
Datenbanken II A: DB-Entwurf

Chapter 5: Logical Design I

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Wintersemester 2022/23

http://www.informatik.uni-halle.de/˜brass/dd22/

5. Logical Design I 5-1 / 66

http://www.informatik.uni-halle.de/~brass/dd22/


Objectives

After completing this chapter, you should be able to:
translate given ER-schemas (without subclasses)
manually into the relational model.

Entity types, one-to-many relationships (two alternative translations),
many-to-many relationships (including attributes),
one-to-many-relationships, weak entity types.

explain which cardinalities cannot be enforced with
standard constraints of the relational model.

Explain several options for enforcing general constraints.
And compare them, e.g. name weaknesses.

Write SQL queries to search for constraint violations.
In particular for cardinality constraints from the ER-model that could not
be translated into standard constraints of the relational model.

5. Logical Design I 5-2 / 66



Contents

1 Foundations

2 Relationships

3 Limitations, Integrity Control

4 Weak Entity Types

5. Logical Design I 5-3 / 66



General Remarks (1)

In order to develop a relational schema, one usually first
designs an ER-schema, and then transforms it into the
relational model, because the ER-model

allows better documentation of the relationship between
the schema and the real world.

E.g. entity types and relationships are distinguished.

has a useful graphical notation.

has constructs like inheritance which have no direct
counterpart in the relational model.

The difficult conceptual design can be simplified a bit by first using
the extended possibilities.

5. Logical Design I 5-4 / 66



General Remarks (2)

Given an ER-schema SE , the goal is to construct a
relational schema SR such that there is a one-to-one
mapping τ between the states for SE and SR .

I.e. each possible DB state with respect to SE has exactly one counterpart
state with respect to SR and vice versa.

States that are possible in the relational schema but
meaningless with respect to the ER-schema must be
excluded by integrity constraints.

E.g., in the ER-model, relationships can be always only between currently
existing entities. In the relational model, “dangling pointers” must be
explicitly excluded by means of foreign key constraints.

5. Logical Design I 5-5 / 66



General Remarks (3)

In addition, it must be possible to translate queries
referring to SE into queries with respect to SR , evaluate
them in the relational system, and then translate the
answers back.

I.e. it must be possible to simulate the designed ER-database
with the actually implemented relational database.

Any schema translation must explain the correspondance of schema
elements such that, in our case, a query intended for the ER-schema can
also be formulated with respect to the relational schema.

5. Logical Design I 5-6 / 66



Example

INSTRUCTOR
# FNAME
# LNAME
◦ PHONE

teacher of
taught by

COURSE
# CRN
* TITLE

STUDENT
# SSN
* FNAME
* LNAME
◦ EMAIL

registered for

taken by

5. Logical Design I 5-7 / 66



Entity Types (1)

First a table is created for each entity type.
The tables created in this step are not necessarily the final result. When
one-to-many relationships are translated, columns are added to them. In
rare cases, they will later turn out as unnecessary.

The name of this table is the name of the entity type
(maybe in plural form, as in Oracle Designer).

The columns of this table are the attributes of the entity
type.

Optional attributes translate into columns that permit null values.
Depending on how much one considers the goal DBMS in this step, it
might be necessary to map attribute data types into something the DBMS
supports.

5. Logical Design I 5-8 / 66



Entity Types (2)

The primary key of the table is the primary key of the
entity type. The same for alternative keys.

Weak entity types are discussed below.

If the entity type has no key, an artificial key is added
(e.g. Oracle Designer does this).

The designer really should explicitly define a key for each entity type.

Result in the example:

INSTRUCTORS(FNAME, LNAME, PHONEo)
STUDENTS(SSN, FNAME, LNAME, EMAILo)
COURSES(CRN, TITLE)

5. Logical Design I 5-9 / 66



Entity Types (3)

Example State for the Tables Generated So Far:

INSTRUCTORS
FNAME LNAME Phone
Stefan Brass 624-9404
Michael Spring 624-9424
Nina Brass

COURSES
CRN TITLE
12345 DB Management
24816 DB Analysis&Design
56789 Client-Server

STUDENTS
SSN FIRST LAST EMAIL
111-22-3333 John Smith js@acm.org
123-45-6789 Ann Miller
235-71-1131 David Meyer dm@hotmail.com

5. Logical Design I 5-10 / 66



Contents

1 Foundations

2 Relationships

3 Limitations, Integrity Control

4 Weak Entity Types

5. Logical Design I 5-11 / 66



One:Many Relationships (1)

One-to-many Relationships are normally translated by
adding the primary key from the “one” side as a foreign
key to the “many” side.

In this way, every entity on the “many” side can refer to the related entity
on the “one” side.

E.g. in the example, first name and last name of the instructor
are added to the course table in order to implement the
relationship “teacher of/taught by”:

COURSES(CRN, TITLE,
(FNAME,LNAME)→INSTRUCTORS)

5. Logical Design I 5-12 / 66



One:Many Relationships (2)

The example shows already a difficult case because the
primary key (and therefore also the foreign key) consists
of two columns.

This is why some designers would prefer primary keys consisting only of
one column. But that is a matter of taste.

Example State:
COURSES

CRN TITLE FNAME LNAME
12345 DB Management Stefan Brass
24816 DB Analysis&Design Stefan Brass
56789 Client-Server Michael Spring

5. Logical Design I 5-13 / 66



One:Many Relationships (3)

The rows corresponding to both entities will be combined
with a join (which equates the foreign key on the “many”
side to the primary key on the “one” side).

Although a “pointer” (foreign key) was added only on the
“COURSES” side, the join permits to “follow pointers in
both directions”.

Of course, one can formulate queries that contain conditions on instructors
and then find all their courses. The exact evaluation sequence for the query
is a question of query optimization and depends also on the existing indexes.

5. Logical Design I 5-14 / 66



One:Many Relationships (4)

It is a common error of beginners to add the foreign key
to the wrong side.

Of course, this cannot happen when one uses a tool that does the
translation automatically (like Oracle Designer). But one nevertheless
needs to understand the correct translation.

Adding a foreign key to the table is only possible if the
maximum cardinality in the (min,max) notation is 1,
i.e. there is at most one related entity.

This holds for the “many” side of a one-to-many relationship.

5. Logical Design I 5-15 / 66



One:Many Relationships (5)

Since one instructor can teach many courses, adding the
key of COURSES to the INSTRUCTORS table would give
a set-valued attribute which is not permitted in the
standard relational model:

INSTRUCTORS WRONG!
FNAME LNAME Phone CRN
Stefan Brass 624-9404 {12345, 24816}
Michael Spring 624-9424 {56789}
Nina Brass ∅

5. Logical Design I 5-16 / 66



One:Many Relationships (6)

Unfolding the set-valued attribute would destroy the key,
store information redundantly (instructors of multiple
courses), and lead to the loss of other information
(instructors of no course).

INSTRUCTORS WRONG!
FNAME LNAME Phone CRN
Stefan Brass 624-9404 12345
Stefan Brass 624-9404 24816
Michael Spring 624-9424 56789

5. Logical Design I 5-17 / 66



One:Many Relationships (7)

Above, every course had to be taught by an instructor
(mandatory participation).

The translation for the case of optional participation is
similar (courses without instructors).

INSTRUCTOR
# FNAME
# LNAME
◦ PHONE

teacher of
taught by

COURSE
# CRN
* TITLE

5. Logical Design I 5-18 / 66



One:Many Relationships (8)

The only difference is that the foreign key can now be null:

COURSES(CRN, TITLE,
(FNAMEo,LNAMEo) → INSTRUCTORS)

Example State:
COURSES

CRN TITLE FNAME LNAME
12345 DB Management Stefan Brass
24816 DB Analysis&Design
56789 Client-Server Michael Spring

5. Logical Design I 5-19 / 66



One:Many Relationships (9)

If the foreign key consists of more than one attribute
(as in the example), all its attributes must be

together null or

together not null.
A partially defined foreign key would make no sense in terms of the
relationship that has to be implemented.

Fortunately, this condition can be enforced declaratively
with a CHECK-constraint:
CHECK((FNAME IS NOT NULL AND LNAME IS NOT NULL)

OR (FNAME IS NULL AND LNAME IS NULL))
It depends on the DBMS whether this constraint is really necessary, often
the foreign key constraint will actually suffice. But at least is constraint is
a good documentation.

5. Logical Design I 5-20 / 66



Many:Many Relationships (1)

In the example, a many-to-many relationship still remains:

STUDENT
# SSN
* FNAME
* LNAME
◦ EMAIL

registered for
taken by

COURSE
# CRN
* TITLE

Such relationships cannot be implemented by adding a
foreign key to one of the two tables, because there can be
more than one related entity.

5. Logical Design I 5-21 / 66



Many:Many Relationships (2)

Thus, a new table is created for the relationship.

The new table contains the primary keys of both entity
types that participate in the relationship.

The two keys together form the composed key of the
intersection table, and each is a foreign key referencing
the table for its entity type:

REGISTERED FOR(SSN→STUDENTS,
CRN→COURSES)

5. Logical Design I 5-22 / 66



Many:Many Relationships (3)

The intersection table for the relationship simply contains
key value pairs of entities that are related:

REGISTERED FOR
SSN CRN
111-22-3333 12345
111-22-3333 56789
123-45-6789 12345

E.g. John Smith (SSN 111-22-3333) is registered for
Database Management (CRN 12345) and for
Client-Server (CRN 56789).

5. Logical Design I 5-23 / 66



Many:Many Relationships (4)

Suppose the relationship has attributes:

Student

SSN

(0, ∗)
took

(0, ∗)

Grade

Course

CRN

The circle in the connection to the attribute means that the attribute is
optional (can be null).

Then one can simply add the relationship attributes to
the relationship table:

TOOK(SSN→STUDENTS, CRN→COURSES, GRADEo)

Relationship attributes do not become part of the key.
5. Logical Design I 5-24 / 66



One:Many: Alternative (1)

One can also translate one-to-many relationships
(with optional partcipation on both sides)
into tables of their own.

E.g. consider the following example: The university library
wants to store who has borrowed which book:

STUDENT
# SSN
* FNAME
* LNAME
◦ EMAIL

borrower of
borrowed by

BOOK
# ID
* TITLE
◦ AUTHOR
. . .

5. Logical Design I 5-25 / 66



One:Many: Alternative (2)

This can also be translated in a similar way to a
many-to-many relationship:

BORROWED BY(ID→BOOKS, SSN→STUDENTS)

Some professors first explain the translation of all relationships as tables of
their own with the two foreign keys, and then merge relations with the
same key. E.g. this relation has the same key as the BOOKS relation, and
if we merge the two relations we get to the standard translation of
one-to-many relationships.

In contrast to a many-to-many relationship, ID alone
suffices as key, since every book can be related to at most
one student, so there can never be two entries for the
same book.

5. Logical Design I 5-26 / 66



One:Many: Alternative (3)

Note that this alternative solution needs one more join in
most queries than the standard solution.

The standard solution explicitly stores the outer join of the entity table and
this relationship table, so that one does not have to compute the join at
runtime.

However, if there are very many books and very few of
them are borrowed, the alternative solution permits fast
access to the borrowed books.

It might also be a bit more space-efficient.

5. Logical Design I 5-27 / 66



One:One Relationships (1)

Suppose we want to store which student is responsible for
which computer account:

STUDENT
# SSN
* FNAME
* LNAME
◦ EMAIL

owner of
owned by

ACCOUNT
# ID
* LAST LOGIN

The translation is basically done like a one-to-many
relationship. If one side has mandatory participation, one
treats that side as the “many” side.

5. Logical Design I 5-28 / 66



One:One Relationships (2)

The result of the translation is

STUDENTS(SSN, FNAME, LNAME, EMAILo)
ACCOUNTS(ID, LAST LOGIN, SSN→STUDENTS)

The important difference to a “one-to-many” relationship
is that the foreign key that implements the relationship
now becomes an alternative key for the ACCOUNTS table.

I.e. for every student SSN, there can be at most one account.

5. Logical Design I 5-29 / 66



One:One Relationships (3)

Now consider the case that the participation is optional
on both sides:

FACULTY
# FNAME
# LNAME
* PHONE
◦ EMAIL

head of
lead by

DEPARTMENT
# DNAME
* ADDRESS

Now the situation is symmetric, and one can choose
either side as “many” side.

It would be a mistake to add a foreign key on both sides (redundant information).

5. Logical Design I 5-30 / 66



One:One Relationships (4)

In the example, it is probably an exceptional situation
that departments do not have a head.

One needs less null values if one chooses the side on
which participation is “less optional” and adds the foreign
key on this side:

FACULTY(FNAME, LNAME, PHONE, EMAILo)
DEPARTMENTS(DNAME, ADDRESS,

(LNAMEo, FNAMEo) →FACULTY)

5. Logical Design I 5-31 / 66



One:One Relationships (5)

The relationship becomes one-to-one by specifying that
LNAME, FNAME are an alternative key for DEPARTMENTS.

Note that as always for optional composed foreign keys, one needs a
CHECK-constraint specifying that LNAME and FNAME can only be
together null.

Not every DBMS supports alternative keys that can be null.
And if they are supported, one has to check what the semantics is. E.g. in
SQL server, at most one record with a null value in the key is permitted,
which would not help here.

5. Logical Design I 5-32 / 66



One:One Relationships (6)

However, if that does not work, one can also use the
alternative translation for one-to-many relationships
(with their own table):

FACULTY(FNAME, LNAME, PHONE, EMAILo)
DEPARTMENTS(DNAME, ADDRESS)
DEPT HEAD(DNAME→DEPARTMENTS

(LNAME, FNAME)→FACULTY)

LNAME and FNAME together are an alternative key for
the relation DEPT HEAD.

5. Logical Design I 5-33 / 66



One:One Relationships (7)

Finally, consider the case with mandatory participation on
both sides:

STUDENT
# SSN
* FNAME
* LNAME
◦ EMAIL

owner of
owned by

ID CARD
# NO
* DATE ISSUED

In this case, one would translate the two entity types into
only one table.

One must select one of the two keys as primary key, the other becomes an
alternative key.

5. Logical Design I 5-34 / 66



Renaming of Columns (1)

Sometimes the direct application of the translation rules
would lead to a name clash:

INSTRUCTOR
# NO
* FNAME
* LNAME
◦ PHONE

teacher of
taught by

COURSE
# NO
* TITLE

In this example, one would get:
COURSES(NO, TITLE, NO→INSTRUCTORS)

But column names must be unique within a table.

5. Logical Design I 5-35 / 66



Renaming of Columns (2)

One can rename attributes during the translation in any
understandable way.

E.g. one could also use the role name in the relationship:

COURSES(NO, TITLE,
TAUGHT BY→INSTRUCTORS)

One could also add the name of the referenced table, or
maybe a shorthand for it:

COURSES(NO, TITLE,
INST NO→INSTRUCTORS)

5. Logical Design I 5-36 / 66



Renaming of Columns (3)

The renaming must be carefully documented such that
the ER-diagram is still useful as documentation for the
implemented relational schema.

Sometimes, it might be good to change the attribute
name already on the ER-level.

However, this is not always possible (e.g. in the case of recursive
relationships).

Also the table names generated for many-to-many
relationships are often not very good and should be
renamed.

5. Logical Design I 5-37 / 66



Contents

1 Foundations

2 Relationships

3 Limitations, Integrity Control

4 Weak Entity Types

5. Logical Design I 5-38 / 66



Summary: Limitations (1)

The following cardinalities can be translated with the
methods explained above (using only the standard
constraints of the relational model):

E1 E2

E1 E2

E1 E2

(continued on next slide . . . )

5. Logical Design I 5-39 / 66



Summary: Limitations (2)

In addition, all kinds of one-to-one relationships can be
handled:

E1 E2

E1 E2

E1 E2

5. Logical Design I 5-40 / 66



One:Many Relationships (1)

Mandatory participation on the “one” side of a
one-to-many relationship cannot be translated into the
relational model using only the standard constraints
(not null, keys, foreign keys, CHECK).

Instructors must teach at least one course:

INSTRUCTOR
# FNAME
# LNAME
◦ PHONE

teacher of
taught by

COURSE
# CRN
* TITLE

5. Logical Design I 5-41 / 66



One:Many Relationships (2)

In this case, one uses the same translation as if the
participation on the “INSTRUCTOR” side would be
optional.

This is more general:
The cardinality restriction (1, ∗) is weakend to (0, ∗).

Thus, all DB states required by the ER-schema can be
represented in the relational schema.

But the relational schema permits DB states that would
be illegal with respect to the ER-schema.

5. Logical Design I 5-42 / 66



One:Many Relationships (3)

In order to make the two schemas equivalent, one needs
to add a constraint that excludes instructors without courses.

E.g. one could run from time to time an SQL query that
finds violations of the constraint:
SELECT FNAME, LNAME
FROM INSTRUCTORS I
WHERE NOT EXISTS (SELECT *

FROM COURSES C
WHERE C.FNAME = I.FNAME
AND C.LNAME = I.LNAME)

One could even generate an error message:
SELECT 'Instructor without courses: ' ||

FNAME || ' ' || LNAME AS ERRMSG
5. Logical Design I 5-43 / 66



Integrity Control (1)

The problem with the above approach (searching for
violations e.g. every night) is that it does not really
enforce the integrity of the DB state.

The invalid information can be entered, and is detected
only after some time.

In the meantime, it might have been used already.
E.g. a salary was paid.

It is also more difficult to correct the integrity violation if
it is not immediately detected.

Who has entered this? What did he/she meant to do?

5. Logical Design I 5-44 / 66



Integrity Control (2)

One can also program the check in the application programs
used for entering data.

The instructor can only be added with his/her first course, and when the
last course is deleted, the instructor is deleted, too.

Then one has to exclude direct changes to the database
that do not use the application programs.

Also, one must be very careful that all application
programs check this condition.

E.g. also the one used for updating instructor assignments for courses.

5. Logical Design I 5-45 / 66



Integrity Control (3)

Good application programs anyway should handle all
possible constraint violations, even if the DBMS enforces
the constraint.

At least all constraint violations that could possibly occur due to bad user
input. Other constraint violations are automatically prevented by the
application logic (e.g. if the user first selects a customer and then enters
an order), and then the check in the DBMS suffices (in case the program
contains a bug or somebody else deletes the customer in the meantime).

The error message generated by the DBMS is normally not very clear for
the untrained user, therefore at least some form of exception handling that
produces a better error message for the specific application context should
be done. Of course, the application could simply check for these constraint
violations itself before executing the critical update. But this duplication
could also be considered bad style.

5. Logical Design I 5-46 / 66



Integrity Control (4)

Thus constraint checks in the DBMS basically give a
second level of protection against:

application programs that contain bugs,

application programs that contain holes,
It is easy to overlook that a specific update might violate a certain
constraint, although there is a formal theory that can compute all
possible “critical updates” from the given constraint formula.

users that have direct SQL access to the DBMS,

unexpected interference of concurrent users.

Declarative constraints are also a formal and concise
specification for the checks in the software.

5. Logical Design I 5-47 / 66



Integrity Control (5)

If a constraint is not declaratively supported by the DBMS,
triggers can be used to enforce it.

Triggers are procedures stored in the database that the DBMS automatically
calls when a certain event has happend, e.g. when an instructor was inserted.
Triggers often consist of the three parts “event, condition, action” (ECA-rules).

One can also define elementary transactions as stored
procedures in the database and change the DB state only
via these stored procedures.

Then checks do not have to be repeated in the application programs,
it is more likely that checks are not forgotten, and they are more clearly
separated from the user interface.
This approach is similar to a class that permits to change its attributes
only via the methods defined in the class. One can use access rights in the
database to enforce this.

5. Logical Design I 5-48 / 66



Integrity Control (6)

The SQL-92 standard would permit to specify the
constraint declaratively (“CREATE ASSERTION”).

This is not implemented in any DBMS I know. However, DBMS vendors
now feel some pressure from their customers to offer more support for
integrity enforcement.

The constraint needed in the example (no instructor
without course) is similar to a foreign key.

Like a foreign key it requires the inclusion of attribute values:
Every combination of FNAME, LNAME values in the INSTRUCTORS
table must also appear in the COURSES table.

But it is no foreign key since the referenced attribute
combination is no key.

5. Logical Design I 5-49 / 66



Integrity Control (7)

Because of these problems, one can of course ask:
“Should I use such cardinality specifications?”

But if in the real world, there cannot be instructors that
do not teach courses, the ER-schema with optional
participation would be simply wrong.

Of course, as for any constraint, one must always ask: Could there possibly
be exceptional situations that would permit an instructor without courses?
In that case, the mandatory participation would be wrong, because
constraints do not permit any exceptions.

Clearer example: Invoices without line items really do not
make sense.

5. Logical Design I 5-50 / 66



Integrity Control (8)

When defining the conceptual schema, one should not
think about limitations of current technology.

That is the task of logical (and physical) design.

The problem can be solved (e.g. with checks in
application programs and by searching for integrity
violations with a query at least once a month).

When technology advances, the same conceptual schema
can be translated in a nicer way.

More tasks are given to the system, less is explicitly programmed.

5. Logical Design I 5-51 / 66



Integrity Control (9)

Defining the right cardinalities is also important because
it influences the application programs:

If there cannot be instructors without courses, the
application program to insert an instructor must also
insert at least one course.

Probably, the application should permit to insert more than one
course, since there is no real reason to select one specific out of the
many courses an instructor might teach.

Otherwise, there will probably be different programs to
insert instructors and to insert courses.

5. Logical Design I 5-52 / 66



Integrity Control (10)

One can analyse ER-diagrams for elementary transactions
as given by the cardinalities.

If these should turn out to be too complicated, one
should think again about the minimal cardinalities.

For such an approach, it would make sense to define
already on the ER-level

Which attributes are updatable?

Which entities are deletable?

Which entities can be independently inserted?
Can an existing order be extended by new positions?

5. Logical Design I 5-53 / 66



Many:Many Relationships (1)

Optional participation (minimum cardinality 0) is the only
form of many-to-many relationship that can be implemented
with a “relationship table” and the standard constraints
supported in SQL.

Suppose students must take at least one course:

STUDENT
# SSN
* FNAME
* LNAME
◦ EMAIL

registered for
taken by

COURSE
# CRN
* TITLE

Relation generated for relationship:
REGISTERED_FOR(SSN → STUDENT, CRN → COURSE)

5. Logical Design I 5-54 / 66



Many:Many Relationships (2)

As before, if one has mandatory participation, one uses
the more general translation, and adds a constraint
(to be checked e.g. in application programs).

The translation shown on the previous slide gives optional participation
(dashed lines). E.g. the relation REGISTERED_FOR can be empty, while the
STUDENTS-relation is not empty.

If a student can register for at most three courses, one
could discuss also the following solution:

STUDENTS(SSN, FNAME, LNAME, EMAILo,
CRN1 →COURSES, CRN2o→COURSES,
CRN3o→COURSES)

However, this significantly complicates queries
(one will need a lot of “OR” and “UNION”).

5. Logical Design I 5-55 / 66



Many:Many Relationships (3)

Even in the general case, there are tricky solutions that
would formally solve the problem (mandatory participation
in a many-to-many relationship).

If a student has to register for at least one course, it would be possible to
store the CRN for the first course redundantly in the STUDENTS table
and then one could declare SSN and CRN in STUDENTS as a foreign key
referencing REGISTERED FOR, but this is at least very ugly (one would
also get severe problems inserting any data). One could also leave the
foreign key out and take in all queries the union of the registration in the
STUDENTS table and the registrations in the REGISTERED FOR table.

However, such strange solutions lead to complicated
programs and possibly errors.

5. Logical Design I 5-56 / 66



Contents

1 Foundations

2 Relationships

3 Limitations, Integrity Control

4 Weak Entity Types

5. Logical Design I 5-57 / 66



Weak Entity Types (1)

When weak entities are translated, the “borrowed” key
attributes of the parent entity must be added.

BUILDING
# NAME
◦ YEAR BUILT

home of

contained in

ROOM
# NUMBER
* TYPE
◦ CAPACITY

The key of the “ROOMS” table will consist of the
building name and the room number.

5. Logical Design I 5-58 / 66



Weak Entity Types (2)

The result of the translation is:

BUILDINGS(NAME, YEAR BUILTo)
ROOMS(NAME→BUILDINGS, NUMBER,

TYPE, CAPACITYo)

I.e. the foreign key that is added to the weak entity table
in order to implement the relationship with the parent
entity type becomes part of the key.

5. Logical Design I 5-59 / 66



Weak Entity Types (3)

Next, consider a weak entity type with more than one
parent (“Association Entity Type”):

STUDENT
# NAME
◦ EMAIL

author of

submitted by

EXERCISE
# NO
* MPOINTS

subject of

for

SOLUTION
* POINTS

5. Logical Design I 5-60 / 66



Weak Entity Types (4)

The translation is done in the same way: The key of the
weak entity type now consists of the keys of the two
parent entity types (i.e. the two foreign keys added to
implement the relationships):

STUDENTS(NAME, EMAILo)
EXERCISES(NO, MPOINTS)
SOLUTIONS(NAME→STUDENTS,

NO→EXERCISES,
POINTS)

Of course, any key attributes declared in the weak entity
type itself would be added.

5. Logical Design I 5-61 / 66



Weak Entity Types (5)

Note that the translation result is exactly the same as if
we had used a relationship with an attribute:

Student

Name Email

(0, ∗)
solved

(0, ∗)

Points

Exercise

No MPoints

This demonstrates again that the two ER-schemas are
equivalent.

When one has to check two ER-constructs for equivalence, one can try to
translated them into the relational model. If the results are the same, the
ER-schemas are equivalent. The converse does not hold.

5. Logical Design I 5-62 / 66



Weak Entity Types (6)

A weak entity can also be constructed over several steps.
Consider a database schema for storing multiple choice
online tests:

TEST
# TID
* DESC

QUESTION
# QNO
* TEXT

ANSWER
# LETTER
* TEXT
* CORRECT

Each test consists of several questions. For each question, the student has
to check the correct answer among several alternatives. Within a test,
questions are identified by a number. For a given question, each possible
answer is identified by a letter (a, b, c).

5. Logical Design I 5-63 / 66



Weak Entity Types (7)

Before a weak entity type can be translated, all its parent
entity types must be translated.

In the example, first TEST must be translated, then QUESTION, then
ANSWER.

The reason is that in order to construct the primary key
for a weak entity type, one must know the primary key of
its parent entity type(s).

This also means that any cycles in the “parent of”
relation would give an ill-formed schema that has no
meaning and cannot be translated.

5. Logical Design I 5-64 / 66



Weak Entity Types (8)

The result of the translation in the example is:

TESTS(TID, DESC)
QUESTIONS(TID→TESTS, QNO, TEXT)
ANSWERS((TID, QNO)→QUESTIONS,

LETTER, TEXT, CORRECT)

ANSWERS contains a foreign key that references its
direct parent entity table QUESTIONS.

This contains a foreign key referencing TESTS.

It is logically implied that any TID value appearing in
ANSWERS also appears in TESTS.

5. Logical Design I 5-65 / 66



References
Teorey: Database Modeling & Design, 3rd Edition.
Morgan Kaufmann, 1999, ISBN 1-55860-500-2, ca. $32.
Elmasri/Navathe: Fundamentals of Database Systems, 3rd Ed.
Rauh/Stickel: Konzeptuelle Datenmodellierung (in German), Teubner, 1997.
Kemper/Eickler: Datenbanksysteme (in German), Oldenbourg, 1997.
Graeme C. Simsion, Graham C. Witt: Data Modeling Essentials, 2nd Edition.
Coriolis, 2001, ISBN 1-57610-872-4, 459 pages.
Barker: CASE*Method, Entity Relationship Modelling.
Addison-Wesley, 1990, ISBN 0-201-41696-4, ca. $61.
Koletzke/Dorsey: Oracle Designer Handbook, 2nd Edition.
ORACLE Press, 1998, ISBN 0-07-882417-6, ca. $40.
A. Lulushi: Inside Oracle Designer/2000.
Prentice Hall, 1998, ISBN 0-13-849753-2, ca. $50.
Oracle/Martin Wykes: Designer/2000, Release 2.1.1, Tutorial.
Part No. Z23274-02, Oracle, 1998.
Oracle Designer Model, Release 2.1.2 (Element Type List).
Oracle Designer Online Help System.
Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

5. Logical Design I 5-66 / 66


	Foundations
	General Remarks about Schema Translation
	Translation of Entity Types

	Relationships
	One-To-Many Relationships
	Many-to-Many Relationships
	Alternative Translation of One-to-Many Relationships
	One-to-One Relationships
	Renaming of Columns

	Limitations, Integrity Control
	Limitations, Integrity Control

	Weak Entity Types
	Weak Entity Types
	References


