
18. Application Programming II (Stored Procedures, Triggers) 18-1

Part 18:
Application Programming II
(Stored Procedures,Triggers)

References:
• Elmasri/Navathe: Fundamentals of Database Systems, 3rd Edition, 1999.

Section 10.5, “Programming Oracle Applications”

• R. Sunderraman: Oracle Programming — A Primer, Addison-Wesley, 1999.
Chapter 4, “PL/SQL”

• Michael Gertz: Oracle/SQL Tutorial, 1999.
http://www.db.cs.ucdavis.edu/teaching/sqltutorial/

• Oracle8 Application Developer’s Guide, Oracle Corporation, 1997, Part No. A58241-01.

• PL/SQL User’s Guide and Reference, Oracle Corporation, 1997, Part No. A58236-01.

Warning:
• These slides are old (from 1999). Today, Java can be used as an alternative to PL/SQL.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-2

Objectives

• You should know some advantages of using stored

procedures.

• You should have at least some basic impression of

the Oracle PL/SQL syntax.

• You should be able to explain what triggers are.

• You should know some applications of triggers.

• You should have some basic impression of the trig-

ger syntax in Oracle.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-3

Overview

1. PL/SQL

2. Triggers in Oracle

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-4

Introduction (1)

• PL/SQL is an imperative programming language

with variables and the usual control structures.

• PL/SQL has an especially good interface to SQL,

e.g. the same type system as the Oracle database.

• Procedures written in PL/SQL can be stored and

executed on the database server.

• PL/SQL is not meant for creating user interfaces.

However, it is used in other Oracle user interface products. All in-
put/output must be done with parameters or database tables. E.g., if
a web page is created, it is first stored in the DB. It is a “server-side”
programming language.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-5

Introduction (2)

Advantages:

• Instead of sending many SQL commands to the

server over the network, you send only a single call

to a procedure stored on the server.

So the network load is reduced as the data intensive computation is
done on the DB server and only the final result is sent to the client
where it is displayed.

• SQL statements in PL/SQL procedures are stored

in preprocessed form on the server.

• PL/SQL procedures with their dependencies are re-

corded in the data dictionary.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-6

Introduction (3)

Natural Development:

• DBMS were introduced to put the data of a com-

pany under central control:

� to avoid redundancies and inconsistencies,

� to share the data,

� to simplify the development of new applications,

� to simplify administration (data stored in a single

place).

• Future DBMS should manage also procedures or

entire programs, not only data.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-7

Introduction (4)

A Subprogram-Library is not the Same:

• Application programs and their dependencies (used

tables) are not in data dictionary.

If the DB schema is changed, problems are only discovered when the
corresponding application program is executed.

• Such procedures exist only outside the DBMS, they

cannot be used in queries and triggers.

• Application programs run on the client.

• Different client architectures → different versions.

• Changing procedures might require relinking.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-8

Example (1)

(1) CREATE PROCEDURE
(2) Withdraw(acc number, amt number)
(3) IS
(4) b Account.Balance%TYPE;
(5) -- b is a variable with the same type
(6) -- as column Balance of table Account
(7) BEGIN
(8) SELECT Balance INTO b FROM Account
(9) WHERE No=acc FOR UPDATE OF Balance;

(10) IF b < amt THEN
(11) INSERT INTO Rejected VALUES
(12) (SYSDATE, acc, amt);
(13) ...

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-9

Example (2)

(13) ELSE -- Current Balance is sufficient.
(14) b := b - amt;
(15) UPDATE Account SET Balance = b
(16) WHERE No = acc;
(17) INSERT INTO Done
(18) VALUES (SYSDATE, acc, amt);
(19) END IF;
(20) COMMIT;
(21) END;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-10

Lexical Syntax

• The lexical syntax of PL/SQL (defining tokens /

word symbols) is intentionally very similar to SQL.

• PL/SQL is case-insensitive, except in string literals.

And in delimited/quoted identifiers.

• Comments can be written “-- ... 〈Line End〉” or

“/* ... */”.

• Identifiers can be up to 30 characters long.

• PL/SQL has 218 reserved words.

This includes SQL reserved words, plus about 100 new ones.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-11

Data Types (1)

• Oracle SQL data types are also PL/SQL types.

A VARCHAR2-variable can be declared with a length of up to 32767
characters in PL/SQL, whereas a database column of VARCHAR2-type
can have only 4000 bytes.

• PL/SQL has a type BOOLEAN with values TRUE, FALSE.

It can be used for variables, but not stored in the DB.

• PL/SQL also has a type BINARY_INTEGER.

BINARY_INTEGER has values −(231−1) to +231−1. It has e.g. the subtypes
NATURAL for non-negative numbers and POSITIVE for positive numbers.
PLS_INTEGER is the same as BINARY_INTEGER, except that an overflow
creates an exception instead of an element of the larger NUMBER type.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-12

Data Types (2)

• Procedure parameters can have only unconstrained

data types, e.g. “NUMBER”, but not “NUMBER(4)”.

• PL/SQL has also record types, so you can store an

entire database row into a single variable.

• PL/SQL also has collection types

� VARRAY (array of varying size) and

� TABLE (something between a set and an array).

• PL/SQL allows you to define your own data types.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-13

Data Types (3)

• Instead of explicitly specifying a type, one can also

use the following special constructs:

� TABLE.COLUMN%TYPE: the type of a DB column,

� TABLE%ROWTYPE: the record-type corresponding to

a DB row, and

� VARIABLE%TYPE: the type of another variable.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-14

Declarations

• The basic declaration syntax is “〈Variable〉 〈Type〉;”:

current_balance NUMBER(8,2);

• You can specify an intial value, else NULL is used:

emp_count PLS_INTEGER := 0;

• You can forbid the assignment of null values:

zip_code CHAR(8) NOT NULL := ’PA 15260’;

• You can forbid any future assignments:

credit_limit CONSTANT NUMBER := 100.00;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-15

Expressions and Assignments

• Boolean expressions are similar to WHERE-conditions,

e.g. you can use =, <>, <, >, <=, >=, LIKE, BETWEEN,

IS NULL, AND, OR, NOT.

• For other data types, expressions are also very simi-

lar to SQL (what you could write in the SELECT-list).

E.g. for numbers you can use +, -, *, /, for strings || (concatenation),
and for date values -, + (number of days). In addition, the data type
functions of Oracle SQL are also available in PL/SQL (ABS, . . .).

• An assignment has the form

〈Variable〉 := 〈Expression〉;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-16

Procedure Calls (1)

• As usual, a procedure call has the form

〈Procedure〉(〈Parameter〉,..., 〈Parameter〉);
Procedures without parameters are called without “()”: 〈Procedure〉;

• Procedures contained in packages (library modules)

must be called in the form

〈Package〉.〈Procedure〉(...);

• E.g. in order to print something, one needs to call

a procedure of Oracle’s DBMS_OUTPUT package:

DBMS_OUTPUT.PUT_LINE(’Wrong Employee name’);

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-17

Procedure Calls (2)

• PL/SQL allows to define default values for the pa-

rameters:

(1) CREATE PROCEDURE
(2) Withdraw(acc number,
(3) amt number DEFAULT 60.00)
(4) IS ...

• In this case, you do not have to specify values for

these parameters, e.g. Withdraw(123456) becomes

legal.
If no default value was specified, a parameter value must be given
in the call. If the declared default value is “NULL”, the procedure can
detect whether a value was actually specified.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-18

Procedure Calls (3)

• Oracle uses default values e.g. in the HTP package

for creating HTML output.

• E.g. the procedure HTP.BR is declared with two pa-

rameters, cclear and cattributes, and will print

<BR CLEAR="cclear" cattributes>

• One can also call it “HTP.BR;”, then the parameters

default to null, and only “
” will be printed.

• PL/SQL allows besides the usual “positional” no-

tation for parameter values also a named notation:

Withdraw(amt => 100.00, acc => 123456);

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-19

Procedure Calls (4)

• PL/SQL has not only input parameters, but also

output parameters and input/output parameters:

(1) CREATE PROCEDURE
(2) Withdraw(acc IN NUMBER, amt IN NUMBER,
(3) ok OUT BOOLEAN)

• IN is the default, so you do not have to specify this.

There is also a third mode, “IN OUT”.

• For IN parameters, any expression can be used in

the call, OUT and IN OUT parameters need a variable.

• Inside the procedure, IN parameters are write pro-

tected, and OUT parameters are read protected.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-20

Conditional Statements

• An IF-statement in PL/SQL is written as follows:

IF 〈Condition〉 THEN

〈Sequence of Statements〉
ELSIF 〈Condition〉 THEN

〈Sequence of Statements〉
...

ELSE

〈Sequence of Statements〉
END IF;

• The ELSIF- and ELSE-parts are optional.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-21

Loop Statements (1)

• The WHILE-statement executes a sequence of state-

ments (the loop body) iteratively as long as a con-

dition is true:
WHILE 〈Condition〉 LOOP
〈Sequence of Statements〉

END LOOP;

• E.g., we can compute the factorial 1∗2∗3∗ · · · ∗20:
factorial := 1;
i := 1;
WHILE i <= 20 LOOP

factorial := factorial * i;
i := i + 1;

END LOOP;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-22

Loop Statements (2)

• The FOR-statement executes a sequence of state-

ments (the loop body) once for each possible value

of a control variable.

FOR 〈Variable〉 IN [REVERSE] 〈Lower〉..〈Upper〉 LOOP

〈Sequence of Statements〉
END LOOP;

There is also a FOR-loop for working with cursors (see below).

• E.g., we can compute the factorial 1∗2∗3∗ · · · ∗20:
factorial := 1;

FOR i IN 1..20 LOOP

factorial := factorial * i;

END LOOP;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-23

Loop Statements (3)

• The LOOP-statement executes a sequence of state-

ments (the loop body) repeatedly until an EXIT

statement is executed.

LOOP

〈Sequence of Statements〉
END LOOP;

• “EXIT;” ends the innermost enclosing loop.

• Instead of

IF 〈Condition〉 THEN EXIT; END IF;

you can also write

EXIT WHEN 〈Condition〉;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-24

Loop Statements (4)

• Computation of the factorial with LOOP statement:

factorial := 1;
i := 1;
LOOP

factorial := factorial * i;
i := i + 1;
EXIT WHEN i > 20;

END LOOP;

Of course, the FOR-Loop is the right way to compute the factorial,
since the needed number of iterations is known beforehand.

• You can label loops “<<Name>> LOOP ...” and then

use “EXIT Name” to finish an outer loop.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-25

SQL Statements (1)

• Every SQL command except DDL commands is

also a valid PL/SQL statement.

I.e. SELECT, INSERT, UPDATE, DELETE, COMMIT, etc., but not CREATE TABLE.

• You can use PL/SQL variables in SQL commands

whereever a constant would be allowed in SQL.

• Beware of name conflicts! PL/SQL variables are

not specially marked in SQL statements.

This is a difference to host variables in Embedded SQL, which are
marked with “:”. If a variable has the same name as a DB table,
PL/SQL assumes that the variable is meant. A name conflict between
a variable and a column is resolved in favor of the column.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-26

SQL Statements (2)

• Example (Give a raise to a specific employee):

(1) CREATE PROCEDURE
(2) raise_sal(no NUMBER, pct NUMBER) IS
(3) BEGIN
(4) UPDATE EMP
(5) SET Sal := Sal * (1 + pct/100)
(6) WHERE EmpNo = no;
(7) INSERT INTO Sal_Development
(8) SELECT SYSDATE, no, Sal
(9) FROM Emp WHERE EmpNo = no;

(10) END;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-27

SQL Statements (3)

Single Row SELECT:

• SELECT statements returning a single row can be

used to store values from the DB in variables:

SELECT Sal INTO s FROM Emp WHERE EmpNo = no;

• This is like an assignment to the variable “s”.

• Of course, you can use SELECT INTO also with mul-

tiple columns and corresponding variables:

SELECT Sal, Comm INTO s, c FROM ...

• An exception is generated if the SELECT statement

should return no row or more than one row.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-28

Cursors (1)

• If a SELECT statement can return more than one row,

you need a cursor (or a special kind of FOR-Loop).

• The cursor must be declared in the declaration sec-

tion (the part before the BEGIN).

You specify an SQL query when you declare the cursor.

• Then you OPEN the cursor (executes query).

• Next, you use a FETCH-statement in a loop to get

the column values for each output row.

• Finally, you CLOSE the cursor.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-29

Cursors (2)

• Example: Create a web page containg the names

of all employees (using Oracle’s HTP package).

(1) CREATE PROCEDURE printEmployees IS
(2) name Emp.EName%TYPE;
(3) CURSOR c IS SELECT EName FROM Emp;
(4) BEGIN
(5) htp.htmlOpen;
(6) htp.headOpen;
(7) htp.title(’Employee List’);
(8) htp.headClose;
(9) htp.bodyOpen;

(10) htp.header(1, ’Employees’); -- <H1>

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-30

Cursors (3)

(11) htp.ulistOpen;
(12) OPEN c;
(13) LOOP
(14) FETCH c INTO name;
(15) EXIT WHEN c%NOTFOUND;
(16) htp.listItem(name);
(17) END LOOP;
(18) CLOSE c;
(19) htp.ulistClose;
(20) htp.print(’Generated: ’ || SYSDATE);
(21) htp.bodyClose;
(22) htp.htmlClose;
(23) END;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-31

Cursors (4)

• Alternative (with WHILE-loop):

(12) OPEN c;
(13) FETCH c INTO name;
(14) WHILE c%FOUND LOOP
(15) htp.listItem(name);
(16) FETCH c INTO name;
(17) END LOOP;
(18) CLOSE c;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-32

Cursors (5)

• Alternative (with FOR-loop):

(12) FOR name IN c LOOP
(13) htp.listItem(name);
(14) END LOOP;

• This also does OPEN and CLOSE automatically.

• Alternative (without explicit cursor):

(12) FOR name IN (SELECT Ename FROM Emp)
(13) LOOP
(14) htp.listItem(name);
(15) END LOOP;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-33

Cursors (6)

• For updates in loops, one can refer to “CURRENT OF

〈Cursor〉” in WHERE-conditions.

• This requires a “SELECT ... FOR UPDATE” query.

• Example: Suppose we want to assign a unique num-

ber to every instructor. We have used ALTER TABLE

to add a column No to the table Instructor, but it

first contains null values.

• The following program also uses PL/SQL’s record-

types (which allow to store entire rows in a single

variable).

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-34

Cursors (7)

(1) CREATE PROCEDURE Number_Instructors IS
(2) inst Instructor%ROWTYPE;
(3) i NUMBER(4) := 1;
(4) CURSOR c IS SELECT * FROM Instructor
(5) FOR UPDATE;
(6) BEGIN
(7) FOR inst IN c LOOP
(8) UPDATE Instructor SET no = i
(9) WHERE CURRENT OF c;

(10) i := i + 1;
(11) END LOOP;
(12) END;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-35

Cursors (8)

• A cursor can have parameters, e.g.

(3) CURSOR c(dno NUMBER) IS
(4) SELECT EName FROM Emp
(5) WHERE DeptNo = dno;

• Values for these parameters are specified in the

OPEN-statement (when the query is executed):

(12) OPEN c(20);

• The FOR-loop needs no explicit OPEN, so it also allows

to specify the parameter value:

(12) FOR name IN c(20) LOOP ... END LOOP;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-36

Error Handling (1)

• Exceptions are run-time errors, like division by zero.

• The processing of SQL statements can also cause

exceptions, e.g.

SELECT Sal INTO s FROM Emp WHERE EmpNo = no;

must return exactly one row.

• If there is no employee with the given number,

Oracle will raise the exception “NO_DATA_FOUND”.

• If the query would return more than one row, the

exception “TOO_MANY_ROWS” will be raised.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-37

Error Handling (2)

• Normally, exceptions will terminate your program.

• PL/SQL allows you to react on such errors by

writing exception handlers, i.e. sequences of state-

ments which are executed if such an error happens.

Exception handlers are defined at the end of the block (with the
keyword “EXCEPTION” before the final “END”).

• You can write handlers for specific exceptions

WHEN e1 OR ... OR en THEN ...

or write a default handler (“WHEN OTHERS”).

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-38

Error Handling (3)

• After the exception is handled, control returns to

the enclosing block.
E.g. a procedure returns normally. Statements after the one causing
the error are not executed.

• If an exception is not handled, it is propagated to

the enclosing block. It may be handled there.

• You can use the procedure

raise_application_error(error_number, message);

to create a normal Oracle error message.
The error number must be between -20000 and -20999. Of course,
this procedure can not only be used in error handlers.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-39

Error Handling (4)

(1) CREATE PROCEDURE printSalary(no NUMBER);
(2) s NUMBER(6,2);
(3) BEGIN
(4) SELECT Sal INTO s WHERE EmpNo = no;
(5) DBMS_OUTPUT.PUT_LINE(’Sal = ’ || s);
(6) EXCEPTION
(7) WHEN NO_DATA_FOUND THEN
(8) DBMS_OUTPUT.PUT_LINE(’Wrong EmpNo’);
(9) END;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-40

Error Handling (5)

• You can declare your own exceptions: You define

them like a variable with type “EXCEPTION”.

• Then you use the statement “RAISE 〈Exception〉”
to cause this exception.

• This allows, e.g., to have non-local jumps if you

have many nested procedures and want to get back

to some outer level.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-41

Anonymous PL/SQL Blocks

• “Anonymous PL/SQL blocks” are pieces of code

which are not part of a procedure.

(1) DECLARE -- Instead of procedure head
(2) i number;
(3) facorial number;
(4) BEGIN
(5) ... -- Computation of 20!, see above
(6) DBMS_OUTPUT.PUT_LINE(factorial);
(7) END;

• You can directly enter such blocks into SQL*Plus

or use them inside Embedded SQL (see below).

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-42

Functions (1)

• Functions are similar to procedures, but return a

value:

(1) CREATE FUNCTION
(2) factorial(n INTEGER) RETURN NUMBER
(3) IS
(4) i INTEGER;
(5) f NUMBER := 1;
(6) BEGIN
(7) FOR i IN 1..n LOOP f := f * i;
(8) END LOOP;
(9) RETURN f;

(10) END;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-43

Functions (2)

• Functions can be used in PL/SQL expressions, e.g.

x := factorial(20) / 1000;

• Functions can also be used in SQL queries (!):

SELECT n, factorial(n)

FROM test_inputs

• Functions are not allowed to have side effects.

• Functions must execute a RETURN statement, or the

exception “PROGRAM_ERROR” is raised.

• RETURN; (without value) can be used in procedures

to transfer the control back to the caller.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-44

Packages (1)

• PL/SQL has a module mechanism.

• You can define “Packages” which can contain de-

clarations of types, procedures, functions, global

variables, constants, cursors, and exceptions.

• The interface (public part) and the implementation

(private part) are defined separately.

• Global variables persist for the duration of a session.
Across transactions. But remote calls are restricted.

• When you refer to a packaged procedure etc. from

outside a package, you must write “〈Package〉.〈Name〉”.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-45

Packages (2)

(1) CREATE PACKAGE Com_Fun AS
(2) FUNCTION fac(n INTEGER) RETURN NUMBER;
(3) FUNCTION bino(n INTEGER) RETURN NUMBER;
(4) END Com_Fun;
(5) CREATE PACKAGE BODY Com_Fun AS
(6) FUNCTION fac(n INTEGER) RETURN NUMBER IS
(7) i INTEGER; f NUMBER;
(8) BEGIN
(9) ...

(10) END;
(11) ...
(12) END Com_Fun;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-46

Using PL/SQL (1)

Defining Stored Procedures in SQL*Plus:

• Write the procedure definition into a file 〈File〉.sql,

and then execute the file with @〈File〉.
There must be a “/” on a line by itself after the procedure definition.
After this, more procedure definitions or other commands can follow.

• If there are compilation errors, use the SQL*Plus

command “SHOW ERRORS” to see the error messages.
If you write CREATE OR REPLACE PROCEDURE ..., you can easily re-execute
the source file after changing it.

• You delete a stored procedure with

DROP PROCEDURE 〈Name〉;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-47

Using PL/SQL (2)

Executing PL/SQL in SQL*Plus:

• You call a procedure in SQL*Plus with

EXECUTE 〈Procedure〉(〈Parameters〉);
E.g.: EXECUTE withdraw(123456, 100.00);

Any statement can be EXECUTEd, not only procedure calls.

• The DBMS_OUTPUT procedures write their output into

a DB table. If you want that SQL*Plus displays the

output, you have to “set serveroutput on”.

• You can directly enter anonymous PL/SQL Blocks.

• PL/SQL functions can be used in SQL queries.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-48

Using PL/SQL (3)

Bind Variables in SQL*Plus:

• In order to call a procedure with OUT parameters

from SQL*Plus, first declare “bind variables”:

VARIABLE 〈Name〉 〈Type〉

• Then you can use this variable, marked with “:”,

in the procedure call:

EXECUTE p(’Input’, :x);

• To display the current value of a bind variable, use

PRINT x

“set autoprint on” automatically prints bind variables.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-49

Using PL/SQL (4)

Calling PL/SQL from Pro*C:

• PL/SQL can be used in Embedded SQL programs:

(1) EXEC SQL EXECUTE
(2) BEGIN raise_sal(:emp_no, 5); END;
(3) END-EXEC;

• You can also use an anonymous PL/SQL block in-

side C for computations which can be done simpler

in PL/SQL (but C with standard SQL is portable).

• You can use host variables (C variables) in PL/SQL

whereever a PL/SQL variable would be allowed.
As usual, host variables must be marked with a colon.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-50

Using PL/SQL (5)

Data Dictionary Tables:

• USER_SOURCE(NAME, TYPE, LINE, TEXT)

contains the source code of your procedures.

TYPE can be, e.g., FUNCTION, PACKAGE, PACKAGE BODY, PROCEDURE, TYPE.

• USER_ARGUMENTS contains information about the ar-

guments (parameters) of your procedures.

Columns are, among others: OBJECT_NAME (Name of Procedure or Func-
tion), PACKAGE_NAME, ARGUMENT_NAME, POSITION, DATA_TYPE, IN_OUT.

• Procedures are registered in OBJ (= USER_OBJECTS).

They have OBJECT_TYPE=’PROCEDURE’. One can find for instance the
creation date in this table. USER_DEPENDENCIES is also useful.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-51

Overview

1. PL/SQL

2. Triggers in Oracle

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-52

Triggers (1)

• Triggers are ECA (Event, Condition, Action) rules:

� If a triggering event occurs,
E.g. an insertion on a certain table.

� and when a condition is satisfied,
E.g. the inserted value is large.

� an action is done.
E.g. the tuple is inserted also in another table regularly checked
by the department head.

• Thus, triggers are basically procedures that are im-

plicitly called by the usual database commands.
This is a kind of “hook” for own code to extend the DB.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-53

Triggers (2)

• Typical applications of triggers are:

� Enforcement of complex integrity constraints.
Of course, if a constraint can be specified declaratively in the
CREATE TABLE statement, that is much better.

� Propagation of updates to redundant data struc-

tures (e.g. materialized views, derived columns).

� Enforcement of complex authorizations.

� Enforcement of complex business rules.

• Oracle also has “INSTEAD OF” trigger to define what

should happen if a user tries to updates a view that

would normally not be updatable.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-54

Triggers in Oracle (1)

• Oracle distinguishes between

� “Row Triggers” which are called once for each

row affected by the triggering statement, and

� “Statement Triggers” which are called only once

when the triggering statement is executed.

• You can access the affected rows including the old

and new attribute values only in row triggers.

So statement triggers can for instance log that a certain type of action
has taken place, but they cannot log the concrete data. Of course, a
statement trigger could scan the entire table affected by the update
(e.g. for integrity violations), but this is usually inefficient.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-55

Triggers in Oracle (2)

• The triggering event is classically an INSERT, UPDATE

or DELETE on a specific table.

For the update, one can select specific attributes.

• Since Oracle 8i, it is also possible to react on sy-

stem events (STARTUP, SHUTDOWN, SERVERERROR) cli-

ent events (LOGON, LOGOFF), and DDL commands

(CREATE, ALTER, DROP).

There are “event attribute functions” to access more data for these
events.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-56

Triggers in Oracle (3)

• Oracle allows to define wether the trigger is called

BEFORE or AFTER the triggering statement.

BEFORE row trigger can still change the inserted/new values (e.g. set
them to the allowed maximum).

• The condition part of a trigger in Oracle is quite

restricted.

You can use it only in “row triggers” and refer only to the current
tuple in the condition.

• However, the action part is any PL/SQL block, so

you can test arbitrary conditions there.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-57

Example (1)

• Suppose we have a table

Inventory

ItemNo ItemName Stock MinStock Reordered
...

• Our application programs change this table by

UPDATE Inventory SET Stock = Stock - :taken

WHERE ItemNo = :no

• If the Stock becomes smaller than MinStock, we

want to automatically reorder the part.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-58

Example (2)

(1) CREATE TRIGGER Reorder
(2) AFTER UPDATE OF Stock ON Inventory
(3) FOR EACH ROW
(4) WHEN (new.Stock < new.MinStock
(5) AND new.Reordered IS NULL)
(6) BEGIN
(7) INSERT INTO Order
(8) VALUES (SYSDATE, :new.ItemNo);
(9) UPDATE Inventory SET Reordered = SYSDATE

(10) WHERE ItemNo = :new.ItemNo;
(11) END;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-59

Syntax (1)
Event:

• The triggering event is specified by

(2) AFTER UPDATE OF Stock ON Inventory
(3) FOR EACH ROW

• So this trigger will be executed after a command

UPDATE Inventory SET Stock = ...

• It is executed once for each changed row.

• Triggers can fire on different events (but each trig-

ger is only for one table):

(2) AFTER UPDATE OF Stock, MinStock OR INSERT
(3) ON Inventory

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-60

Syntax (2)

Condition:

• When the triggering event occurs, the condition is

checked:

(4) WHEN (new.Stock < new.MinStock
(5) AND new.Reordered IS NULL)

• The condition is any WHERE condition without sub-

queries.

• The tuple variable “new” refers to the tuple after

the update or insertion, “old” is the version before

the update/deletion.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-61

Syntax (3)

Condition, continued:

• If there is a name conflict with the tuple variables

new and old, one can use

REFERENCING new AS myNew

This must be written before “FOR EACH ROW”.

• The condition can alternatively be tested in the

action (see example on next slide).

• This is probably slightly less efficient, but allows

more general conditions to be tested.

• “WHEN” conditions can only be used in row triggers.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-62

Syntax (4)

(1) CREATE TRIGGER Reorder
(2) AFTER UPDATE OF Stock ON Inventory
(3) FOR EACH ROW
(4) BEGIN
(5) IF :new.Stock < :new.MinStock
(6) AND :new.Reordered IS NULL THEN
(7) INSERT INTO Order
(8) VALUES (SYSDATE, :new.ItemNo);
(9) UPDATE Inventory

(10) SET Reordered = SYSDATE
(11) WHERE ItemNo = :new.ItemNo;
(12) END IF;
(13) END;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-63

Syntax (5)

Action:

• The action part is any PL/SQL block.

• A PL/SQL block has the general form

(1) DECLARE
(2) ... -- Declarations
(3) BEGIN
(4) ... -- PL/SQL Statements
(5) EXCEPTION
(6) ... -- Exception handlers
(7) END;

• The DECLARE and EXCEPTION parts are optional.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-64

Syntax (6)

Action, continued:

• COMMIT or ROLLBACK is not allowed in the PL/SQL

block (trigger action).

• However, one can call the procedure

raise_application_error(error_number, message)

to abort the SQL command which fired the trigger.
One can select any error number between −20000 and −20999.

• The conditions (predicates)

INSERTING, DELETING, UPDATING, UPDATING(A)

can be used to react on the type of update.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-65

Syntax (7)

Action, continued:

• In row triggers, you can use the variables :new and

:old, which contain the tuple before and after the

command.

You cannot access the affected tuples in statement triggers. Note
that in the WHEN condition, old and new are written without “:”.

• In row triggers, you are not allowed to access other

tuples (besides the changed one) from the updated

table.

Such triggers are executed in the middle of changing this table, so
the state of the table is undefined.

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-66

Second Example

(1) CREATE TRIGGER Course_Change_Restriction
(2) -- Changes are allowed only on working days.
(3) BEFORE INSERT OR UPDATE OR DELETE ON Course
(4) DECLARE weekday VARCHAR(3);
(5) BEGIN
(6) weekday := TO_CHAR(SYSDATE, ’DY’);
(7) IF weekday=’SAT’ OR weekday=’SUN’ THEN
(8) raise_application_error(-20000,
(9) ’No changes allowed today.’);

(10) END IF;
(11) END;

Stefan Brass: Datenbanken I Universität Halle, 2014

18. Application Programming II (Stored Procedures, Triggers) 18-67

Termination and Confluence

• If the action part of a trigger does database chan-

ges, this might fire other triggers.

• It is possible that the trigger execution does not

terminate.

• Also, if more than one trigger has to be executed,

the system chooses an arbitrary sequence.
In Oracle, the statement before trigger is fired first. Then for each
affected row, a row before trigger is fired followed by the row after
trigger. Then the statement AFTER trigger is fired.

• A set of triggers is confluent if the final database

state does not depend on this execution sequence.

Stefan Brass: Datenbanken I Universität Halle, 2014

