
Datenbanken II A: DB-Entwurf

Chapter 2: ER-Diagrams II:
Weak Entities, Subtypes

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Wintersemester 2020/21

http://www.informatik.uni-halle.de/˜brass/dd20/

2. ER-Diagrams II 2-1 / 45

http://www.informatik.uni-halle.de/~brass/dd20/


Objectives

After completing this chapter, you should be able to:

enumerate the ER-constructs supported by Oracle SQL
Developer Data Modeler.

draw ER-diagrams in the graphical syntax of Oracle SQL
Developer Data Modeler (“Barker Notation”).

You should also be able to read such diagrams.

explain the difference between the global DB schema and
the views contained in single diagrams.

2. ER-Diagrams II 2-2 / 45



Contents

1 Domains

2 Weak Entity Types

3 Non-Transferable Relationships

4 Subclasses

5 Arcs

2. ER-Diagrams II 2-3 / 45



Domains (1)

Often different attributes should have the same data
type, i.e. especially the same length. E.g.:

Years: Year an instructor got tenure, Year a course is
offered, Year a student was admitted, etc.

URLs: Links to homepages of courses, instructors,
departments.

Last Names: Of students, instructors, staff.

It would be strange if

some years are stored with two digits, others with four, or

student names can be longer than instructor names.

2. ER-Diagrams II 2-4 / 45



Domains (2)

Characteristics such as the maximal length of all kinds of
URLs should be defined only once.

This ensures greater consistency in the schema, especially
when later changes are done (e.g. attribute length
increases).

In Oracle Designer, one can define data types of columns
indirectly via domains:

Column
“Homepage”

Domain
“URL”

Data Type
“VARCHAR(80)”

2. ER-Diagrams II 2-5 / 45



Domains (3)

One first defines a domain and then assigns this domain
to one or more attributes.

Instead of directly defining the data type details for the attributes. That
would have to be done for each attribute separately, while with the domain
the details are defined only once and used in possibly many attributes. In
Oracle Designer, domains are defined under “Edit → Domains”.

If a domain definition changes, one can propagate this
change to all attributes having this domain.

In Oracle Designer, this is done only semi-automatically. One must call
“Utilities → Update Attributes in Domain”.

2. ER-Diagrams II 2-6 / 45



Domains (4)

Different domains may have same data type.

E.g. last names of customers and names of cities may
both be VARCHAR(20), but it makes no sense to compare
them. Different domains should be used.

One should consider attributes of different domains as uncomparable
(unless declared as subtype).

A domain can be seen as a “shorthand” for a standard
data type, but with a specific meaning, different from
other domains.

2. ER-Diagrams II 2-7 / 45



Domains (5)

Domains can be used to capture the information which
attributes should be comparable.

This requires logical domain names, e.g. CITY, not VC20.

The SQL-92 standard has a similar notion of domains
(without the restriction that columns of different domains
cannot be compared).

This is not implemented in Oracle 8. But when domains are defined in the
Designer, they might be partially mapped to SQL domains in other DBMS.
Oracle 8 has PL/SQL types which could also be used. But for consistent
schema changes, it is already helpful that they are supported in the
Designer.

2. ER-Diagrams II 2-8 / 45



Domains (6)

Domain names can often be used as attribute names.
This makes joinable attributes very clear.

Some designers have a set of standard domains, which
they always use.

E.g. names of length 10, 20, 40, descriptions of size 2000, email/URL of
size 250, ZIP codes, SSN, boolean values, etc. Selecting from a set of
predefined standard domains can be done faster than considering every
attribute in isolation. In some projects, only a “domain administrator” is
allowed to create a new domain.

However, this at least partially contradicts the idea of
logical domains.

2. ER-Diagrams II 2-9 / 45



2. ER-Diagrams II 2-10 / 45



Domains (8)

The dialog box for defining domains has four tabs:

“Definition”: list of all defined domains.

“Detail”: one page per domain.

“Values”: for defining enumerated types etc.

“Text”: contains descriptions, notes, etc.

In principle, the same parameters can be set as in the
attribute definitions.

Whether an attribute is optional and whether it is part of
the key can only be defined in the entity definition dialog.

2. ER-Diagrams II 2-11 / 45



2. ER-Diagrams II 2-12 / 45



Domains (10)

Format/Attribute vs. Datatype/Column:

A domain definition contains information at the ER-level
(Format) as well as about the implementation (Datatype).

The documentation also mentions that the datatype can also be used for
application program variables, but then it depends on the programming
language. The type system of languages like C are quite different from the
SQL type system.

E.g. “IMAGE” can be selected on the conceptual level, but
it is implemented as a “BLOB”.

BLOB: “Binary Large Object”. The Datatype selector contains all datatypes
of Oracle as well as some types from other systems.

2. ER-Diagrams II 2-13 / 45



Domains (11)

Dynamic List:

If this is checked, the possible values will be retrieved at
runtime from a lookup table.

This makes it easy to change the possible values of the enumeration type
later: One can simply insert a new value into the lookup table.

Otherwise, they will be hardcoded (e.g. as
CHECK-constraint in the CREATE TABLE statement).

While an ALTER TABLE statement to change the constraint is not too
difficult (but not that several attributes in different tables might have to be
changed), the possible values might also be hardcoded in application
programs.

2. ER-Diagrams II 2-14 / 45



Contents

1 Domains

2 Weak Entity Types

3 Non-Transferable Relationships

4 Subclasses

5 Arcs

2. ER-Diagrams II 2-15 / 45



Weak Entity Types (1)

If a relationship contributes to the identification, there is
a bar across the connecting line:

BUILDING
# NAME
◦ YEAR BUILT

home of

contained in

ROOM
# NUMBER
∗ TYPE
◦ CAPACITY

A room is identified by building and room number,
e.g. “Crawford Hall 169”.

2. ER-Diagrams II 2-16 / 45



Weak Entity Types (2)

Different buildings of the university can have rooms with
the same number.

When translated into tables, the key of the ROOMS table
will be composed from the building name and the room
number.

The building name in addition will be a foreign key that references the
BUILDINGS table.

Entity types that must borrow key attributes from other
entity types are called “weak entity types”.

In the Oracle Designer documentation, this name is not used. One simply
declares a relationship as part of a UID for an entity type.

2. ER-Diagrams II 2-17 / 45



Weak Entity Types (3)

It would be a bad design to explicitly replicate the key
attribute of the referenced table:

BUILDING
# NAME
◦ YEAR BUILT

home of
Wrong!

contained in

ROOM
# NAME
# NUMBER
∗ TYPE
◦ CAPACITY

Now the constraint is needed that a room with name X is
always related to a building with name X , so that the
relationship is actually redundant.

2. ER-Diagrams II 2-18 / 45



Weak Entity Types (4)

In general, advanced constructs in the ER-model are often
introduced in order to avoid certain common kinds of
constraints.

Or at least to specify these constraints graphically instead of as text and
permit a special implementation. If one would translate the above schema
where name and number are explicitly defined as key attributes into the
relational model, one would get two copies of “Name”: A second copy is
introduced as foreign key in order to implement the relationship (see
below). Now with the constraint it becomes clear that the two copies can
be merged.

Weak entity types are often used in master-detail
relationships, e.g. for an invoice and its line items.

2. ER-Diagrams II 2-19 / 45



Weak Entity Types (5)

A weak entity type is existence-dependent on its parent
entity type (BUILDING in this case): If a building is sold
and removed from the database, all rooms in it should be
automatically removed.

For weak entity types, it is quite typical that in the resulting relationional
schema “DELETE CASCADES” is defined for the foreign key that implements
the relationship.

It is often a design decision how one selects a key: If
rooms have a number that it unique over all buildings,
the “Room” entity type is no longer weak.

2. ER-Diagrams II 2-20 / 45



Weak Entity Types (6)

One can use a relationship for identification only if there
is at most one related entity (cardinality (1, 1) or (0, 1)):

On the many side of a one-to-many relationship.

On both sides of a one-to-one relationship.

If there were several related entities, one would need set-valued attributes
(not supported in the standard relational model).

At least for primary keys, the participation in the
relationship must be mandatory.

Primary key attributes cannot be null.

2. ER-Diagrams II 2-21 / 45



Weak Entity Types (7)

There are two places to specify that a relationship
contributes to the identification of the entity:

In the entity definition, tab UIDs.

In the relationship definition.
In the “Edit Relationship” dialog box, one can also change the
optionality (minimum cardinality) and degree (maximum cardinality)
for each end, change the role name, and store a description or notes
for each relationship end.

2. ER-Diagrams II 2-22 / 45



2. ER-Diagrams II 2-23 / 45



Association Entity Types (1)

Weak entity types can have more than one parent.

Weak entity types with two (or more) parent types are
sometimes called “association entity types”, because they
are similar to a kind of relationship between the parent
entity types.

E.g. suppose that we need a relationship attribute:

Student

Name Email

(0, ∗)
solved

(0, ∗)

Points

Exercise

No MPoints

2. ER-Diagrams II 2-24 / 45



Association Entity Types (2)

Oracle Designer does not support relationship attributes.
However, one can turn the relationship into an association
entity type:

STUDENT
# NAME
◦ EMAIL

author of

submitted by

EXERCISE
# NUMBER
* MPOINTS

subject of

for

SOLUTION
∗ POINTS

2. ER-Diagrams II 2-25 / 45



2. ER-Diagrams II 2-26 / 45



Contents

1 Domains

2 Weak Entity Types

3 Non-Transferable Relationships

4 Subclasses

5 Arcs

2. ER-Diagrams II 2-27 / 45



Fixed Relationships (1)

A relationship can be marked as non-transferable:

CUSTOMER responsible for �to
INVOICE

In this way, an invoice cannot be disconnected from a
customer and connected to another customer.

I.e. the foreign key attribute (customer number in the
invoice) is non-updatable.

Oracle Designer allows the “non-transferable” sign also on the other side of
the relationship. Semantics unclear (?).

2. ER-Diagrams II 2-28 / 45



Fixed Relationships (2)

It might be a good idea to collect non-updatability
information for arbitrary attributes, but Oracle Designer
does not allow that.

However, one can extend it in this way. It also has cross-referencing tools
which show CRUD (create, retrieve, update, delete) information for all
entities based on the business functions.

Non-Updatability is a simple kind of dynamic constraint,
which refers not to single database states as a normal
static constraint, but to pairs of DB states.

Another example is “Salaries cannot decrease.”

2. ER-Diagrams II 2-29 / 45



Contents

1 Domains

2 Weak Entity Types

3 Non-Transferable Relationships

4 Subclasses

5 Arcs

2. ER-Diagrams II 2-30 / 45



Specialization (1)

Two or more entity types may have attributes or
relationships in common.

Then it might be useful to create a generalized entity
type, which contains only the common characteristics,
and abstracts from the differences.

Or, some attributes or relationships may apply to only a
subset of the entities. Then creating a specialized entity
type for this set should be considered.

Inheritance (“is-a” relationships) and subclasses are also a
useful feature of object-oriented languages.

2. ER-Diagrams II 2-31 / 45



Specialization (2)

INSTRUCTOR
# NAME
∗ EMAIL
FACULTY
∗ PROF TYPE

EXTERNAL
◦ AFFILIATION
∗ ADDRESS

COURSE
# CRN
∗ TITLE

teacher of
taught by

COMMITTEE
# CNAME

member of
composed of

2. ER-Diagrams II 2-32 / 45



Specialization (3)

In the above example:

Instructors are faculty members (i.e. long-term
employees of the university) or external teachers which
are paid for the course only.

For all instructors, name and email address is stored.

For faculty members, in addition the professor type
(Assistant, Associate, Full) is stored.

For external instructors, their affiliation and address is
stored.

2. ER-Diagrams II 2-33 / 45



Specialization (4)

Example, continued:

Both types of instructors can teach courses.

Only faculty members can serve on committees.

In general, specialization can be distinguished in:

Disjoint: It is not possible that an instructor is at the
same time a faculty member and an external teacher.
Oracle Designer only supports this case.

Overlapping: Objects of the superclass can be in more
than one subclass at the same time (then they do not
have a unique type: uncommon).

2. ER-Diagrams II 2-34 / 45



Specialization (5)

Specialization can also be:

Total: Every instructor must be a faculty member or an
external teacher.

Partial: Elements of the superclass are not necessarily
contained in one of the subclasses.

Oracle Designer normally uses total specialization (but
one can always create an “Other” subclass).

However, when one generates tables, one can also select
that the supertype is instantiable (meaning partial
specialization).

2. ER-Diagrams II 2-35 / 45



Specialization (6)

Total and disjoint specialization means that the set of
entities of the superclass is partioned into the instances of
the subclasses.

It is very difficult to find information like “Oracle Designer supports only
non-overlapping and total specialization” in the documentation. E.g. it is
not mentioned in the online help, the manuals are anyway either too short
or only interface lists, and books like the Oracle Designer Handbook
assume that you know ER-modelling. Only the book by Barker clearly
states this. Looking at the translation into tables also shows that a
non-overlapping and total specialization is assumed. I later learnt about
the option for the Database Design Transformer which gives partial
specialization, but this is anyway the wrong place: If such an option is
really to be used, it must be offered in the ER-Diagrammer.

2. ER-Diagrams II 2-36 / 45



Specialization (7)

Subclasses can themselves have subclasses.
In the ER-Diagrammer, one creates a subclass by creating an entity type
within the boundaries of another entity type (the superclass).

In general, one can create a tree of entity types.
When specialization is total, real instances only exist at the leaves of the
tree. All other classes in the tree simply have the union of the members of
their subclasses.

Multiple inheritance is not supported in Oracle Designer.
Multiple inheritance means that an entity type has more than one
superclass, and inherits attributes and relationships from all of them.

2. ER-Diagrams II 2-37 / 45



Specialization (8)

It makes no sense to define primary key attributes for a
subclass: All attributes and the key constraint are
inherited from the superclass.

If the key uniquely identifies all members of the superclass, it especially
uniquely identifies the members of the subclass.

Of course, it is possible to declare additional (secondary)
keys for the subclasses.

2. ER-Diagrams II 2-38 / 45



Specialization and Null Values

In principle, one could avoid optional attributes with
specialization: E.g. “Instructor” has a subclass “Instructor
with Home Phone Number”.

When there are n attributes that can independently be
null, one would need 2n subclasses. Then this method is
clearly not useful.

However, when there is a group of attributes which can
only be together null, or together not null, one should
consider using a subclass.

Constructs like specialization reduce the need for constraints.

2. ER-Diagrams II 2-39 / 45



Generalization

The specialization process starts with the superclass,
discovers that some attributes apply only to a subset of
the entities, and constructs subclasses.

Vice versa, in generalization the subclasses are identified
first, and then the discovery of common attributes leads
to a superclass. The result is identical.

Some authors use the term generalization or
categorization if the subclasses have keys of their own,
and their union should be considered, e.g. for defining a
relationship.

2. ER-Diagrams II 2-40 / 45



Contents

1 Domains

2 Weak Entity Types

3 Non-Transferable Relationships

4 Subclasses

5 Arcs

2. ER-Diagrams II 2-41 / 45



Arcs (1)

By linking two or more relationships with an arc, one can
specify that they are mutually exclusive:

COURSE

taught by
teacher of EXTERNAL INST

taught by
teacher of FACULTY MEMBER

I.e. a course is either taught by a faculty member or by an
external instructor, but not by both.

2. ER-Diagrams II 2-42 / 45



Arcs (2)

This is similar to defining two subclasses of courses:

Courses that are taught by a faculty member.

Courses taught by an external instructor.

Alternatively, this corresponds to a generalization of
faculty members and external instructors.

One would use this model e.g. if external instructors and faculty members
already have different keys of their own, and there is no natural key for
their generalization. This is not a good example: The name or SSN would
do. The classical example in the literature are invoices which can be sent
to persons or companies.

2. ER-Diagrams II 2-43 / 45



Arcs (3)

In general, arcs might help when for various reasons
specialization is too restricted.

Using arcs in the ER-Diagrammer is a bit tricky.
Arcs are created by selecting at least two relationship ends and then
clicking on the “create arc” symbol in the toolbar (or the Utilities menue).
You must select the relationship ends, not the relationships (click on the
role names). Use Ctrl-click to select the second end.
In order to remove a relationship from an arc, select the arc by clicking on
the line between the two relationships (this is a bit difficult). Then select
the relationship end(s) you want to remove and select “Remove from Arc”
on the toolbar or the Utilities menu. If an arc remains only for one
relationship, I do not know how to select it. In this case, use the
Repository Object Navigator, drill down to the relationship, and delete the
“1” in the field “In Arc”.

2. ER-Diagrams II 2-44 / 45



References

Barker: CASE*Method, Entity Relationship Modelling.
Addison-Wesley, 1990, ISBN 0-201-41696-4, ca. $61.

Koletzke/Dorsey: Oracle Designer Handbook, 2nd Edition.
ORACLE Press, 1998, ISBN 0-07-882417-6, ca. $40.

A. Lulushi: Inside Oracle Designer/2000.
Prentice Hall, 1998, ISBN 0-13-849753-2, ca. $50.

Oracle/Martin Wykes: Designer/2000, Release 2.1.1, Tutorial.
Part No. Z23274-02, Oracle, 1998.

Heli Helskyaho: Oracle SQL Developer Data Modeler for Database Design Mastery.
McGraw Hill Education / Oracle Press, 2015, ISBN 0071850090, 336 pages.

Teorey: Database Modeling & Design, 3rd Edition.
Morgan Kaufmann, 1999, ISBN 1-55860-500-2, ca. $32.

Elmasri/Navathe: Fundamentals of Database Systems, 2nd Ed.,
Appendix A, “Alternative Diagrammatic Notations”.

Rauh/Stickel: Konzeptuelle Datenmodellierung (in German), Teubner, 1997.

2. ER-Diagrams II 2-45 / 45


	Domains
	Domains

	Weak Entity Types
	Weak Entity Types

	Non-Transferable Relationships
	Fixed Relationship Types

	Subclasses
	Specialization (Subclasses)

	Arcs
	Arcs
	References


