Datenbanken Il A: DB-Entwurf

Chapter 4: Design Phases

Prof. Dr. Stefan Brass
Martin-Luther-Universitat Halle-Wittenberg

Wintersemester 2020/21

http://www.informatik.uni-halle.de/~brass/dd20/

4. Design Phases 4-1/42

http://www.informatik.uni-halle.de/~brass/dd20/

Objectives

After completing this chapter, you should be able to:
@ explain the three phases of database design.

What has to be done in each of the phases?

@ explain the advantages of doing a complex project in
serveral phases.

Why does one not directly start with a relational design?

4. Design Phases 4-2 /42

@ DB Design Phases

Contents

@ System Development Lifecycle

© Project Risks

4. Design Phases

4-3/42

Database Design Phases (1)

@ There are usually three schema design phases:

e Conceptual Database Design produces the initial model
of the real world subset in a conceptual data model (like
the Entity-Relationship-Model).

e Logical Database Design transforms this schema into the
data model supported by the DBMS (often the relational
model).

e Physical Database Design aims at improving the
performance of the final system. E.g., indexes and
storage parameters are selected.

4. Design Phases 4-4 /42

Database Design Phases (2)

Why multiple design phases?

@ Reduction in complexity

If not all design decisions depend mutually on one another, problems can

be separated and attacked one after the other.

@ Protection against changes

If design decisions do not depend on specific input parameters,

they are not invalidated by changes to those parameters.
e Different tasks need different tools/techniques

@ Milestones, Ceremony (accepted method)

Easier to track the project’'s progress vs. the schedule.

Project can celebrate (or submit bills for) each milestone.

4. Design Phases 4-5 /42

Database Design Phases (3)

e E.g., during conceptual design, there is no need to worry
about limitations of a specific DBMS.

Focus is on producing a correct model of the real world.

@ DBMS features do not influence conceptual design, and
only partially influence the logical design.

This ensures that the conceptual design is not invalidated, if a different

DBMS is later used.

@ In the conceptual schema, non-standard datatypes for the
attributes can be used.

Of course, this makes the logical design more difficult. But

object-relational systems do have an extensible type system.

4. Design Phases 4-6 /42

Database Design Phases (4)

@ Only the physical design should depend on

e sizes of database objects,

e invocation frequency for each program,

performance of the hardware,

quality of the DBMS query optimizer.
@ These parameters will change over time!

@ If the logical design depends on them, it must be changed,
which means that application programs must be changed,
too.

4. Design Phases 4-7 /42

Database Design Phases (5)

@ Don't accept compromises in the logical schema for the
sake of performance.

Unless experiments prove that the current design cannot deliver the

required performance.

@ Old DB designs are often heavily denormalized, which
makes changes difficult and expensive.

Each piece of redundant data (that is not completely managed by the
DBMS, like, e.g. an index) makes application programs more difficult and
inconsistencies possible. Denormalization also means that certain pieces of

information can only be stored together, which makes the schema less flexible.

4. Design Phases 4-8 /42

Database Design Phases (6)

View Integration:
@ The conceptual design step is much more complicated
than the other two.
The logical design step can be largely automatic, and the physical design

has a relatively limited set of options.

@ Often, it is not possible to create the complete ER-Schema
in one step, because this is very large.

@ Then one starts with small ER-schemas which describe
only the data necessary for one application or user
(or a small group of related applications).

For each application/user, one such schema is developed.

4. Design Phases 4-9 /42

Database Design Phases (7)

@ In this case one starts with the design of the external
schemas before the conceptual one.
Of course, this is also done in the entity-relationship model. It is possible
that not only the conceptual schema, but also the external schemas are
translated into the relational model during the logical design and actually

exist as views in the final database. But this is a design decision. One can

also treat them as only temporary sketches for collecting requirements.

@ These schemas must then be integrated to get the
complete enterprise data model (i.e. the conceptual
schema of the database).

4. Design Phases 4-10/42

Contents

@® System Development Lifecycle

4. Design Phases

4-11/42

Oracle CASE*Method

Strategy

v

Analysis

¥

Design

¥

Build

User Documentation

!

Transition

¥

Production [Barker, 1990]

4. Design Phases

4-12 /42

Strategy Phase (1)

@ The purpose of the strategy phase is to develop a plan for
information systems development.

@ The planned system must serve the organization's current
and future needs.

@ The plan must also take into account organizational,
financial, and technical constraints.

e Of course, management wants to know “what will we get?”
and “how much will it cost?” before the project goes into
the next phase.

4. Design Phases 4-13 /42

Strategy Phase (2)

@ The strategy phase results in a contract.

@ However, even at the end of the strategy phase, estimates
about the cost will not be very reliable.

@ The contract can state that the price is

o fixed.

Then the price might be higher than necessary (the developers take
the whole risk) and the finished product might be not very good

(just satisfy the requirements in the contract).

e an hourly rate.

Then there is no incentive to ever finish the product.

e a mixture of both or hourly rate paid at the end.

4. Design Phases 4-14 / 42

Strategy Phase (3)

@ Already in this phase, ER-diagrams and function hierarchy
/ business process diagrams should be developed.

@ They do not yet have to be very detailed, but they should

cover the whole area of the planned system.

E.g. attributes might not yet be needed. But definitions/descriptions of all
entities might be very useful. The more of the analysis that can be done in

the strategy phase, the better (but time/money is limited).

@ What will be the architecture of the proposed system?

4. Design Phases 4-15 /42

Strategy Phase (4)

@ It is important to understand the company, e.g:

e Business objectives,

o Critical success factors,

e Strengths, Weaknesses, Opportunities, Threats
o Key performance indicators.

e Existing systems (legacy systems) and required interfaces
must be understood and documented.

@ Develop good working relationships with the people
involved and understand the political environment.

Many projects are bound to fail because of the political environment.

4. Design Phases 4-16 /42

Strategy Phase (5)

@ Develop a timeline for the development (project plan) and
an estimate of the needed resources.

Time and money are important resources. But also the access to
stakeholders and users (interview partners) is an important resource. The
valuable time of people within the company is critical to the project, but

must be listed as a project cost. Also access to hardware and to the data
must be discussed.

@ Is the project feasible in the given limits?

@ Prioritize the project goals: Not everything that would be
nice to have is worth the effort.

If it should turn out later that time or budget is insufficient: What can be
sacrificed and what is essential?

4. Design Phases 4-17 /42

Strategy Phase (6)

@ Think about risks to the project and what can be done to
manage them.

@ Develop a cost-benefit analysis and provide sufficient
motivation
as to why the proposed project is worth the effort.

Quantify the impacts on the business.

@ One method to estimate the complexity of a project is the
Function Point Method.

See: Software engineering textbooks, http://www.ifpug.org/.

4. Design Phases 4-18 /42

Analysis Phase (1)

@ In the analysis phase, all system requirements are
gathered in complete detail (=~ conceptual design phase).

This builds on the results of the strategy phase.

@ The final ER-diagrams are developed, including all
attributes and business rules/constraints.

@ The function hierarchy/business process diagrams are
further developed. Dataflow and entity usages are analyzed.

4. Design Phases 4-19 / 42

Analysis Phase (2)

Legacy systems must be carefully analyzed and a strategy
for transition and data migration must be developed.

Don't underestimate the effort of data migration (from the old system into
the new system). How will data be handled that violates the constraints? Is

data cleaning possible?
Describe required interfaces with other software.

Collect information about the expected data volumes,
function frequencies, and performance expectations.

4. Design Phases

4-20/42

Analysis Phase (3)

@ Collect security requirements.
@ Collect requirements for backup/recovery.

@ “lt is not possible to meet a user’s need that was never
discovered.” [Koletzke/Dorsey]

@ “A thorough requirements document can easily fill several
thousand pages.” [Koletzke/Dorsey]

@ Describe what is needed, but do not yet think too much
about how it should be done.

The focus is still on the user, not on the system.

4. Design Phases 4-21 /42

Design Phase (1)

@ The focus now shifts from the user to the system.

@ The relational database design is developed based on the
given ER-model (= logical design phase).

Probably denormalization should already be considered (if really necessary),

but other physical design decisions (e.g. indexes) can be deferred until the

build phase. When defining the tables, you should work together with an
experienced DBA (preferable the one who has later to live with the design).

e Functions are mapped into modules (application programs)
and manual procedures.

4. Design Phases 4-22 /42

Design Phase (2)

@ "“The Design phase is where the blueprints are drawn for
building the system. Every detail should be laid out before
generation.” [Koletzke /Dorsey|

@ Design standards must be set. This includes the development
of screen concept prototypes.
All programs should have the same look and feel.

User documentation should have a similar structure.

Programming styles should be uniform (naming standards).

4. Design Phases 4-23 /42

Design Phase (3)

@ “Design is complete when the design documents could be

handed over to another team to build, with each application
having its own screen (or report) design, list of detailed
functionality, and create-retrieve-update-delete (CRUD)
report.”

[Koletzke /Dorsey|

This is an exact specification of the applications, similar to blueprints of an

architect which are given to a contractor for building a house.

4. Design Phases

4-24 /42

Build Phase (1)

@ In the Build phase, the working system is created.

o E.g. tables, views, procedures, triggers and other
database objects are created, the final decisions of
physical design are made.

Storage parameters for tables including the partitioning among

tablespaces/disks, indexes, clusters, etc.

@ The database should be filled with example data of the
same size as the production database will be.

Only in this way performance can be tested and tuned.

4. Design Phases 4-25 /42

Build Phase (2)

@ The application programs are developed (hopefully, many
programs can be generated with a tool like Oracle Designer
out of specifications developed during the Design phase).

e Of course, testing the developed programs is mandatory.

First, every developer will test his/her program in isolation. But then also
other people including real users must test it, and the integration with
other programs must be tested. A test plan should be developed during the

design phase.

4-26 /42

4. Design Phases

Build Phase (3)

@ “Whenever systems are built, apparently small constraints
and limits get introduced during the build stage:

e | can't imagine them ever needing more than 255!
e The biggest one I've ever seen had only seven line items.

e | think I'll code those codes directly into the program to
make it work faster!” [Barker, 1990]

4. Design Phases 4-27 /42

Documentation (1)

“Documentation should be an ongoing process occurring
throughout the system development process. It should
accompany the first prototype the user sees and every
other software deliverable.” [Koletzke/Dorsey]

“We all know the nightmare stories of developers who
come in to modify an existing system for which there is
no documentation.” [Koletzke/Dorsey]

4. Design Phases

4-28 /42

Documentation (2)

“By preparing careful system and user documentation
throughout the life cycle of the project, developers are not
left with a major task at the end. In addition, frequently
no client money is left at this point to pay to extend the
development process further.” [Koletzke/Dorsey]

System documentation will be mainly developed during
the Design phase. User documentation (and the help system)
can only be developed when the design is complete.

4. Design Phases

4-29 /42

Documentation (3)

@ Time and money invested in good documentation will
later pay off by

o less phone calls of users who need help,

o less time lost by the users for trying to find a way to do
what they need to do,

@ a better impression by the users about the software
quality,

e easier (cheaper) maintainance/modifications.

@ A user manual can even say “This is no bug, this is a
feature”, and the users might accept that.

4. Design Phases 4-30 /42

Documentation (4)

@ Few people read a big manual before they start using the
software.

@ There should be a short introduction (< 20 pages).

e After that, a good table of contents, a good index, and
good cross-references are essential.

It should be possible to understand a section without reading all the
previous ones. However, a few users do want to read more than the
introduction in a sequential manner. Repeating again and again the same
things is not nice for them. Sequential readers also can expect that

concepts are defined before they are used.

4. Design Phases 4-31 /42

Documentation (5)

@ Manuals are always missing when they are needed.

Thus, there should be a good online help system. Documentation should

be available in electronic form.

@ Documentation might also include the preparation of
training courses.

@ Also, a web site might be developed that contains an
FAQ and a list of bugs and other problems that are
currently being resolved.

A good website might mean that less support/help desk people are needed

at the telephones.

4. Design Phases 4-32 /42

Transition Phase (1)

Big Bang (vs. Gradual/Phased Transition):

@ One one day, all tasks are switched to the new system.

@ Clean solution, no development effort into temporary
interfaces.

@ Risky: What happens if the software does not quite work?

Developers will always promise that it works tomorrow and only minor
details are missing (99% effect). When do you switch back to the old

system? Can you switch back to the old system?

4. Design Phases 4-33 /42

Transition Phase (2)

Big Bang, continued:

@ Needs a lot of training.

Even with training, it will look different when the employees have to do
real work with it. In the days after the switch, there might be not enough
staff to answer all questions. And the development team will be busy

removing real errors.

@ Companies can go bankrupt this way.

The productivity will go down for a while. There must be financial reserves

to survive this.

4. Design Phases 4-34 /42

Transition Phase (3)

Gradual /Phased Transition:

@ Temporary interfaces between new parts and old parts are
needed. (These will be thrown away in the end.)

Thus, the overall development cost is certainly bigger.

o Certain tasks (e.g. copying data between systems) might
need to be done manually (extra work, possible errors).

@ One can get an impression of the software quality and the
transition problems first for a smaller part of the company.

But this might be able to paralyze the rest of the company.

@ Users who already switched to the new system may help
in training users which still have to switch.

4. Design Phases 4-35 /42

© Project Risks

Contents

4. Design Phases

4-36 /42

Risks / Risk Management (1)

Consider possible risks and what to do about them:

@ The collected requirements are wrong or not complete.

In order to reduce this risk, one can invest more time and money into the
requirements analysis: One can do more interviews, study more existing
standard solutions, have more thorough presentations and discussions of

the solution, play through more example scenarios, develop more prototypes.
Of course, one can also hire more experienced data modellers. There is a
tradeoff between risk and money, but sometimes relatively little money or

simply doing things in a different way can significantly reduce the risk.

@ The requirements change.

4. Design Phases 4-37 /42

Risks / Risk Management (2)

@ The software is not ready on time.
The budget is insufficient.

@ The software does not work correctly, it might actually
destroy data or enter incorrect data.

@ The DBMS is down (not available).

E.g. because of hardware faults, software bugs, bad adminstration (this

includes the case that a disk is suddenly full).

@ The system does not deliver the required performance.

4. Design Phases 4-38 /42

Risks / Risk Management (3)

@ The DBMS vendor goes bankrupt and and the software is
no longer supported.

@ The DBMS vendor changes the licensing terms and the
system gets more expensive (at least updates).

@ A disk fails. There is a fire in the computer room.

Although it might be possible to restore the latest DB state, this might

takes hours (downtime).

@ The DBA accidentally deletes an important table.

4. Design Phases 4-39 /42

Risks / Risk Management (4)

The programmers or the DBA do not sufficiently know
the DBMS software.

Important people leave the project.

Employees (users of the system) do not know it well
enough to use it correctly and efficiently.

Employees accidentally enter incorrect data.

@ Employees accidentally delete important data.

4. Design Phases 4-40 /42

Risks / Risk Management (5)

@ A hacker tries to access or damage the data.

@ Somebody who leaves the company takes information
from the database with him/her.

In the extreme case, an export file of the entire database.

@ The employees do not like the new system.
The worker's union protests against it.

@ The system violates data privacy laws.
Or the company gets a bad reputation because of
questionable practice regarding personal data.

4. Design Phases 4-41 /42

References

@ Ramez Elmasri, Shamkant B. Navathe: Fundamentals of Database Systems, 3rd Ed.,
Ch. 16, "Practical Database Design and Tuning".

@ Toby J. Teorey: Database Modeling & Design, 3rd Edition.
Morgan Kaufmann, 1999, ISBN 1-55860-500-2.

@ Graeme C. Simsion, Graham C. Witt: Data Modeling Essentials, 2nd Edition.
Coriolis, 2001, ISBN 1-57610-872-4, 459 pages.

@ Robert J. Muller: Database Design for Smarties — Using UML for Data Modeling.
Morgan Kaufmann, 1999, ISBN 1-55860-515-0, ca. $40.

@ Peter Koletzke, Paul Dorsey: Oracle Designer Handbook, 2nd Edition.
ORACLE Press, 1998, ISBN 0-07-882417-6, 1075 pages, ca. $40.

@ Martin Fowler, Kendall Scott: UML Distilled, Second Edition.
Addison-Wesley, 2000, ISBN 0-201-65783-X, 185 pages.

@ Grady Booch, James Rumbaugh, Ivar Jacobson: The Unified Modeling Language
User Guide. Addison Wesley Longman, 1999, ISBN 0-201-57168-4, 482 pages.

@ Carlo Batini, Stefano Ceri, Shamkant B. Navathe: Conceptual Database Design.
Benjamin/Cummings, 1992, ISBN 0-8053-0244-1, 470 pages.

@ Rauh/Stickel: Konzeptuelle Datenmodellierung (in German). Teubner, 1997.

@ Udo Lipeck: Skript zur Vorlesung Datenbanksysteme (in German),
Univ. Hannover, 1996.

4. Design Phases 4-42 /42

	DB Design Phases
	Database Design Phases

	System Development Lifecycle
	System Development Lifecycle

	Project Risks
	Risks and Risk Management
	References

