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Objectives

After completing this chapter, you should be able to:

• translate given ER-schemas manually into the re-

lational model.

• explain which cardinalities cannot be enforced with

standard constraints of the relational model (and

what can be done in such a case).

• explain and compare the alternatives for translating

subclasses.
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Overview

1. Basic Schema Translation

'
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$

%
2. Limitations, Integrity Control

3. Weak Entity Types

4. Subclasses

5. Special Cases, Final Steps
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General Remarks (1)

• In order to develop a relational schema, one usually

first designs an ER-schema, and then transforms it

into the relational model, because the ER-model

� allows better documentation of the relationship

between the schema and the real world.
E.g. entity types and relationships are distinguished.

� has a useful graphical notation.

� has constructs like inheritance which have no di-

rect counterpart in the relational model.
The difficult conceptual design can be simplified a bit by first
using the extended possibilities.
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General Remarks (2)

• Given an ER-schema SE, the goal is to construct

a relational schema SR such that there is a one-to-

one mapping τ between the states for SE and SR.

I.e. each possible DB state with respect to SE has exactly one coun-
terpart state with respect to SR and vice versa.

• States that are possible in the relational schema but

meaningless with respect to the ER-schema must

be excluded by integrity constraints.

E.g., in the ER-model, relationships can be always only between
currently existing entities. In the relational model, “dangling poin-
ters” must be explicitly excluded by means of foreign key constraints.
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General Remarks (3)

• In addition, it must be possible to translate que-

ries referring to SE into queries with respect to SR,

evaluate them in the relational system, and then

translate the answers back.

• I.e. it must be possible to simulate the designed ER-

database with the actually implemented relational

database.

Any schema translation must explain the correspondance of schema
elements such that, in our case, a query intended for the ER-schema
can also be formulated with respect to the relational schema.
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Example

INSTRUCTOR
# FNAME
# LNAME
◦ PHONE

'

&

$

%

teacher of
���
HHH

taught by

COURSE
# CRN
* TITLE

'

&

$

%

STUDENT
# SSN
* FNAME
* LNAME
◦ EMAIL

'

&

$

%

HHH
�

��

registered for

A
AA

�
��

taken by
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Entities Types (1)

• First a table is created for each entity type.
The tables created in this step are not necessarily the final result.
When one-to-many relationships are translated, columns are added
to them. In rare cases, they will later turn out as unnecessary.

• The name of this table is the name of the entity

type (maybe in plural form, as in Oracle Designer).

• The columns of this table are the attributes of the

entity type.
Optional attributes translate into columns that permit null values.
Depending on how much one considers the goal DBMS in this step,
it might be necessary to map attribute data types into something the
DBMS supports.
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Entities Types (2)

• The primary key of the table is the primary key of

the entity type. The same for alternative keys.

Weak entity types are discussed below.

• If the entity type has no key, an artificial key is

added (e.g. Oracle Designer does this).

The designer really should explicitly define a key for each entity type.

• Result in the example:

INSTRUCTORS(FNAME, LNAME, PHONEo)

STUDENTS(SSN, FNAME, LNAME, EMAILo)

COURSES(CRN, TITLE)
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Entity Types (3)

Example State for the Tables Generated So Far:

INSTRUCTORS

FNAME LNAME Phone
Stefan Brass 624-9404
Michael Spring 624-9424
Nina Brass
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Entity Types (4)

COURSES

CRN TITLE
12345 DB Management
24816 DB Analysis&Design
56789 Client-Server

STUDENTS

SSN FIRST LAST EMAIL
111-22-3333 John Smith js@acm.org
123-45-6789 Ann Miller
235-71-1131 David Meyer dm@hotmail.com
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One:Many Relationships (1)

• One-to-many Relationships are normally translated

by adding the primary key from the “one” side as

a foreign key to the “many” side.

In this way, every entity on the “many” side can refer to the related
entity on the “one” side.

• E.g. in the example, first name and last name of the

instructor are added to the course table in order to

implement the relationship “teacher of/taught by”:

COURSES(CRN, TITLE,
(FNAME,LNAME)→INSTRUCTORS)
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One:Many Relationships (2)

• The example shows already a difficult case because

the primary key (and therefore also the foreign key)

consists of two columns.
This is why some designers would prefer primary keys consisting only
of one column. But that is a matter of taste.

• Example State:

COURSES

CRN TITLE FNAME LNAME
12345 DB Management Stefan Brass
24816 DB Analysis&Design Stefan Brass
56789 Client-Server Michael Spring
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One:Many Relationships (3)

• The rows corresponding to both entities will be

combined with a join (which equates the foreign

key on the “many” side to the primary key on the

“one” side).

• Although a “pointer” (foreign key) was added on-

ly on the “COURSES” side, the join permits to

“follow pointers in both directions”.

Of course, one can formulate queries that contain conditions on in-
structors and then find all their courses. The exact evaluation se-
quence for the query is a question of query optimization and depends
also on the existing indexes.
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One:Many Relationships (4)

• It is a common error of beginners to add the foreign

key to the wrong side.

Of course, this cannot happen when one uses a tool that does the
translation automatically (like Oracle Designer). But one nevertheless
needs to understand the correct translation.

• Adding a foreign key to the table is only possible if

the maximum cardinality in the (min,max) notation

is 1, i.e. there is at most one related entity.

• This holds for the “many” side of a one-to-many

relationship.
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One:Many Relationships (5)

• Since one instructor can teach many courses, ad-

ding the key of COURSES to the INSTRUCTORS

table would give a set-valued attribute which is not

permitted in the standard relational model:

INSTRUCTORS WRONG!

FNAME LNAME Phone CRN
Stefan Brass 624-9404 {12345, 24816}
Michael Spring 624-9424 {56789}
Nina Brass ∅
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One:Many Relationships (6)

• Unfolding the set-valued attribute would destroy

the key, store information redundantly (instructors

of multiple courses), and lead to the loss of other

information (instructors of no course).

INSTRUCTORS WRONG!

FNAME LNAME Phone CRN
Stefan Brass 624-9404 12345
Stefan Brass 624-9404 24816
Michael Spring 624-9424 56789
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One:Many Relationships (7)

• Above, every course had to be taught by an in-

structor (mandatory participation).

• The translation for the case of optional participa-

tion is similar (courses without instructors).

INSTRUCTOR
# FNAME
# LNAME
◦ PHONE

'

&

$

%

teacher of
���
H

HH

taught by

COURSE
# CRN
* TITLE

'

&

$

%
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One:Many Relationships (8)

• The only difference is that the foreign key can now

be null:
COURSES(CRN, TITLE,

(FNAMEo,LNAMEo)
→ INSTRUCTORS)

• Example State:

COURSES

CRN TITLE FNAME LNAME
12345 DB Management Stefan Brass
24816 DB Analysis&Design
56789 Client-Server Michael Spring
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One:Many Relationships (9)

• If the foreign key consists of more than one attri-

bute (as in the example), all its attributes must be

together null or together not null.

A partially defined foreign key would make no sense in terms of the
relationship that has to be implemented.

• Fortunately, this condition can be enforced decla-

ratively with a CHECK-constraint:

CHECK((FNAME IS NOT NULL AND LNAME IS NOT NULL)

OR (FNAME IS NULL AND LNAME IS NULL))
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Many:Many Relationships (1)

• In the example, a many-to-many relationship still

remains:

STUDENT
# SSN
* FNAME
* LNAME
◦ EMAIL

'

&

$

%

H
HH

���

registered for
�

��
HHH

taken by

COURSE
# CRN
* TITLE

'

&

$

%
• Such relationships cannot be implemented by ad-

ding a foreign key to one of the two tables, because

there can be more than one related entity.
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Many:Many Relationships (2)

• Thus, a new table is created for the relationship (it

is sometimes called an “intersection table”).

• The new table contains the primary keys of both

entity types that participate in the relationship.

• The two keys together form the composed key of

the intersection table, and each is a foreign key

referencing the table for its entity type:

REGISTERED FOR(SSN→STUDENTS,
CRN→COURSES)
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Many:Many Relationships (3)

• The intersection table for the relationship simply

contains key value pairs of entities that are related:

REGISTERED FOR

SSN CRN
111-22-3333 12345
111-22-3333 56789
123-45-6789 12345

• E.g. John Smith (SSN 111-22-3333) is registered

for Database Management (CRN 12345) and for

Client-Server (CRN 56789).
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Many:Many Relationships (4)

• Suppose the relationship has attributes:

Student

�
�

�
�SSN

(0, ∗)
���

���
��

HHH
HHH

HH

took ���
���

��

HHH
HHH

HH

(0, ∗)

�
�

�
�Term

�
���

�� �
�

�
�Grade

H
HHH

HH

Course

�
�

�
�CRN

• Then one can simply add the relationship attributes

to the relationship table:

TOOK(SSN→STUDENTS, CRN→COURSES,
TERM, GRADE)

• These attributes do not become part of the key.
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One:Many: Alternative (1)

• One can also translate one-to-many relationships

(with optional partcipation on both sides) into ta-

bles of their own.

• E.g. consider the following example: The university

library wants to store who has borrowed with book:

STUDENT
# SSN
* FNAME
* LNAME
◦ EMAIL

'

&

$

%

borrower of
�

��
HHH

borrowed by

BOOK
# ID
* TITLE
◦ AUTHOR

. . .

'

&

$

%
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One:Many: Alternative (2)

• This can also be translated in a similar way to a

many-to-many relationship:

BORROWED BY(ID→BOOKS,
SSN→STUDENTS)

• In contrast to a many-to-many relationship, ID alo-

ne suffices as key, since every book can be related

to at most one student, so there can never be two

entries for the same book.
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One:Many: Alternative (3)

• Note that this alternative solution needs one more

join in most queries than the standard solution.

The standard solution explicitly stores the outer join of the entity table
and this relationship table, so that one does not have to compute the
join at runtime.

• However, if there are very many books and very

few of them are borrowed, the alternative solution

permits fast access to the borrowed books.

It might also be a bit more space-efficient.
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One:One Relationships (1)

• Suppose we want to store which student is respon-

sible for which computer account:

STUDENT
# SSN
* FNAME
* LNAME
◦ EMAIL

'

&

$

%

owner of

owned by

ACCOUNT
# ID
* LAST LOGIN

'

&

$

%
• The translation is basically done like a one-to-many

relationship. If one side has mandatory participati-

on, one treats that side as the “many” side.
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One:One Relationships (2)

• The result of the translation is

STUDENTS(SSN, FNAME, LNAME, EMAILo)

ACCOUNTS(ID, LAST LOGIN,
SSN→STUDENTS)

• The important difference to a “one-to-many” re-

lationship is that the foreign key that implements

the relationship now becomes an alternative key for

the ACCOUNTS table.

• I.e. for every student SSN, there can be at most

one account.
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One:One Relationships (3)

• Now consider the case that the participation is op-

tional on both sides:

FACULTY
# FNAME
# LNAME
* PHONE
◦ EMAIL

'

&

$

%

head of

lead by

DEPARTMENT
# DNAME
* ADDRESS

'

&

$

%
• Now the situation is symmetric, and one can choose

either side as “many” side.
It would be a mistake to add a foreign key on both sides (redundant
information).
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One:One Relationships (4)

• In the example, it is probably an exceptional situa-

tion that departments do not have a head.

• One needs less null values if one chooses the side

on which participation is “less optional” and adds

the foreign key on this side:

FACULTY(FNAME, LNAME, PHONE, EMAILo)

DEPARTMENTS(DNAME, ADDRESS,
(LNAMEo, FNAMEo)

→FACULTY)
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One:One Relationships (5)

• The relationship becomes one-to-one by specifying

that LNAME, FNAME are an alternative key for

DEPARTMENTS.

Note that as always for optional composed foreign keys, one needs
a CHECK-constraint specifying that LNAME and FNAME can only be
together null.

• Not every DBMS supports alternative keys that can

be null.

And if they are supported, one has to check what the semantics is.
E.g. in SQL server, at most one record with a null value in the key is
permitted, which would not help here.
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One:One Relationships (6)

• However, if that does not work, one can also use

the alternative translation for one-to-many relati-

onships (with their own table):

FACULTY(FNAME, LNAME, PHONE, EMAILo)

DEPARTMENTS(DNAME, ADDRESS)

DEPT HEAD(DNAME→DEPARTMENTS
(LNAME, FNAME)→FACULTY)

• LNAME and FNAME together are an alternative

key for the relation DEPT HEAD.
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One:One Relationships (7)

• Finally, consider the case with mandatory partici-

pation on both sides:

STUDENT
# SSN
* FNAME
* LNAME
◦ EMAIL

'

&

$

%

owner of

owned by

ID CARD
# NO
* DATE ISSUED

'

&

$

%
• In this case, one would translate the two entity

types into only one table.
One must select one of the two keys as primary key, the other becomes
an alternative key.
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One:One Relationships (8)

• I do not know any good solution for recursive one-

to-one relationships:

PERSON

# ID
* FNAME
* LNAME

'

&

$

%

married to

married to

• One needs the constraint that if X references Y ,

also Y references X.
The problem is that here one automatically gets the foreign key on
both sides.
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Renaming of Columns (1)

• Sometimes the direct application of the translation

rules would lead to a name clash:

INSTRUCTOR
# NO
* FNAME
* LNAME
◦ PHONE

'

&

$

%

teacher of
���
H

HH

taught by

COURSE
# NO
* TITLE

'

&

$

%
• In this example, one would get:

COURSES(NO, TITLE, NO→INSTRUCTORS)

• But column names must be unique within a table.
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Renaming of Columns (2)

• One can rename attributes during the translation

in any understandable way.

• E.g. one could also use the role name in the relati-

onship:
COURSES(NO, TITLE,

TAUGHT BY→INSTRUCTORS)

• One could also add the name of the referenced

table, or maybe a shorthand for it:
COURSES(NO, TITLE,

INST NO→INSTRUCTORS)
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Renaming of Columns (3)

• The renaming must be carefully documented such

that the ER-diagram is still useful as documentati-

on for the implemented relational schema.

• Sometimes, it might be good to change the attri-

bute name already on the ER-level.

However, this is not always possible (e.g. in the case of recursive
relationships).

• Also the table names generated for many-to-many

relationships are often not very good and should be

renamed.
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Overview

1. Basic Schema Translation

2. Limitations, Integrity Control

'

&

$

%
3. Weak Entity Types

4. Subclasses

5. Special Cases, Final Steps
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Summary: Limitations (1)

• The following cardinalities can be translated with

the methods explained above (using only the stan-

dard constraints of the relational model):

E1
(1,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0, ∗)
E2

E1
(0,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0, ∗)
E2

E1
(0, ∗)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0, ∗)
E2
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Summary: Limitations (2)

• In addition, all kinds of one-to-one relationships can

be handled (except recursive ones):

E1
(1,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0,1)
E2

E1
(0,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(0,1)
E2

E1
(1,1)

�
�

��

@
@

@@

@
@

@@

�
�

��
R

(1,1)
E2

Recursive 1:1 relationships can be handled, when the entities are parti-
tioned into two subclasses, and connections exist only between them.
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One:Many Relationships (1)

• Mandatory participation on the “one” side of a one-

to-many relationship cannot be translated into the

relational model using only the standard constraints

(not null, keys, foreign keys, CHECK).

• Instructors must teach at least one course:

INSTRUCTOR
# FNAME
# LNAME
◦ PHONE

'

&

$

%

teacher of
�

��
HHH

taught by

COURSE
# CRN
* TITLE

'

&

$

%
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One:Many Relationships (2)

• In this case, one uses the same translation as if the

participation on the “INSTRUCTOR” side would

be optional.

• This is more general: The cardinality restriction

(1, ∗) is weakend to (0, ∗).

• Thus, all DB states required by the ER-schema can

be represented in the relational schema.

• But the relational schema permits DB states that

would be illegal with respect to the ER-schema.
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One:Many Relationships (3)

• In order to make the two schemas equivalent, one

needs to add a constraint that excludes instructors

without courses.

• E.g. one could run from time to time an SQL query

that finds violations of the constraint:

SELECT FNAME, LNAME

FROM INSTRUCTORS I

WHERE NOT EXISTS (SELECT *

FROM COURSES C

WHERE C.FNAME = I.FNAME

AND C.LNAME = I.LNAME)
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Integrity Control (1)

• The problem with the above approach (searching

for violations e.g. every night) is that it does not

really enforce the integrity of the DB state.

• The invalid information can be entered, and is de-

tected only after some time.

• In the meantime, it might have been used already.
E.g. a salary was paid.

• It is also more difficult to correct the integrity vio-

lation if it is not immediately detected.
Who has entered this? What did he/she meant to do?
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Integrity Control (2)

• One can also program the check in the application

programs used for entering data.

The instructor can only be added with his/her first course, and when
the last course is deleted, the instructor is deleted, too.

• Then one has to exclude direct changes to the da-

tabase that do no use the application programs.

• Also, one must be very careful that all application

programs check this condition.

E.g. also the one used for updating instructor assignments for courses.

Stefan Brass: Datenbanken II A Universität Halle, 2007



4. Logical Design I 4-47

Integrity Control (3)

• Good application programs anyway should handle

all possible constraint violations, even if the DBMS

enforces the constraint.
At least all constraint violations that could possibly occur due to bad
user input. Other constraint violations are automatically prevented by
the application logic (e.g. if the user first selects a customer and then
enters an order), and then the check in the DBMS suffices (in case
the program contains a bug or somebody else deletes the customer
in the meantime).

The error message generated by the DBMS is normally not very cle-
ar for the untrained user, therefore at least some form of exception
handling that produces a better error message for the specific applica-
tion context should be done. Of course, the application could simply
check for these constraint violations itself before executing the critical
update. But this duplication could also be considered bad style.
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Integrity Control (4)

• Thus constraint checks in the DBMS basically give

a second level of protection against:

� application programs that contain bugs,

� application programs that contain holes,

It is easy to overlook that a specific update might violate a certain
constraint, although there is a formal theory that can compute all
possible “critical updates” from the given constraint formula.

� users that have direct SQL access to the DBMS,

� unexpected interference of concurrent users.

• Declarative constraints are also a formal and con-

cise specification for the checks in the software.
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Integrity Control (5)

• If a constraint is not declaratively supported by the

DBMS, triggers can be used to enforce it.

Triggers are procedures stored in the database that the DBMS au-
tomatically calls when a certain event has happend, e.g. when an in-
structor was inserted. Triggers often consist of the three parts “event,
condition, action”.

• One can also define elementary transactions as sto-

red procedures in the database and change the DB

state only via these stored procedures.

Then checks do not have to be repeated in the application programs,
it is more likely that checks are not forgotten, and they are more
clearly separated from the user interface.
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Integrity Control (6)

• The SQL-92 standard would permit to specify the

constraint declaratively (“CREATE ASSERTION”).
This is not implemented in any DBMS I know. However, DBMS ven-
dors now feel some pressure from their customers to offer more sup-
port for integrity enforcement.

• The constraint needed in the example (no instruc-

tor without course) is similar to a foreign key.
Like a foreign key it requires the inclusion of attribute values: Every
combination of FNAME, LNAME values in the INSTRUCTORS table
must also appear in the COURSES table.

• But it is no foreign key since the referenced attri-

bute combination is no key.

Stefan Brass: Datenbanken II A Universität Halle, 2007



4. Logical Design I 4-51

Integrity Control (7)

• Because of these problems, one can of course ask:

“Should I use such cardinality specifications?”

• But if in the real world, there cannot be instructors

that do not teach courses, the ER-schema with

optional participation would be simply wrong.

Of course, as for any constraint, one must always ask: Could there
possibly be exceptional situations that would permit an instructor
without courses? In that case, the mandatory participation would be
wrong, because constraints do not permit any exceptions.

• Clearer example: Invoices without line items really

do not make sense.
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Integrity Control (8)

• When defining the conceptual schema, one should

not think about limitations of current technology.

• That is the task of logical (and physical) design.

• The problem can be solved (e.g. with checks in

application programs and by searching for integrity

violations with a query at least once a month).

• When technology advances, the same conceptual

schema can be translated in a nicer way.

More tasks are given to the system, less is explicitly programmed.
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Integrity Control (9)

• Defining the right cardinalities is also important be-

cause it influences the application programs:

� If there cannot be instructors without courses,

the application program to insert an instructor

must also insert at least one course.

Probably, the application should permit to insert more than one
course, since there is no real reason to select one specific out of
the many courses an instructor might teach.

� Otherwise, there will probably be different pro-

grams to insert instructors and to insert courses.
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Integrity Control (10)

• One can analyse ER-diagrams for elementary tran-

sactions as given by the cardinalities.

• If these should turn out to be too complicated, one

should think again about the minimal cardinalities.

• For such an approach, it would make sense to define

already on the ER-level

� Which attributes are updatable?

� Which entities are deletable?

� Which entities can be independently inserted?
Can an existing order be extended by new positions?

Stefan Brass: Datenbanken II A Universität Halle, 2007



4. Logical Design I 4-55

Many:Many Relationships (1)

• Optional participation (minimum cardinality 0) is

the only form of many-to-many relationship that

can be implemented with an “intersection table”

and the standard constraints supported in SQL.

• Suppose students must take at least one course:

STUDENT
# SSN
* FNAME
* LNAME
◦ EMAIL

'

&

$

%

H
HH

���

registered for
�

��
HHH

taken by

COURSE
# CRN
* TITLE

'

&

$

%
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Many:Many Relationships (2)

• As before, if one has mandatory participation, one

uses the more general translation, and adds a cons-

traint (to be checked e.g. in application programs).

• If a student can register for at most three courses,

one could discuss also the following solution:

STUDENTS(SSN, FNAME, LNAME, EMAILo,

CRN1 →COURSES, CRN2o→COURSES,

CRN3o→COURSES)

• However, this significantly complicates queries (one

will need a lot of “OR” and “UNION”).
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Many:Many Relationships (3)

• Even in the general case, there are tricky solutions

that would formally solve the problem (mandatory

participation in a many-to-many relationship).

If a student has to register for at least one course, it would be possible
to store the CRN for the first course redundantly in the STUDENTS
table and then one could declare SSN and CRN in STUDENTS as a
foreign key referencing REGISTERED FOR, but this is at least very
ugly (one would also get severe problems inserting any data). One
could also leave the foreign key out and take in all queries the union
of the registration in the STUDENTS table and the registrations in
the REGISTERED FOR table.

• However, such strange solutions lead to complica-

ted programs and possibly errors.
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Overview

1. Basic Schema Translation

2. Limitations, Integrity Control

3. Weak Entity Types

'

&

$

%
4. Subclasses

5. Special Cases, Final Steps
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Weak Entity Types (1)

• When weak entities are translated, the “borrowed”

key attributes of the parent entity must be added.

BUILDING
# NAME
◦ YEAR BUILT

'

&

$

%

home of
�

��
HHH

contained in

ROOM
# NUMBER
* TYPE
◦ CAPACITY

'

&

$

%
• The key of the “ROOMS” table will consist of the

building name and the room number.
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Weak Entity Types (2)

• The result of the translation is:

BUILDINGS(NAME, YEAR BUILTo)

ROOMS(NAME→BUILDINGS, NUMBER,
TYPE, CAPACITYo)

• I.e. the foreign key that is added to the weak entity

table in order to implement the relationship with

the parent entity type becomes part of the key.
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Weak Entity Types (3)

• Next, consider a weak entity type with more than

one parent (“Association Entity Type”):
'

&

$

%

STUDENT

#NAME
◦ EMAIL

author of

submitted by

���
HHH

'

&

$

%

EXERCISE

#NO
* MPOINTS

subject of

for

�
��

HHH

'

&

$

%

SOLUTION

*POINTS
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Weak Entity Types (4)

• The translation is done in the same way: The key

of the weak entity type now consists of the keys

of the two parent entity types (i.e. the two foreign

keys added to implement the relationships):

STUDENTS(NAME, EMAILo)

EXERCISES(NO, MPOINTS)

SOLUTIONS(NAME→STUDENTS,
NO→EXERCISES,
POINTS)

• Of course, any key attributes declared in the weak

entity type itself would be added.
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Weak Entity Types (5)

• Note that the translation result is exactly the same

as if we had used a relationship with an attribute:

Student

�
�

�
�Name

�
�
� �

�
�
�Email

@
@

@

(0, ∗)
�

���
���

HH
HHH

HH

solved ��
���

��

H
HHH

HHH

(0, ∗)

�
�

�
�Points

Exercise

�
�

�
�No

�
�
� �

�
�
�MPoints

@
@

@

• This demonstrates again that the two ER-schemas

are equivalent.
When one has to check two ER-constructs for equivalence, one can
try to translated them into the relational model. If the results are the
same, the ER-schemas are equivalent. The converse does not hold.
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Weak Entity Types (6)

• A weak entity can also be constructed over sever-

al steps. Consider a database schema for storing

multiple choice online tests:

TEST
# TID
* DESC

'

&

$

%

���
H

HH

QUESTION
# QNO
* TEXT

'

&

$

%

���
H

HH

ANSWER
# LETTER
* TEXT
* CORRECT

'

&

$

%
Each test consists of several questions. For each question, the student
has to check the correct answer among several alternatives. Within a
test, questions are identified by a number. For a given question, each
possible answer is identified by a letter (a, b, c).
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Weak Entity Types (7)

• Before a weak entity type can be translated, all its

parent entity types must be translated.

In the example, first TEST must be translated, then QUESTION,
then ANSWER.

• The reason is that in order to construct the prima-

ry key for a weak entity type, one must know the

primary key of its parent entity type(s).

• This also means that any cycles in the “parent of”

relation would give an ill-formed schema that has

no meaning and cannot be translated.
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Weak Entity Types (8)

• The result of the translation in the example is:

TESTS(TID, DESC)

QUESTIONS(TID→TESTS, QNO, TEXT)

ANSWERS((TID, QNO)→QUESTIONS,
LETTER, TEXT, CORRECT)

• ANSWERS contains a foreign key that references

its direct parent entity table QUESTIONS.

• This contains a foreign key referencing TESTS.

• It is logically implied that any TID value appearing

in ANSWERS also appears in TESTS.
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Overview

1. Basic Schema Translation

2. Limitations, Integrity Control

3. Weak Entity Types

4. Subclasses

'

&

$

%
5. Special Cases, Final Steps
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Subtypes/Specialization (1)

'

&

$

%

INSTRUCTOR

#NAME
∗ EMAIL'

&

$

%

FACULTY

∗TENURED

'

&

$

%

EXTERNAL

∗ADDRESS

'

&

$

%

COURSE

#CRN
∗ TITLE

teacher of
���
H

HH

taught by

'

&

$

%
COMMITTEE

#CNAME
HHH
�

��

member of
���
H

HH

composed of
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Subtypes/Specialization (2)

Method 1 (Table for the Supertype):

• One big relation is created that contains all attri-

butes of the supertype and of all subtypes.

Including possibly indirect subtypes.

• In the example, the result is:
INSTRUCTORS(NAME, EMAIL, TYPE,

TENUREDo, ADDRESSo)

• The column “TYPE” identifies to which subtype the

entity belongs, e.g. “F” for Faculty and “E” for Ex-

ternal: CHECK(TYPE = ’F’ OR TYPE = ’E’).
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Subtypes/Specialization (3)

• Example State:

INSTRUCTORS

NAME EMAIL TYPE TENURED ADDRESS

Brass sb@... F N

Spring spring@... F Y

Mundie mundie@... E CMU

• Attributes of subtypes are defined only for rows

corresponding to elements of the subtype.

• This means that the corresponding columns in the

table must permit null values.
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Subtypes/Specialization (4)

• With the following constraints one can make sure

that subtype attribute columns are really defined

only for the subtype:
CHECK(TYPE = ’F’ OR TENURED IS NULL)

CHECK(TYPE = ’E’ OR ADDRESS IS NULL)

• Conversely, if an attribute was not optional in the

ER-schema, one must add a CHECK-constraint to

make sure that the corresponding column is not

null for elements of this subtype:
CHECK(TYPE <> ’F’ OR TENURED IS NOT NULL)

CHECK(TYPE <> ’E’ OR ADDRESS IS NOT NULL)
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Subtypes/Specialization (5)

• Such constraints can be developed by thinking in

“if-then” rules:

If TYPE = ’F’ then TENURED IS NOT NULL

• Since SQL has no “if-then” condition, one must

use the equivalence of A → B to ¬A ∨B:

NOT (TYPE = ’F’) OR TENURED IS NOT NULL

• This can be simplified to

TYPE <> ’F’ OR TENURED IS NOT NULL

Since there are only two types in the example, TYPE <> ’F’ is equiva-
lent to TYPE = ’E’.
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Subtypes/Specialization (6)

• It might be simpler to all constraints in a single

formula in DNF (disjunctive normal form) with one

case per subclass:

CHECK( (TYPE = ’F’ AND TENURED IS NOT NULL

AND ADDRESS IS NULL)

OR (TYPE = ’E’ AND TENURED IS NULL

AND ADDRESS IS NOT NULL))

The parentheses inside the formula are not needed, since AND binds
stronger than OR, but they might improve the readability.

If an attribute is optional in a subclass, the corresponding IS NOT NULL

condition is simply left out in the case for that subclass.
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Subtypes/Specialization (7)

• It might be useful to declare views for the subtypes:

CREATE VIEW FACULTY AS

SELECT NAME, EMAIL, TENURED

FROM INSTRUCTORS

WHERE TYPE = ’F’

• Sometimes, the “TYPE” column is not really needed.

E.g. in the example, all instructors where “TENURED” is a null value are
external instructors.

• But it might be clearer to retain it. This might also

help to adapt the schema to additional subtypes.
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Subtypes/Specialization (8)

• With this method, relationships refering to the su-

pertype are no problem:

COURSES(CRN, TITLE, INST_NAME→INSTRUCTOR)

• Example State:

COURSES

CRN TITLE INST_NAME

11111 Database Management Brass

22222 DB Analysis&Design Brass

33333 Client-Server Spring

44444 Document Processing Mundie
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Subtypes/Specialization (9)

• Relationships with a subtype can only be translated

in the same way as a relationship to the supertype:

COMMITTEE_MEMBERS(CNAME→COMMITTEES,

FAC_NAME→INSTRUCTOR)

COMMITTEE_MEMBERS

CNAME FAC_NAME

PhD Admissions Spring

PhD Admissions Brass

• The table declaration does not prevent that an ex-

ternal instructor is entered as a committee member.
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Subtypes/Specialization (10)

• The standard constraints of the relational model

do not help in this case.

As mentioned before, one can run a query that finds violations from
time to time, one can do checks in application programs or stored
procedures, or one can use triggers. Note that a foreign key cannot
reference a view. One can hope that in future DBMS vendors will
implement more general constraints. In this case one needs some-
thing like a foriegn key that specifies in addition a condition on the
referenced tuple.

• If there are relationships on subclasses, one should

consider using one of the other translation methods

(or do the trick on the next page).
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Subtypes/Specialization (11)

• In the special case that one uses artificial keys

(i.e. numbers that one can assign), one can reserve

different ranges for the different subtypes.

• E.g. faculty members have IDs from 100 to 499,

external instructs have IDs from 500 to 999:

INSTRUCTORS

ID NAME EMAIL TYPE TENURED ADDRESS

101 Brass sb@... F N

102 Spring spring@... F Y

501 Mundie mundie@... E CMU
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Subtypes/Specialization (12)

• The column “TYPE” should now be removed, since

it is redundant.

Of course, one can define a view that reconstructs it. If one really
wants to retain it, one must add at least a CHECK constraint that
ensures that IDs are in the correct range for the instructor type.

• Some designers would leave part of the possible

range of IDs for future subtypes.
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Subtypes/Specialization (13)

• Now relationships defined on subtypes are no pro-

blem. Consider again:

COMMITTEE_MEMBERS(CNAME→COMMITTEES,

FAC_ID→INSTRUCTOR)

COMMITTEE_MEMBERS

CNAME FAC_ID

PhD Admissions 101

PhD Admissions 102

• This constraint ensures that only the subtype is

referenced: CHECK(FAC_ID BETWEEN 100 AND 499)
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Subtypes/Specialization (14)

• This method can be easily adapted for partial or

overlapping specialization:

� If specialization is partial, one simply has one

more TYPE value for elements of the supertype

that do not belong to any subtype.

Actually, partial specialization is never a problem: One can always
add an “Other” subclass.

� If specialization is overlapping, one uses instead

of the TYPE column one boolean column for each

subtype (e.g. IS_FACULTY, IS_EXTERNAL).
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Subtypes/Specialization (15)

Method 2 (Tables for the Subtypes):

• In this case, one table is created for each subtype.

It contains the attributes of the subtype plus all

inherited attributes.

• In the example, the result is:
FACULTY(NAME, EMAIL, TENURED)

EXTERNAL(NAME, EMAIL, ADDRESS)

• Since each entity of the supertype belongs to only

one subtype, no data is stored redundantly.

This method would not work for overlapping specialization.
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Subtypes/Specialization (16)

• Example State:

FACULTY

NAME EMAIL TENURED

Brass sb@... N

Spring spring@... Y

EXTERNAL

NAME EMAIL ADDRESS

Mundie mundie@... CMU

• This method does not need null values and the

corresponding CHECK-constraints like Method 1.
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Subtypes/Specialization (17)

• One can define a view for the supertype:

CREATE VIEW INSTRUCTOR(NAME, EMAIL) AS

SELECT NAME, EMAIL FROM FACULTY

UNION ALL

SELECT NAME, EMAIL FROM EXTERNAL

Without the view, queries will often be more complicated than with
the first method. In any case, queries refering to the supertype will
run a bit slower, although UNION ALL is only concatenation.

• Queries refering only to a subtype are slightly simp-

ler and will run slightly faster than with Method 1.

If there are subtypes that contain only a small fraction of the entities
of the supertype, queries to these subtypes will be significantly faster.
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Subtypes/Specialization (18)

• This method cannot enforce the uniqueness of keys

between subtypes: E.g. a faculty member and an

external instructor with the same name can exist.

The constraint that the values in the NAME columns of the tables
FACULTY and EXTERNAL must be disjoint is not one of the standard cons-
traints and cannot be specified (today) in the CREATE TABLE statement.

• If one can assign numbers as key values, one can

use CHECK constraints that enforce that the key va-

lue ranges in the two tables are disjoint.

E.g. FACULTY uses only IDs 100 to 499, EXTERNAL only 500 to 999.
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Subtypes/Specialization (19)

• For Method 2, relationships with a subtype are no

problem (since each subtype has its own table):

COMMITTEE_MEMBERS(CNAME→COMMITTEES,

FAC_NAME→FACULTY)

COMMITTEE_MEMBERS

CNAME FAC_NAME

PhD Admissions Spring

PhD Admissions Brass

• However, the translation of relationships with a su-

pertype is significantly more complicated.
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Subtypes/Specialization (20)

• Since there is no table for the supertype, one must

split foreign keys that are generated for relation-

ships with the supertype:
COURSES(CRN, TITLE, FAC_NAMEo→FACULTY,

EXT_NAMEo→EXTERNAL)

COURSES

CRN TITLE FAC_NAME EXT_NAME

11111 Database Management Brass

22222 DB Analysis&Design Brass

33333 Client-Server Spring

44444 Document Processing Mundie
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Subtypes/Specialization (21)

• Only one of the two foreign keys can be defined:

CHECK(FAC_NAME IS NULL OR EXT_NAME IS NULL)

• In addition, one must be defined (because the re-

lationship has mandatory participation):

CHECK(FAC_NAME IS NOT NULL

OR EXT_NAME IS NOT NULL)

• Queries become more complicated in this way.

It would be possible to hide these complications with another view
defined for COURSES that merges the two columns (using UNION ALL).
But in any case, query evaluation will be slower (with today’s query
optimizers). Of course, if the tables are small, this is no problem.
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Subtypes/Specialization (22)

• When the foreign key would be part of a primary key

(for many-to-many relationships or weak entities),

there are two options:

� Either one uses the splitting of foreign keys as

above and accepts null values in keys: This trans-

lation works only for some DBMS.

DBMS differ in whether they support UNIQUE-constraints for co-
lumns that can be null, and in the exact semantics for this. One
would need here that only exact copies are excluded. If necessa-
ry, one could replace the null value by a single “invalid” faculty
member or external instructor.
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Subtypes/Specialization (23)

• Translation of many-to-many and weak entity rela-

tionsships, continued:

� Or one splits the entire table: E.g. suppose that

instructors can suggest students for awards (i.e.

there is a many-to-many relationship between in-

structors and students).
AWARD1(NAME→FACULTY, SSN→STUDENTS)

AWARD2(NAME→EXTERNAL, SSN→STUDENTS)

• Because of these problems, one would probably use

one of the other methods for translating speciali-

zation in this case.
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Subtypes/Specialization (24)

• Method 2 can work also with partial specialization.
The trick is to add another subclass and works with any method.

• E.g. if there are instructors that are neither facul-

ty members nor external (e.g. PhD students), one

would simply add another table for them:
FACULTY(NAME, EMAIL, TENURED)

EXTERNAL(NAME, EMAIL, ADDRESS)

OTHER_INSTRUCTORS(NAME, EMAIL)

• The OTHER_INSTRUCTORS table contains only those

entities that are direct instances of the supertype,

it does not contain the subtype entities.
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Subtypes/Specialization (25)

Method 3 (Tables for Supertype and Subtypes):

• Method 3 creates

� a table for the supertype that contains all en-

tities, including those of subtypes, but has only

columns for the supertype attributes, and

� one table for each subtype which contains co-

lumns for the attributes that are specific to the

subtype, plus the key of the supertype.
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Subtypes/Specialization (26)

• In the example, the result is:

INSTRUCTORS(NAME, EMAIL)

FACULTY(NAME→INSTRUCTORS, TENURED)

EXTERNAL(NAME→INSTRUCTORS, ADDRESS)

• One must use a join to get all attributes of an

entity together (the same entity is now represented

in two different tables):

CREATE VIEW FACULTY2(NAME, EMAIL, TENURED) AS

SELECT I.NAME, I.EMAIL, F.TENURED

FROM INSTRUCTORS I, FACULTY F

WHERE I.NAME = F.NAME
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Subtypes/Specialization (27)

• Example State:

INSTRUCTORS

NAME EMAIL

Brass sb@...

Spring spring@...

Mundie mundie@...

FACULTY

NAME TENURED

Brass N

Spring Y

EXTERNAL

NAME ADDRESS

Mundie CMU
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Subtypes/Specialization (28)

• For Method 3, relationships defined on the super-

type and relationships defined on the subtypes are

both no problem.

• A problem of this method is that it really supports

only partial, overlapping specialization.

Nothing prevents that instructors are also entered in one or both of
the two subtype tables (needs a general constraint). With key value
ranges, at least disjoint specialization can be enforced.

• Also the join can be a performance problem.

If one uses artificial numbers as keys, the join will be basically always
necessary whenever one accesses the subtype.
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Subtypes/Specialization (29)

Method 4 (Variant of Method 3 Using an “Arc”):

• Method 4 creates a table for the supertype and one

table for each subtype (like Method 3).

• Artificial keys are added to the subtype tables.

• Foreign keys are added to the supertype table (one

for each subtype).

• So the direction of the foreign keys is the real dif-

ference to Method 3.

In Method 3, they point from the subclass tables to the superclass
table, here from the superclass table to sublass tables.
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Subtypes/Specialization (30)

• In the example, the result is:

INSTRUCTORS(NAME, EMAIL,

FNOo→FACULTY, ENOo→EXTERNAL)

FACULTY(FNO, TENURED)

EXTERNAL(ENO, ADDRESS)

• Check constraints are needed to ensure that exactly

one of the two columns FNO and ENO are defined (not

null) in INSTRUCTORS.

By adapting this constraint, Method 4 also works with partial or over-
lapping specialization.

• In this way, the problem of Method 3 is avoided.
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Subtypes/Specialization (31)

• Relationships on supertype and subtypes can be

represented.
Although it is a bit strange that relationships defined on the subtypes
now have to use the artificial numbers.

• This method does not prevent rows in the subtype

tables without entry in the supertype table.
Such rows are meaningless: One does not even have the name of the
instructor. One possibility would be to treat such rows as “not really
present”. Practically all queries have to join the subtype tables with
the supertype table, and then the problematic rows are filtered out.
From time to time, one can simply remove such rows. The drawback
of this solution is that one does not get an error message if one enters
such a row. But if all queries do the join, bad rows are never used.
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Subtypes/Specialization (32)

Comparison:

• Method 1 is probably most often chosen, but:

� If one cannot assign key value ranges, and there

are relationships with subtypes, it does not work.

� The many null values might be a problem.

Real world designers are used to null values. One should not leave
out the CHECK-constraints that restrict them.

� If small subtypes (few rows) of a large supertype

(many rows) are accessed often, Method 1 might

have a performance problem.

Powerful DBMS offer partition features that solve this problem.
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Subtypes/Specialization (33)

• Method 2 is good when one accesses the subtypes

often, but:

� Relationships with the supertype are a problem,

especially if these are many-to-many relation-

ships or weak entity relationships.

� Uniqueness of keys cannot be enforced between

subtypes unless one can assign key value ranges.

� Some people don’t like UNION in their queries.
It is a bit uncommon, but one can hide it in views. UNION ALL

should really run fast. Modern optimizers should be able to work
with it, old might produce not very efficient query execution plans.
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Subtypes/Specialization (34)

• Method 3 can easily represent relationships on su-

pertypes and subtypes, but:

� This method works only for partial specialization.

� The joins are a performance problem.

• Method 4 is similar, and also has problems:

� Integrity violations are possible (partial entity da-

ta), but the invalid data is never used.

� Joins are needed as in Method 3.

• There is no perfect solution!
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Overview

1. Basic Schema Translation

2. Limitations, Integrity Control

3. Weak Entity Types

4. Subclasses

5. Special Cases, Final Steps
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Unnecessary Tables (1)

• Sometimes, tables generated for entity types might

seem unnecessary. E.g. consider this example:'

&

$

%

FACULTY

#NAME
∗ EMAIL

HHH
���

member of
���
HHH

composed of

'

&

$

%

COMMITTEE

#CNAME

• The translation result is:
FACULTY(NAME, EMAIL)

COMMITTEES(CNAME)

COMMITTEE_MEMBERS(CNAME→COMMITTEE,

FAC_NAME→FACULTY)
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Unnecessary Tables (2)

• The entire contents of the table COMMITTEES can be

derived from the table COMMITTEE_MEMBERS:

SELECT DISTINCT CNAME

FROM COMMITTEE_MEMBERS

• This works because of the mandatory participation

of COMMITTEE in the relationship.

Therefore, all committee names must be present in COMMITTEE_MEMBERS.

• It is also important in this example that the entity

type COMMITTEE has only the key attributes, and

no additional information.
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Unnecessary Tables (3)

• Formally, the table COMMITTEES is indeed redundant

and one must discuss to delete it.

• However, deleting the table changes the behaviour

of updates:

� With the table, COMMITTEE entities are expli-

citly created by inserting a row into COMMITTEES.

� Without the table, COMMITTEE entities are

only implicitly created by inserting a member of

a new committee.
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Unnecessary Tables (4)

• Therefore, when inserting a committee member,

a typing error in the committee name would be

detected with the table, but maybe not without it.

• However, this also depends on the application pro-

gram: Even without the table, one could distinguish

� Create a new committee and add its first mem-

ber (e.g. the chairman).

� Add a member to a committee (with all currently

existing committees shown in a selection box).
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Unnecessary Tables (5)

• With the COMMITTEES table, one has the problem how

to enforce the mandatory participation (see above).

• The entire problem would vanish if it turns out that

� there can be committees without members (at

least temporarily or in exceptional situations), or

� some other information has to be stored about

committees.

It would be even interesting if such changes in the requirements
can be expected for future extensions.

• Again, there is no unique, perfect solution.
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Final Step: Check (1)

• At the end, one should check the generated tables

to see whether they really make sense.

• E.g. one should fill them with a few example rows.

This is also a useful part of the documentation.

• A correct translation of a correct ER-schema re-

sults in a correct relational schema.

• However, a by-hand translation can result in mista-

kes, and the ER-schema can contain hidden flaws.
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Final Step: Check (2)

• Think a last time about renaming tables/columns.
Later changes will be difficult: The table/column names are already
used in the application programs, and the DBMS might not permit
to rename tables or columns (without deleting and recreating them).

• Check for normal forms (see Chapter 7).
This is not an automatic step: It requires that the designer thinks
about possible functional dependencies.

• If there are tables with the same key, one might

consider to merge them.
But this is not always the right thing to do: E.g. Methods 2–4 for
translating specialization generate such tables, merging them would
move back to Method 1.
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