37 / 78

Propagating Changes (6)

In the other extreme case (all modify options are checked),
the new translation of the ER-schema overwrites the
entire relational schema except that tables/columns are
not deleted.

E.g. even if one has renamed a column in the relational
schema, running the DB Design Transformer again will
reset it to its old name.

I.e. the correspondence between ER-attributes and columns in tables is
remembered in the repository, even if one of the two is renamed. One can
see this information in the Repository Object Navigator under
“Usages/Implemented by Columns” from the entity attribute.

7. Logical Design III 7-38 / 78

Propagating Changes (7)

One should not do arbitrary “last minute” changes in the
relational schema. Go back to the ER-Schema and
perform the required changes there!

Depending on the kind of change, one can select the right
modify options and run the DB Design Transformer only
for the modified entity type.

If something was deleted in the ER-schema, one must
manually perform the corresponding deletion in the
relational schema.

7. Logical Design III 7-39 / 78

Contents

1 Database Design Transformer

2 Server Model Diagrams

3 DB Admin.

4 DDL Generation

7. Logical Design III 7-40 / 78

Design Editor (1)

The relational schema generated by the database design
transformer often still needs some work:

The names of the “relationship table” for many-to-many
relationships often must be changed.

Column names and the sequence of columns within a
table might need changes.

Often, some constraints are missing.
The DB Design transformer only generates keys, foreign keys, NOT

NULL, and CHECK constraints for enumeration types or ranges
automatically. Keys for one-to-one relationships are missing, as well
as CHECK-constraints for subtypes, arcs, and other CHECK-constraints.

7. Logical Design III 7-41 / 78

Design Editor (2)

Manual work on the relational schema, continued:

For some foreign keys, one might have to select
“ON DELETE CASCADE” etc.

A default can be specified in the settings of the DB design
transformer, but it might be useful to consider each case individually.
E.g. for weak entities “ON DELETE CASCADE” is probably right.

Warning: Many students submitted the result of the DB
Design Transformer as logical schema without ever
reading it. They all lost points.

E.g. some generated column names are really ugly. Once application program
development has started, it is difficult to change column or table names.

7. Logical Design III 7-42 / 78

Design Editor (3)

In addition, information necessary for the generation of
application programs must be collected, e.g.

display title of the form generated for a table,

labels of input fields for columns,

field type (text, radio buttons, etc.),

field width,

help text,

display format (e.g. for date values),

columns that are not displayed.

7. Logical Design III 7-43 / 78

Design Editor (4)

After the logical design is finished, the following things
must be defined:

Views.

Possibly triggers, stored procedures.

Users, table owners, access rights.

Physical design information.
E.g. indexes, storage parameters for tables, distribution of tables
over disks/tablespaces, etc. It is quite likely that the physical design
will need to change when it turns out that the assumptions about
the system load were not quite right. However, changing it after the
data was loaded can be quite a lot of work.

7. Logical Design III 7-44 / 78

Design Editor (5)

Although this information can be edited directly with the
Repository Object Navigator, Oracle offers a special tool
for all this work: The Design Editor.

The Design Editor consists of four distinct tools:

Server Model (Relational Database Schema)

Modules (Application Programs)

DB Administration (Users, Tablespaces, etc.)

Distribution (for Distributed Databases)

7. Logical Design III 7-45 / 78

Design Editor (6)

Later, first-cut application programs (for Oracle
Developer Forms, Visual Basic, etc.) will be generated
from the “module definitions”.

However, the module definitions contain only a link to the
table name. The details such as the display width of input
fields are defined in the server model (attached to tables).

Of course, some things such as the exact position of the input fields on the
form cannot be generated, and must be later edited with the programming
tool itself (e.g. Oracle Developer Forms).

7. Logical Design III 7-46 / 78

Design Editor (7)

One window of the Design Editor is the Server Model
Navigator.

It looks very similar to the Repositor Object Navigator,
but shows only objects that are part of the relational
schema.

A student thought that she could remove the relational schema (for a fresh
run of the DB Design Transformer) by selecting the application system
name at the top of the Server Model Navigator window and pressing
“Delete”. This removed her entire application system, not only the part
shown in the window. For safety, export your design data at least once a
day (with the Repository Object Navigator: “Application→Export”) and
copy them on a floppy disk.

7. Logical Design III 7-47 / 78

Design Editor (8)

The Design Editor uses normally wizards/tabbed dialog
boxes instead of the simple property palette in the
Repository Object Navigator.

One can get also a property palette window under “Tools→Property Palette”.

The Design Editor also contains a tool to put information
about the schema of an existing relational database in the
repository.

The “Design Capture Utility” (“Generate→Capture Design of→Server

Model”) can read the information from the data dictionary of an Oracle
Database, from a file with SQL DDL (Create Table) commands, or via the
ODBC interface.

7. Logical Design III 7-48 / 78

Design Editor (9)

The Design Editor has also a “Server Model Guide” which
shows a tree of all server model object types:

Domains

Tables (Indexes, Triggers, Constraints)
Constraints: Primary Keys, Foreign Keys, Unique Keys, Check.

Sequences

Advanced (Views, Snapshots, Clusters)

PL/SQL

Oracle8 (Collection Types, Object Types, Object Tables,
Object Views).

7. Logical Design III 7-49 / 78

Design Editor (10)

When one selects an object type in the map, all objects of
that type are shown. One can create, edit, or delete an
object of the selected type.

Basically, this is the same functionality as the “Server
Model Navigator” which is also part of the Design Editor.
Only the user interface is a bit different.

One can also choose that the two tools are linked: When an object is
selected in the Server Model Guide, it is automatically also selected in the
Server Model Navigator. The Server Model Guide gives more advice what
to do in which sequence and sometimes has links to documentation.

7. Logical Design III 7-50 / 78

Server Model Diagrams (1)

The “Server Model” part of the Design Editor has a
graphical interface showing tables and their foreign key
connections in “Server Model Diagrams”.

The easiest way to create a diagram is to expand the “Relational Table
Definitions” in the “Server Model Navigator” on the left, then to select the
tables that should appear on the diagram (e.g. click on the first table and
shift-click on the last) and then to select
“File→New→Server Model Diagram”.

These diagrams are quite similar to ER-Diagrams.
However, the orientation on ER-diagrams is simpler. Server model
diagrams are overloaded with information, table boxes are larger than
entity boxes. Also many-to-many relationships are now shown as tables of
their own, and foreign key columns do not appear on ER-diagrams.

7. Logical Design III 7-51 / 78

7. Logical Design III 7-52 / 78

Server Model Diagrams (3)

Tables are shown as boxes with three sections:

The first section contains the table name and a number
of buttons.

Buttons: “Database Triggers”, “Indexes”, “Database Synonyms”,
“Primary Key”, “Unique Keys”, “Check Constraints”, “Foreign
Keys”. A dimmed button means that the table has no object of that
type. The button left to the table name is unusable.

The second section lists the columns (→ below).

The third section shows additional information as
selected by the buttons in the first section.

If one selects “View→Track Associations” and clicks on e.g. an
index, the corresponding columns are shown inverted above.

7. Logical Design III 7-53 / 78

Server Model Diagrams (4)

The second section of the table box contains one row per
column with the following information:

“#”: member of the primary key.

“*”: mandatory column (not null),
“◦”: optional column.

“ ”: enumeration type value list.

“A”: character/string data type,
“789”: numeric data type.

“ 123 ”: sequence (unique number generator).

“ ”: column belongs to domain.

7. Logical Design III 7-54 / 78

Server Model Diagrams (5)

Foreign keys are shown as lines between the tables and
use symbols similar to “one-to-many” relationships (but
beware of the differences).

Mandatory foreign keys (i.e. foreign keys that must be
not null) are shown as solid lines:

COURSES

* 789 CRN
* A TITLE
* A INST_FNAME
* A INST_LNAME

CRS_INST_FK

INSTRUCTORS

* A FNAME
* A LNAME

* A PHONE

7. Logical Design III 7-55 / 78

Server Model Diagrams (6)

Optional foreign keys (i.e. foreign keys that can be null)
are shown as dashed lines:

COURSES

* 789 CRN
* A TITLE
◦ A INST_FNAME
◦ A INST_LNAME

CRS_INST_FK

INSTRUCTORS

* A FNAME
* A LNAME

* A PHONE

The entire line is either solid or dashed, there are no
longer two halves.

7. Logical Design III 7-56 / 78

Server Model Diagrams (7)

Corresponding to the one-to-many relationship, the
“crows foot” is on the side with the foreign key.

It can also be seen as indicating the direction of the pointer, although a
real arrowhead would be on the opposite side.

The names of the foreign keys are often not helpful, but
take space on the diagram.

With “Options→Show/Hide” one can determine what is shown on the
diagram. Removing the check mark from “Text” of “Associations” hides
the foreign key names. One can specify which kinds of columns are shown,
e.g. hide the foreign key columns on the diagram. One can also select
which of the column type symbols are shown.

7. Logical Design III 7-57 / 78

Server Model Diagrams (8)

The small vertical bar near the crowsfoot means that
deletions do not cascade (“restricted”, one cannot delete
an instructor that teaches courses).

If one selects “ON DELETE CASCADE”, the line is crossed
with an “x”:

COURSES

* 789 CRN
* A TITLE
* A INST_FNAME
* A INST_LNAME

CRS_INST_FK

INSTRUCTORS

* A FNAME
* A LNAME

* A PHONE

7. Logical Design III 7-58 / 78

Server Model Diagrams (9)

If “ON DELETE SET NULL” is selected, a circle is used:

COURSES

* 789 CRN
* A TITLE
◦ A INST_FNAME
◦ A INST_LNAME

CRS_INST_FK

INSTRUCTORS

* A FNAME
* A LNAME

* A PHONE

A filled circle means “ON DELETE SET DEFAULT”.

The cascade rule for “ON UPDATE” is not shown on the
diagram.

7. Logical Design III 7-59 / 78

Server Model Diagrams (10)

One can also mark foreign keys as non updatable
(corresponding to a non-transferable relationship):

COURSES

* 789 CRN
* A TITLE
* A INST_FNAME
* A INST_LNAME

CRS_INST_FK�
INSTRUCTORS

* A FNAME
* A LNAME

* A PHONE

Foreign keys can be marked as mutually exclusive by
means of arcs (as on ER-diagrams).

7. Logical Design III 7-60 / 78

7. Logical Design III 7-61 / 78

Server Model Diagrams (12)

The properties dialog box for tables (“Edit Table”) has
tabs “Name”, “Columns”, “Display”, “Controls”, “UI”.

Under “Display”, one can define which columns correspond to input fields
in a form. Under “Controls” the type, size, etc. of these input fields is
defined. Under “UI” (User Interface), more information about input fields
is defined, e.g. a help text and a display format.

Column and table names can be edited directly in the
diagram, one does not have to go over the properties
dialog box.

7. Logical Design III 7-62 / 78

Server Model Diagrams (13)

Tables also have the “Edit Text” dialog box, where one
can define a description, notes, help text, and code for
insert, update, delete, and locks.

One can open this dialog box from the menu that appears if one
right-clicks on the table. This menu also permits to add columns, triggers,
indexes, synonyms, keys, check constraints, foreign keys.

The properties dialog box for foreign keys has tabs
“Foreign Key Mandatory”, “Foreign Key Column”,
“Cascade Rules”, “Validation”.

E.g. under “Validation” one can choose whether the constraint should be
enforced on the server, the client, or both. One can also specify an error
message and a table for exceptions (rows that violate it).

7. Logical Design III 7-63 / 78

Server Model Diagrams (14)

If one chooses to add e.g. a check constraint to a table,
a wizard is opened that asks for the required information.

To edit it later, display it in the third part of the box (by clicking on the
button for the object type) and click on the symbol in front of the name.
Clicking on the name only permits to edit the name. Editing an existing
check constraint etc. shows the same screens as the wizard, but now one
can jump with tabs between them.

Oracle Designer does not check the SQL syntax e.g. of
CHECK-constraint definitions.

One can enter any text. Column names can be selected from a list.
Of course, the exact SQL syntax depends on the DBMS.

7. Logical Design III 7-64 / 78

Server Model Diagrams (15)

The DB Design Transformer has already created indexes
for foreign keys.

In addition, the DBMS automatically creates indexes for primary and
alternate keys.

As part of the physical design, one can add further
indexes to a table.

One can also add triggers (e.g. for enforcing complex
constraints or logging changes to a table).

7. Logical Design III 7-65 / 78

Server Model Diagrams (16)

Server model diagrams can also contain other objects,
such as

Views (shown as grey-blue boxes).
In order to create a view, one can e.g. right-click on the background
of a server model diagram. Alternatively there is also a symbol on
the left toolbar. A wizard is started that asks the required
information. One can select base tables (FROM) and columns
(SELECT), and then any WHERE clause can be entered.

Object types (shown as red boxes).
In Oracle, an object type is a generalization of a record/row type.
One can create one or more tables over an object type. Object type
an tables are connected with a line that ends in a diamond attached
to the table.

7. Logical Design III 7-66 / 78

Server Model Diagrams (17)

Objects on Server Model Diagrams, continued:

Clusters (shown as grey boxes).
In Oracle, a cluster is a storage area in which rows of one or more
tables may be stored, such that rows with the same value in the
cluster column are stored together.

Snapshots (shown as light blue boxes).
In Oracle, a snapshot is a copy of another table or view, used in
distributed DBs for performance or failure safety reasons. One can
specify that it is automatically refreshed at certain intervalls.

The diagram legend can be shown in the upper left corner
(it contains diagram title, author, date etc.).

7. Logical Design III 7-67 / 78

Repository Reports

Again, there are many repository reports which can be
printed for documenting the DB Design, e.g.:

Entity to Table Implementation

Table Definition

Column Definition

Columns in Domain

Constraint Definition

Database Trigger

Cluster Definition

Tables, Columns, and Foreign Key Derivations

7. Logical Design III 7-68 / 78

Contents

1 Database Design Transformer

2 Server Model Diagrams

3 DB Admin.

4 DDL Generation

7. Logical Design III 7-69 / 78

Database Administration (1)

The following information can be specified with this part
of the Design Editor:

Database Name and connection information.

Access information: Users, Roles, Profiles.

Storage Information: Tablespaces, Datafiles,
Logfiles, Rollback Segments, Directories.

In the Server Model view, the really physical information
(like storage parameters) was not yet asked.

Also, in the server model, the tables do not yet belong to users (there is no
such property). One must move from the Server Model Relational Table
Definitions to Table Implementations under “DB Admin”.

7. Logical Design III 7-70 / 78

Database Administration (2)

One now can “implement” the tables under a user
account in a database. A new wizard asks for a table from
the server model and takes the designer through the
physical options.

One gets this wizard e.g. by selecting a user in the Database Administrator
Guide, then selecting “Tables” and clicking on “Create”. This does not
mean that a table is created from scratch, one can select a table from the
Server Model. Since often several tables have the same storage parameters,
one can create named sets of such parameters (“Storage Definitions”) and
assign to tables.

Of course, the resulting data are still stored in the
repository. The table is not yet really implemented.

7. Logical Design III 7-71 / 78

Database Administration (3)

The Database Administration part of the Design Editor is
only a subset of the Repository Object Navigator (there
are no new diagrams).

However, again wizards/tabbed dialog boxes are used instead of the
property palette. And it has a “Database Administrator Guide” that shows
the steps for specifying a database.

The tool is similar to a graphical user interface for a DBA
(but stores all information in the repository).

From the collected information, database creation scripts
can be generated.

7. Logical Design III 7-72 / 78

Contents

1 Database Design Transformer

2 Server Model Diagrams

3 DB Admin.

4 DDL Generation

7. Logical Design III 7-73 / 78

DDL Generation (1)

The Database Design Transformer stores the relational
schema in the repository. It does not actually create the
tables.

The reason for this is that in most cases, some things
must still be changed/added manually.

Once one is satisfied with the relational schema, one can
generate SQL DDL code containing e.g. CREATE TABLE
statements.

DDL = Data Definition Language. The generation is done with the Design
Editor: “Generate→Generate Database from Server Model”.

7. Logical Design III 7-74 / 78

DDL Generation (2)

Oracle Designer can create DDL code for different DBMS:
ANSI 92, DB2, Oracle (different versions), RDB7,
SQL Server, Sybase.

The creation of tables etc. can be done as follows:

Files with DDL statements are created, these must be
executed manually in the target DB.

If the target database is an Oracle Database, Oracle
Designer can directly create the tables.

If the target DB supports ODBC connections, tables can
also be directly created.

7. Logical Design III 7-75 / 78

DDL Generation (3)

One can select for which schema objects should be
generated (e.g. only a subset of the tables).

This is done on the “Objects” tab. E.g. click on the double right arrow:
“Generate All”.

What can be generated, depends on the DBMS chosen,
e.g.:

“ANSI 92”: Only tables and views.

“SQL Server” Only domains, tables, and views.
Which is strange, since it has indexes.

7. Logical Design III 7-76 / 78

DDL Generation (4)

When creating files, one defines a file prefix (e.g. courses)
and a directory. The different kinds of schema elements
will then be written to different files (for Oracle8):

courses.tab: Table Definitions

courses.con: Constraints (as ALTER TABLE ...)

courses.ind: Indexes

courses.sqs: Sequence Definitions

courses.sql: Includes all of the above files.

7. Logical Design III 7-77 / 78

References

Teorey: Database Modeling & Design, 3rd Edition.
Morgan Kaufmann, 1999, ISBN 1-55860-500-2, ca. $32.
Rauh/Stickel: Konzeptuelle Datenmodellierung (in German), Teubner, 1997.
Graeme C. Simsion, Graham C. Witt: Data Modeling Essentials, 2nd Edition.
Coriolis, 2001, ISBN 1-57610-872-4, 459 pages.
Barker: CASE*Method, Entity Relationship Modelling.
Addison-Wesley, 1990, ISBN 0-201-41696-4, ca. $61.
Koletzke/Dorsey: Oracle Designer Handbook, 2nd Edition.
ORACLE Press, 1998, ISBN 0-07-882417-6, ca. $40.
A. Lulushi: Inside Oracle Designer/2000.
Prentice Hall, 1998, ISBN 0-13-849753-2, ca. $50.
Oracle/Martin Wykes: Designer/2000, Release 2.1.1, Tutorial.
Part No. Z23274-02, Oracle, 1998.
Oracle Designer Model, Release 2.1.2 (Element Type List).
Oracle Designer Online Help System.

7. Logical Design III 7-78 / 78

	Database Design Transformer
	Database Design Transformer

	Server Model Diagrams
	Server Model Diagrams

	DB Admin.
	Database Administration

	DDL Generation
	Generation of SQL Code
	References

