
Datenbanken II A: DB-Entwurf

Chapter 11: UML Class Diagrams I

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Wintersemester 2020/21

http://www.informatik.uni-halle.de/˜brass/dd20/

11. UML Class Diagrams I 11-1 / 76

http://www.informatik.uni-halle.de/~brass/dd20/

Objectives

After completing this chapter, you should be able to:

read and write UML class diagrams.

translate ER-schemas into UML class diagrams and vice
versa.

translate a UML class diagram into a relational database
schema (as far as possible).

explain differences between the object-oriented and the
classical relational approach to database design.

Especially with regard to operations and keys. What are the
implementation options for operations in a RDBMS?

11. UML Class Diagrams I 11-2 / 76

Contents

1 History and Importance of UML

2 Classes, Attributes

3 Associations

11. UML Class Diagrams I 11-3 / 76

What is UML? (1)

“ The Unified Modeling Language (UML) is a
general-purpose visual modeling language that is used to
specify, visualize, construct, and document the artifacts of
a software system. It captures decisions and understanding
about systems that must be constructed.”

[Rumbaugh et.al., The UML Reference Manual, 1999]

The UML gives you a standard way to write a system’s
blueprints, covering conceptual things, such as business
processes and system functions, as well as concrete things,
such as classes written in a specific programming language,
database schemas, and reusable software components.”

[Booch et.al., The UML User Guide, 1999]

11. UML Class Diagrams I 11-4 / 76

What is UML? (2)

“The UML, in its current state, defines a notation and a
meta-model. The notation is the graphical stuff you see in
models; it is the syntax of the modeling language.”

[Fowler/Scott, UML Distilled, Second Edition, 2000]

“The UML is a modeling language, not a method.
The UML has no notion of a process, which is an
important part of a method.”

[Fowler/Scott, UML Distilled, Second Edition, 2000]

11. UML Class Diagrams I 11-5 / 76

History of UML (1)

Object-Oriented Programming Languages:

Simula-67 (1965–1970) is generally called the first
object-oriented language.

Simula was developed by Nygaad and Dahl at the Norwegian Computing
Center.

Smalltalk is the classical object-oriented programming
language. It was developed at XEROX PARC in the 1970s
and became widespread in the 1980s.

The first version was developed by Alan Kay and others in 1972. The book
“Smalltalk-80: The Language and Its Implementation” by Adele Goldberg
and David Robson appeared 1983.

11. UML Class Diagrams I 11-6 / 76

History of UML (2)

Object-Oriented Programming Languages, Continued:

C++ was introduced in 1984, but further developed
during the 1980s and 1990s.

In 1979–1980 Bjarne Stroustrup developed “C with Classes” at the
Computer Science Research Center of Bell Laboritories in Murray Hill.
During 1982–1984 it was redesigned and called C++, 1986 appeared the
book “The C++ Programming Language”. However, many features were
still added later. The ANSI/ISO C++ standardization started in 1989 and
the standard was finally approved in 1999.

Eiffel: Developed 1985–1986, the book by Bertrand Meyer
appeared 1988. “Design by Contract”.

Java: Introduced in 1995 (by SUN Microsystems).

11. UML Class Diagrams I 11-7 / 76

History of UML (3)

Development Methods for Traditional Languages:

E.g. Structured Analysis and Structured Design,
a development method for traditional programming
languages, was published by Edward Yourdon and Larry
L. Constantine in 1979.

Development methods became widespread in the 1980s.

11. UML Class Diagrams I 11-8 / 76

History of UML (4)

Object-Oriented Design Methods / Influential Books:

Shlaer/Mellor (1988/1989)

CRC: Wirfs-Brock/Wilkerson/Wiener (1990/91).

Coad/Yourdon (1991)

Booch [Rational Software Corporation] (1991)

OMT: Rumbaugh/Blaha/Premerlani/Eddy/
Lorensen (1991).

Martin/Odell (1992).

OOSE: Jakobson et.al. [Objectory] (1992).

11. UML Class Diagrams I 11-9 / 76

History of UML (5)

“The number of object-oriented methods increased from
fewer than 10 to more than 50 during the period between
1989 and 1994.”

[Booch et.al., The UML User Guide, 1999]

“. . . in 1994, the methods scene was pretty split and
competitive. Each of the aforementioned authors was now
informally leading a group of practitioners who liked his ideas.”

[Fowler/Scott, UML Distilled, Second Edition, 2000]

All methods/design languages were relatively similar, but
each had strengths and weaknesses.

In addition, similar things were often expressed in
different notation.

11. UML Class Diagrams I 11-10 / 76

History of UML (6)

In October 1994, James Rumbaugh joined Grady Booch
at Rational. Their goal was to unify the Booch and OMT
methods.

“Grady and Jim proclaimed that ‘the methods war is over — we won,’
basically declaring that they were going to achieve standardization the
Microsoft way.” [Fowler/Scott, UML Distilled, Second Edition, 2000]

In October 1995, the version 0.8 draft of the “Unified
Method” was released.

In Fall 1995, Rational bought Objectory and Ivar Jacobson
joined the team working on UML.

In June 1996, UML version 0.9 was published.

In 1996, the Object Management Group (OMG) issued a
request for a standard object-oriented modeling language.

11. UML Class Diagrams I 11-11 / 76

History of UML (7)

Rational formed a UML consortium (including, e.g., DEC,
HP, IBM, Microsoft, Oracle, TI) that developed UML 1.0,
offered for standardization to the OMG in January 1997.

Until July/September 1997, most of the proposals for the
OMG call were merged in the UML 1.1.

UML 1.1 was adoped by the OMG on November 14, 1997.

UML 1.3 was formally published in March 2000.

UML 1.4.2 became ISO/IEC standard 19501:2005.

UML 1.5 was published in March 2003.

11. UML Class Diagrams I 11-12 / 76

History of UML (8)

The UML 2.0 specification was separated into:

UML 2.0 infrastructure: Defines basic and commonly
used elements (e.g., class, association, multiplicity),
from which other model elements can be derived.

UML 2.0 superstructure: Defines further constructs,
e.g. use cases, activities, statecharts.

UML 2.0 OCL (Object Constraint Language).

The development of UML 2.0 was done from 2000 to 2006.

The current version is UML 2.5.1 from December 2017.

11. UML Class Diagrams I 11-13 / 76

Some Critical Remarks (1)

It is visible in the UML that it is a monster language
designed by a committee.

It seems that everything is in what one committee member wanted in,
so it is a very large language. Programming languages like PL/1 and Ada
basically failed because of this.

At least in the beginning, UML was not precisely defined.
In some questions, the UML User Guide and the UML Reference Manual
(both 1999, both from the “three amigos”) directly contradict each other.
Other important questions about the exact meaning of certain constructs
are simply not answered. Some software engineers think that UML is an
acronym for “The Undefined Modeling Language”.

11. UML Class Diagrams I 11-14 / 76

Some Critical Remarks (2)

“UML is far from being new. With respect to syntax it
just reinvents many . . . concepts and introduces new
names for them. With respect to semantics it does not
present precise semantic definitions. If these were added,
the limitations of the expressiveness of the UML [would]
become apparent.”

[Klaus-Dieter Schewe: UML: A Modern Dinosaur? — A Critical Analysis of
the Unified Modeling Language. Proc. 10th European-Japanese Conference
on Information Modelling and Knowledge Bases, 2000] See also
[http://www.dbdebunk.com/page/page/622530.htm].

11. UML Class Diagrams I 11-15 / 76

http://www.dbdebunk.com/page/page/622530.htm

Future (1)

After the past experience and all this work on
standardization, nobody seems to want another
“methods war”. At least not only about notation.

In addition, UML has several extension mechanisms that
allow to introduce new concepts in the notation.

So it seems that UML is the future and all the direct
successors to it (like OMT) are dead.

11. UML Class Diagrams I 11-16 / 76

Future (2)

ER-Diagrams are no direct successor to UML, and the
DB community is relatively distinct from the OO design
community.

Already object-oriented databases did not have the commercial impact that
was expected and several OODBMS vendors moved to different fields.

If you start today a large software project without using
an object-oriented language and UML, people find you
strange. If you use an RDBMS and ER-diagrams, this is
still acceptable.

Advantage of UML: One language for software and DB.

11. UML Class Diagrams I 11-17 / 76

Future (3)

Some DB Design tools (e.g. Power Designer) introduce
support for UML, but they continue to support ER-diagrams.

And probably for quite some time. The support for ER-diagrams might still
be better than that for UML. Oracle added UML to Oracle Designer
(in a separate program: ODD) and removed it again.

“Conceptually, an object does not need a key or other
mechanism to identify itself, and such mechanisms should
not be included in models.”

[UML Reference Manual, p. 294]

But keys are important in DB design.

11. UML Class Diagrams I 11-18 / 76

Contents

1 History and Importance of UML

2 Classes, Attributes

3 Associations

11. UML Class Diagrams I 11-19 / 76

Classes (1)

“Classes are the most important building block of any
object-oriented system.”

“A class is a set of objects that share the same attributes,
operations, relationships, and semantics”.

“You use classes to capture the vocabulary of the system
you are developing.”

All three cited from the UML User Guide [Booch et al, 1999].

So a class is similar to an entity type, only operations are
added.

The meaning of operations for databases is discussed below.

11. UML Class Diagrams I 11-20 / 76

Classes (2)

One can use class diagrams in UML simply like a different
syntax for ER-diagrams.

However, the UML can be used to model the entire
database application system.

I.e. not only the database design, but also the software.

So classes describe not necessarily persistent objects that
might ultimately be stored as rows in a relational table.

UML classes can also describe transient objects,
e.g. C++ or Java objects that exist only for the duration
of a program execution.

Actually, the mapping to an object-oriented programming language or an OODB
is more direct than to a relational database. But in this course, our intention
is mainly to translate a UML class diagram into a relational DB schema.

11. UML Class Diagrams I 11-21 / 76

Classes (3)

A class is symbolized by a rectangle with normally three
“compartments” (sections) that contain the class name,
the attributes, and the operations:

Student
firstName: String
lastName: String
email[0..1]: String
encryptedPW: String
totalPoints(): Integer
setPassword(pw: String)
checkPW(pw: String): Boolean

11. UML Class Diagrams I 11-22 / 76

Classes (4)

Either or both of the middle and bottom compartment
may be suppressed, i.e. it is possible to show only
attributes, only operations, or none of the two.

Operations always have a parameter list (which may be empty), so if the
rectangle has only two compartments, one can tell from the () whether
operations or attributes are shown.

Student
firstName: String
lastName: String
email[0..1]: String
encryptedPW: String

Exercise

11. UML Class Diagrams I 11-23 / 76

Classes (5)

One often sees empty compartments, e.g.

Exercise
no: Integer
maxPoints: Integer

This means that the class has no operations.
Unless some kind of filtering is in effect, e.g. only public operations
(see below) are shown.

But some authors are so used to the three compartments
that they still show the delimiting lines even if they do
not show attributes or operations.

11. UML Class Diagrams I 11-24 / 76

Classes (6)

Style guidelines (suggestions by the UML designers):

One normally uses a noun or noun phrase (singular form)
as class names.

Class names should begin with an uppercase letter. One capitalizes the
first letter of every word. The class name is printed centered and in boldface.
Abstract classes (see next slide) are shown in italics.

Attribute names are normally nouns/noun phrases.

Operation names are usually verbs/verb phrases.
Attribute and operation names start with a lowercase letter, but have the
first letter of every following word capitalized. They are shown in normal
font and left justified.

11. UML Class Diagrams I 11-25 / 76

Classes (7)

Abstract classes cannot have any direct instances
(i.e. objects of that class cannot exist).

Abstract classes can be useful to define a common interface, subclasses of
this class can have instances.

One can also define a multiplicity of a class,
i.e. the number of instances (objects) of that class.
It is written in the upper-right corner of the class rectangle:

SymbolTable 1

11. UML Class Diagrams I 11-26 / 76

Extension Mechanisms (1)

Besides the three predefined compartments (class name,
attributes, operations), a class rectangle can have further
user-defined named compartments.

One application in the database context would be a compartment for triggers.

One such user-defined compartment is already defined in
the UML specification: Responsibilities.

Responsibilities explain the purpose of a class on a higher
level than attributes and operations.

“A responsibility is a contract or an obligation of a class.”
[UML User Guide, p. 53]

11. UML Class Diagrams I 11-27 / 76

Extension Mechanisms (2)

The responsibility compartment contains free text.
The responsibilities are usually written as itemized list. If a class has more
than five responsibilities, it is probably too complicated.

HomeworkResults

Responsibilities
-- Maintain the information

about submitted homeworks
-- Compute total points

for each student
-- Check missing submissions

11. UML Class Diagrams I 11-28 / 76

Extension Mechanisms (3)

Stereotypes modify/redefine the semantics of existing
UML constructs.

So in effect one can add new constructs to the UML. Stereotypes
correspond to creating a new subclass in the UML meta model.

For instance, one can use the normal class notation,
but add the stereotype “utility”. This means that

the attributes of the class are global variables,

the operations are global functions.

In this way, existing non-object-oriented library modules
can be included.

11. UML Class Diagrams I 11-29 / 76

Extension Mechanisms (4)

The four standard stereotypes for classes are:

metaclass

powertype

stereotype

utility

In addition, the following standard steoreotypes or
keywords apply to classes (continued on next slide):

interface

type

11. UML Class Diagrams I 11-30 / 76

Extension Mechanisms (5)

Standard stereotypes or keywords, continued:

implementationClass

actor

exception

signal

process

thread

However, the power of stereotypes is that the UML user
can introduce new ones.

11. UML Class Diagrams I 11-31 / 76

Extension Mechanisms (6)

Steoreotypes are enclosed in 〈〈 and 〉〉 and are written in
front of (or above) the declaration of the element that is
modified:

〈〈utility〉〉

MathLibrary

sin (x: Float): Float
cos(x: Float): Float

Instead of explicitly showing the stereotype name,
one can also define new icons for the modified constructs.

11. UML Class Diagrams I 11-32 / 76

Extension Mechanisms (7)

Every element in a specification (e.g. a class, an attribute)
has certain properties.

The set of these properties is user-extensible.
Whereas stereotypes correspond to adding a subclass to the meta-model of
UML, such “tagged values” in effect add an attribute.

Additional properties are shown in a property list/as
tagged values behind or below the element declaration
enclosed in { and }.

Student
{author=sb, version=1.0}

11. UML Class Diagrams I 11-33 / 76

Extension Mechanisms (8)

The standard tagged values for classes are

documentation (any text),

location (e.g. client or server),

persistence, and

semantics.

If needed, one can mark database classes with
{persistence=persistent} or just {persistent}

and program classes with
{persistence=transient} or just {transient}.

11. UML Class Diagrams I 11-34 / 76

Extension Mechanisms (9)

As already shown in the example, if a property is of an
enumerated type and an enumeration value implies a
unique property name, if suffices to put that value in the
property list.

Of course, {persistent} and {transient} should only
be used if the same diagram shows both kinds of classes.
Otherwise it would overload the diagram.

11. UML Class Diagrams I 11-35 / 76

Attributes (1)

“An attribute represents some property of the thing you
are modeling that is shared by all objects of that class.”

[Booch et.al.: UML User Guide, 1999, p. 50]

“An attribute is the description of a named slot of a
specified type in a class, each object of the class
separately holds a value of the type.”

[Rumbaugh et.al.: UML Reference Manual, 1999, p. 166]

11. UML Class Diagrams I 11-36 / 76

Attributes (2)

Attribute Scope:

Attributes can have

class scope (class attributes, static members), or

instance scope (normal attributes).

Attributes of class scope have only one value for the
entire class (even if the class has no objects).

Attributes of instance scope have one value for each object/instance of the
class.

Attributes of class scope are marked by underlining.

11. UML Class Diagrams I 11-37 / 76

Attributes (3)

Attribute Visibility:

Attribute visibility defines which classes can directly
access the attribute (in their operations).

There are three options:

public (+): The attribute is visible to any class that can
see the class containing the attribute.

package (˜): Visible to all classes of the package.

protected (#): Visible to the class itself and its
subclasses.

private (-): Visible only to the class itself.

11. UML Class Diagrams I 11-38 / 76

Attributes (4)

Multiple-Valued Attributes:
UML permits multiple-valued attributes, i.e. sets or
arrays. Example multiplicity specifications are:

[0..1]: Zero or one values.
This corresponds to an attribute that can be null.

[1..*]: A set with at least one element.
There is no upper bound on the number of elements. When
translating a class with such an attribute into relations, one would
create an extra table for this attribute. Exercise: Consider a class for
web pages, where each web page has an URL, a title, and a set of
keywords/search terms. Model this in UML and in the RM.

[3 ordered]: An array with three elements.
The default is “unordered”, i.e. a set.

11. UML Class Diagrams I 11-39 / 76

Attributes (5)

Attribute Declaration:

A full attribute declaration consists of:

Visibility: +, ˜, #, - (see above).

The name of the attribute.

The multiplicity (array/set), e.g. [0..1], [3].

A colon “:” and the type of the attribute.

An equals sign “=” and the initial value of the attribute.

Of this, everything except the name is optional.

11. UML Class Diagrams I 11-40 / 76

Attributes (6)

Example:
+ProgramOfStudy [0..2]: String = "MIS"

In addition, the standard UML extension mechanisms apply:

In front of an attribute declaration, a stereotype can be
specified (enclosed in 〈〈 and 〉〉).

After the attribute declaration, a property string
(enclosed in { and }) can be added.
In the property string, one can specify, e.g., the following
values:

changeable (the default),

frozen (cannot be changed after object is initialized),

addOnly (for attributes with multiplicity > 1).

11. UML Class Diagrams I 11-41 / 76

Constraints (1)

“With constraints, you can add new semantics or change
existing rules.”

[Booch et.al.: The UML User Guide, 1999, page 82]

This is not quite the usual notion of a constraint: In
databases, a constraint can only restrict DB states.

This shows again that database people and UML people do not speak the
same language. To be fair, the UML reference manual states “A constraint
is a semantic condition or restriction expressed as a liguistic statement in
some textual language.”
[Rumbaugh et.al.: The UML Reference Manual, 1999, page 235]

Constraints are one of the three UML extension mechanisms
(besides stereotypes, tagged values).

11. UML Class Diagrams I 11-42 / 76

Constraints (2)

Constraints are enclosed in { and } and written near to
the element to which they apply.

A constraint can be connected with dashed lines to the diagram elements
to which it applies (if it is not clear from its position). It can be written
into a note box, or simply on the diagram background.

Constraints can be written

as free-form text,

in a formal logical language, especially OCL:
UML’s Object Constraint Language,

in a programming language.

as predefined name/abbreviation.

11. UML Class Diagrams I 11-43 / 76

Constraints (3)

Example (Restriction of an attribute):

Exercise
No: Integer
Points: Integer {value ≥ 0}
Headline: String

If a constraint appears as an item of its own in the
attribute list, it applies to all following attributes until it
is explicitly cancelled.

11. UML Class Diagrams I 11-44 / 76

Constraints (4)

Example (using OCL for a relationship):

Person
Gender: {female, male} 0. .1

wife
0. .1

husband

{self.wife.gender = female and
self.husband.gender = male}

[Booch et al., UML User Guide, 1999, p. 82]

11. UML Class Diagrams I 11-45 / 76

Derived Attributes (1)

Attributes are derived if can be computed from other
attributes.

The derivation formula can be shown as a constraint.

Derived attributes should normally not be stored in the
database, because they are redundant.

Therefore, they seldom appear in conceptual database schemas (they do
not give any additional information). However, if they are important
concepts in the application domain, they can be included if they are
explicitly marked as “derived”. Then they will typically be translated into a
view, not into a stored column. There is no real difference between a
derived attribute and a query operation.

11. UML Class Diagrams I 11-46 / 76

Derived Attributes (2)

Derived attributes are marked by putting a slash “/” in
front of their name:

Person
firstName: String
lastName: String
birthdate: Date
/age: Integer

Also other model elements can be derived. They are
marked in the same way.

E.g. relationships (called “associations” in UML, see below) might be
computable from other relationships and/or attributes.

11. UML Class Diagrams I 11-47 / 76

Keys

UML has no built-in notion of keys.
The idea is that objects automatically have an object identity, i.e. a
surrogate key (an automatically generated number). However, at least
externally objects must be identified in user input. Internal
numbers/addresses are difficult for this purpose.

One can extend UML in order to add keys. Several
proposals exist, one is to add “{oid}” (or “{pk}”) as
property list to the primary key attributes.

One would use “{oid1}” (or “{ak1}”) for the attributes of the first
alternative key, and so on. Some proposals also permit to define the
sequence of the attributes in composed keys.

11. UML Class Diagrams I 11-48 / 76

Specification of Data Types

〈〈datatype〉〉

Short
{values range

from −32768
to +32767}

〈〈enumeration〉〉

Boolean
false
true

11. UML Class Diagrams I 11-49 / 76

Annotations/Comments

A note can contain a comment, a constraint, or a method.

It is shown in a dog-eared rectangle with its upper-right
corner bent over:

Exercise
no
headline
points

Exercise from
Homework,
Midterm
or Final Exam.

11. UML Class Diagrams I 11-50 / 76

Contents

1 History and Importance of UML

2 Classes, Attributes

3 Associations

11. UML Class Diagrams I 11-51 / 76

Associations (1)

Relationships are called “associations” in UML:

Exercise
0..∗

BelongsTo
Chapter

1..1

Note that the cardinalities are written on the opposite
side of the standard (min,max)-cardinalities:

Each exercise belongs to exactly one chapter.

A chapter can contain any number of exercises.

Cardinalities are called multiplicities in UML.

11. UML Class Diagrams I 11-52 / 76

Associations (2)

Of course, in a relational database, associations are
implemented as usual:

For a one-to-many relationship, one adds the key of the
“one” side (Chapter) as a foreign key to the “many” side
(Exercise).

For a many-to-many relationship, one constructs an
“intersection table”.

But in order to understand UML better, it is also
important to look at the implementation in
object-oriented programming languages or databases.

11. UML Class Diagrams I 11-53 / 76

Associations (3)

In OODBs, associations are usually implemented by
pointers that are the inverse of each other:

class Chapter (extent chapters)
{ attribute unsigned short number;

attribute string title;
relationship set<Exercise> contains

inverse Exercise::belongs to;
};
class Exercise (extent exercises)
{ . . . ;

relationship Chapter belongs to
inverse Chapter::contains;

};

11. UML Class Diagrams I 11-54 / 76

Associations (4)

The example above is in the ODMG ODL.
The Object Data Management Group has defined a standard for
object-oriented database systems. The Object Definition Language is used
for defining database schemas.

In order to traverse the relationship efficiently in both
directions, pointers are needed in both participating classes.

If the system knows the inverse relationship, it can ensure
the consistency.

In particular, when an object is deleted, dangling pointers can be avoided,
since the system knows which other objects contain pointers to the deleted
object.

11. UML Class Diagrams I 11-55 / 76

Multiplicity (1)

A multiplicity specification consists of a comma-separated
list of intervals, e.g. 0..2,5..6 means that the following
numbers are possible: 0,1,2,5,6.

An interval consisting only of a single number can be
denoted by that number, e.g. 1 is an abbreviation for the
interval 1..1.

“*” denotes an unbounded number, e.g. 0..* is the most
general interval (any number).

0..* can be shortend to *.

11. UML Class Diagrams I 11-56 / 76

Multiplicity (2)

The multiplicity specification near an entity type E1
counts how many entities of this type can be related to a
single entity of the other type E2.

The other notation counts the number of outgoing edges from a single
entity of type E1.

The advantage of the UML notation is that the multiplicities
for one-to-many relationships are as expected:

1 (or 0..1) on the “one” side and

* (or 1..*) on the “many” side.

11. UML Class Diagrams I 11-57 / 76

Multiplicity (3)

The disadvantage of this notation is that if entities are
introduced for many-to-many relationships, multiplicities
must be moved around:

Student
Solved∗ ∗

Exercise

Student
1 ∗

Solution
∗ 1

Exercise

With the standard (min,max)-notation this does not happen.
Because the number of outgoing edges does not change in this transformation.

11. UML Class Diagrams I 11-58 / 76

Multiplicity (4)

Another disadvantage is that if associations are implemented
by pointers (as usual in object-oriented languages), the
multiplicity is on the opposite side:

Exercise ∗
BelongsTo

1
Chapter

Here, each Exercise object contains a single pointer to a
Chapter object.

One can get of course used to the UML notation and look to the other side.
The multiplicity is near to the type of the pointer, which might be considered
an advantage.

But each Chapter object contains a set of pointers to
Exercise objects (if this direction is supported).

11. UML Class Diagrams I 11-59 / 76

Reading Direction

One can use the symbol “I” to make the direction of the
name clear (this is optional):

Exercise
1..∗

BelongsTo I

1
Chapter

Also J N H can be used:

Exercise
1..∗

J Contains
1

Chapter

Of course, it is best to choose names that read from left
to right and from top to bottom.

11. UML Class Diagrams I 11-60 / 76

Role Names (1)

Instead of or in addition to association names, one can
also use role names:

Person
0..∗
Employee

WorksFor Company0..1
Employer

Here the person has the role of an employee in the
association, and the company has the role of an employer.

In other associations, objects of the two classes can play
different roles (e.g., customer and contractor).

11. UML Class Diagrams I 11-61 / 76

Role Names (2)

The role names on the opposite site can often be used as
attribute names for the pointers or foreign keys.

Person
0..∗
Employee

Company0..1
Employer

In the example, “PERSONS” would have a foreign key
(or pointer attribute) called “EMPLOYER”.

It can contain 0 or 1 key values (pointers/addresses) of companies. In
relational databases, this means that the attribute can be null.

11. UML Class Diagrams I 11-62 / 76

Role Names (3)

If necessary, the “Company” class would have an attribute
“Employees” that is a set of pointers to “Person” objects.

Person
0..∗
Employee

Company0..1
Employer

Of course, in relational databases this is not necessary
because with the foreign key on the “Person” side, the
join can also find employees for a given company.

11. UML Class Diagrams I 11-63 / 76

Role Names (4)

Often, the class name itself can be used as role names.
Then it is not necessary to add an explicit role name
(actually, it is difficult to invent one).

Exercise
1..∗
[Exercise]

1
[Chapter]

Chapter

Note: The brackets “[. . .]” are not UML notation. They are intended to
indicate that it does not matter wether these role names are explicitly
written or not: They are the default.

Then the table/class “Exercises” would have a foreign key
(pointer attribute) “Chapter”.

Conversely, “Chapter” might have a set-valued attribute “Exercises”.

11. UML Class Diagrams I 11-64 / 76

Role Names (5)

The names used in the Barker Notation on both ends of
the relationship are not role names in the sense of UML:

Exercise
Wrong!1..∗

BelongsTo
1

Contains
Chapter

UML tools would add a foreign key/pointer attribute
“Contains” to the table/class “Exercises”.

I.e. just the wrong way around.

The names in the Barker Notation are really association
names for both directions, not role names.

11. UML Class Diagrams I 11-65 / 76

Uniqueness of Names

Names of classes and associations must be unique.
It is not even allowed to have an association and a class with the same
name (since there are association classes, see below). UML has packages,
and the uniqueness is only required within each package.

Role names (labels of association ends) must be unique
within the association (each end must have a different
name) and within the connected class.

A role may not have the same name as an attribute (since associations are
typically implemented by pointer attributes).

If there is only one connection between the two classes, it
is possible to have neither association name nor role names.

11. UML Class Diagrams I 11-66 / 76

Navigability (1)

In UML, it is possible to specify that an association will
be traversed only in one direction:

Exercise
1..∗

BelongsTo
1

Chapter

Then Exercise objects would contain a pointer to the Chapter
to which they belong, but there would be no inverse pointer.

Even with the pointer implementation it might be possible to find exercises
for one chapter (e.g. if there is a linked list of all exercise objects in the system).
So the arrow only specifies in which direction an efficient traversal is possible.

11. UML Class Diagrams I 11-67 / 76

Navigability (2)

Without inverse pointers, it might be difficult to ensure
that when a Chapter object is deleted, the corresponding
Exercise objects are deleted, too.

An important reason for having pointers in both directions is to avoid
dangling pointers. OODBMS can do this automatically.

For a relational databases, the navigability specification is
not important: Joins are always both ways.

But for programs written e.g. in C++, one seldom has
pointers in both directions, thus there the arrow will be
often used.

11. UML Class Diagrams I 11-68 / 76

Visibility

Since relationships are implemented by attributes/operations,
it possible to specify a visibility at the association ends:

User
1
+ owner

∗
− key Password

[Example from Booch et.al: UML User Guide, 1999, p. 145]

This means that everybody who has access to a Password
object, can navigate from there to the corresponding User.

However, only operations of the User class can follow the
link to the passwords.

Thus the visibility is denoted at the opposite end of the
association (the end to which one wants to navigate).

This is natural, since the role name and the multiplicity on the opposite end
of the assocation determine the pointer attribute for this class.

11. UML Class Diagrams I 11-69 / 76

Collection-Type (1)

Consider again the relationship between chapters and
exercises:

Chapter 1 Contains I ∗
Exercise

As explained above, in an OODB, the class “Chapter” will
contain a set-valued attribute with pointers to “Exercise”
objects.

If one iterates over the elements of this set, they are
returned in no specific order.

11. UML Class Diagrams I 11-70 / 76

Collection-Type (2)

However, one can specify in UML that the order of
exercises in a chapter is significant:

Chapter 1 Contains I ∗
{ordered} Exercise

Then not a set, but a list will be used to hold the pointers
to exercises (but duplicates are still not allowed).

“{ordered}” can also be used on one or both sides of a
many-to-many relationship.

Only for multiplicities 0..1 and 1 it makes no sense.

11. UML Class Diagrams I 11-71 / 76

Collection-Type (3)

In the ODMG proposal, set, list, or bag can be used in
relationships:

class Chapter (extent chapters)
{ . . . ;

relationship list<Exercise> contains
inverse Exercise::belongs to;

};

However, one must exclude duplicates from the list.
An “ordered set” as in UML is not quite the same as a list.

11. UML Class Diagrams I 11-72 / 76

Collection-Type (4)

In a relational implementation, one would add a number
to the exercises table (exercise number within chapter) in
addition to a foreign key referencing the chapter.
EXERCISES(ID, ..., CHAPTER→CHAPTERS, SORT_NO)

CHAPTER and SORT_NO together are an alternative key for
EXERCISES.

This ensures that there is really a defined sequence for the exercises within
one chapter.

11. UML Class Diagrams I 11-73 / 76

Collection-Type (5)

Note that “{ordered}” means that additional information
needs to be stored besides the set of links between objects.

If the exercise objects already contain an exercise number,
so that the order can be derived from this information,
“{ordered}” would not be correct (redundant information).

One can use “{sorted}” to indicate that for a more efficient implementation,
it would be good to store the links sorted by some criterion, e.g. the
exercise number.

11. UML Class Diagrams I 11-74 / 76

Exercise

Consider the following class diagram:

Author

FirstName
LastName
EMail

1..*
Wrote I

∗

Book

Title
Publisher
ISBN

If a book has several authors, their sequence is important
(it is not always the alphabetical sequence). How would
you specify that?

Translate this diagram into the relational model.

11. UML Class Diagrams I 11-75 / 76

References

Grady Booch, James Rumbaugh, Ivar Jacobson:
The Unified Modeling Language User Guide.
Addison Wesley Longman, 1999, ISBN 0-201-57168-4, 482 pages.
James Rumbaugh, Ivar Jacobson, Grady Booch:
The Unified Modeling Language Reference Manual.
Addison Wesley Longman, 1999, ISBN 0-201-30998-X, 550 pages, CD-ROM.
Martin Fowler, Kendall Scott: UML Distilled, Second Edition.
Addison-Wesley, 2000, ISBN 0-201-65783-X, 185 pages.
Terry Quatrani: Visual Modeling with Rational Rose 2000 and UML.
Addison-Wesley, 2000, ISBN 0-201-69961-3, 256 pages.
Robert J. Muller: Database Design for Smarties — Using UML for Data Modeling.
Morgan Kaufmann, 1999, ISBN 1-55860-515-0, ca. $40.
Paul Dorsey, Joseph R. Hudicka: Oracle8 Design Using UML Object Modeling.
ORACLE Press, 1998, ISBN 0-07-882474-5, 496 pages, ca. $40.
OMG’s UML page: [http://www.omg.org/technology/uml/index.htm]
UML 1.3 Specification: [https://www.omg.org/spec/UML]
UML Resources: [https://www.uml.org/resource-hub.htm]

11. UML Class Diagrams I 11-76 / 76

http://www.omg.org/technology/uml/index.htm
https://www.omg.org/spec/UML
https://www.uml.org/resource-hub.htm

	History and Importance of UML
	History and Importance of UML

	Classes, Attributes
	Classes, Attributes

	Associations
	Associations
	References

