
Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Database Systems IIB:
DBMS-Implementation

Chapter 13: Query Evaluation

Prof. Dr. Stefan Brass
Martin-Luther-Universität Halle-Wittenberg

Wintersemester 2021/22

http://www.informatik.uni-halle.de/˜brass/dbi21/

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-1 / 86

http://www.informatik.uni-halle.de/~brass/dbi21/

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Objectives

After completing this chapter, you should be able to:

explain what a query evaluation plan (QEP) is.

explain pipelined evaluation and why sorting needs
temporary (disk) space.

explain different algorithms for implementing joins.
Especially nested loop join and merge join.

read and explain Oracle QEPs.
If a query performs poorly, you need to be able to understand why.

develop different query evaluation plans for a given query
and assess their merits.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-2 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Contents

1 Query Evaluation Plans

2 Sorting

3 Algorithms for Joins

4 Operators in Oracle QEPs

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-3 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Introduction (1)

A query evaluation plan (or “execution plan”) QEP is a
program for an abstract machine (interpreter) inside the
DBMS.

Another name is “access plan” (the DBMS has to decide how to access the
rows, e.g. whether to use an index).

QEPs are internal representations of the query produced
by the query optimizer.

By executing the QEP, the query result is computed. Whereas SQL is
declarative, QEPs describe a concrete way for evaluating teh query.

In most systems, QEPs are similar to relational algebra
expressions (very system dependent).

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-4 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Introduction (2)

In this chapter, we use a standard example database from
Oracle about employees and departments:

EMP(EMPNO, ENAME, JOB, SAL, MGR→EMP, DEPTNO→DEPT)
DEPT(DEPTNO, DNAME, LOC)

Consider the following SQL query:
SELECT ENAME, DNAME
FROM EMP, DEPT
WHERE EMP.DEPTNO = DEPT.DEPTNO
AND JOB = 'MANAGER'

In relational algebra, this is:
πENAME, DNAME

(
σJOB=’MANAGER’(EMP) DEPT

)
Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-5 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Introduction (3)

Complex relational algebra expressions are best displayed
as “operator trees”:

πENAME, DNAME

σJOB=’MANAGER’

EMP

DEPT

This shows the flow of data. One can view relations/tuples as being
pushed from the base relations in the leaf nodes through the relational
algebra operators towards the root, where the final result is computed.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-6 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Examples of Oracle QEPs (1)

1
MERGE JOIN

[EMP.DEPTNO = DEPT.DEPTNO]

2
SORT
(JOIN)

4
SORT
(JOIN)

3 TABLE ACCESS
(FULL)
DEPT

5 TABLE ACCESS
(FULL) EMP

[JOB = ’MANAGER’]

(Oracle does not show the small annotations in [. . .].)

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-7 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Examples of Oracle QEPs (2)

1
NESTED LOOPS
[→ EMP.DEPTNO →]

2 TABLE ACCESS
(FULL) EMP

[JOB = ’MANAGER’]

3 TABLE ACCESS
(BY ROWID)

DEPT

CREATE UNIQUE INDEX I_DEPT
ON DEPT(DEPTNO)

4 INDEX
(UNIQUE SCAN)

I_DEPT
[DEPT.DEPTNO = EMP.DEPTNO]

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-8 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

QEPs vs. Relational Algebra

Some typical differences to relational algebra are:

There are different implementations of the same
relational algebra operator.

E.g. “MERGE JOIN” is a special way to evaluate a join.

An implementation has to work with lists of tuples
instead of relations (sets of tuples).

E.g. sorting and duplicate elimination are done explicitly.

Indexes and ROWIDs appear explicitly.

Some operations are combined.
E.g. the full table scan operator can also do a selection, and the
projection does not appear explictly.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-9 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Viewing Oracle QEPs (1)

First, create a table “PLAN_TABLE” in which Oracle will
store information about the QEP.

The table must exist under the account of each user who wants to view
QEPs. It has prescribed columns, see slide 13-12 for details.

The simplest way to do this is to execute the script
$ORACLE_HOME/rdbms/admin/utlxplan.sql

Then enter the following command in SQL*Plus:
SET AUTOTRACE ON EXPLAIN

Then Oracle will show information about the QEPs for all following queries
(not all details, only the structure). If one logs out from SQL*Plus, the
AUTOTRACE is forgotten, but the PLAN_TABLE still exists.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-10 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Viewing Oracle QEPs (2)

The output you get from AUTOTRACE is not in graphical
form as shown above, but in textual form:

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE
1 0 MERGE JOIN
2 1 SORT (JOIN)
3 2 TABLE ACCESS (FULL) OF ’DEPT’
4 1 SORT (JOIN)
5 4 TABLE ACCESS (FULL) OF ’EMP’

The first number identifies the tree node (shown above in the upper left
corner), the second number is the parent node.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-11 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Details: Plan Table (1)

EXPLAIN PLAN command:

An alternative to “SET AUTOTRACE ON” is to use
EXPLAIN PLAN FOR 〈SQL QUERY〉

Then Oracle prints only “Explained”. It does not execute the query and
does not automatically show the QEP. But information about the QEP is
stored in the PLAN_TABLE (can be retrieved with SQL). The rows should
normally be deleted before the next EXPLAIN PLAN.

The PLAN_TABLE can contain rows for several QEPs,
then one should use e.g.

EXPLAIN PLAN SET STATEMENT_ID = ’MyFirstQuery’
FOR SELECT ... FROM ... WHERE ...

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-12 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Details: Plan Table (2)

The PLAN_TABLE contains one row for each node in the
QEP(s) stored in it.

More precisely, not the QEP is stored in it, but only some information
about the general QEP structure. Oracle does not show all details of the
QEP (e.g. selection conditions).

Columns of the PLAN_TABLE:

STATEMENT_ID: Used to distinguish the rows belonging
to execution plans for different queries.

Normally the PLAN_TABLE contains only one plan and STATEMENT_ID

is null. But see SET STATEMENT_ID above.

TIMESTAMP: Time when EXPLAIN PLAN was issued.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-13 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Details: Plan Table (3)

Columns of the PLAN_TABLE, continued:

The following three columns describe the tree structure
of the QEP: Which node gets input from which other
node?

ID: Number which identifies this node in the tree.

PARENT_ID: ID of the parent node.
The parent node gets input from this node.

POSITION: Order of child nodes from left to right.

REMARKS: Normally null (can be set with UPDATE).

OPTIMIZER: Current mode of the optimizer.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-14 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Details: Plan Table (4)

Columns of the PLAN_TABLE, continued:

The following columns describe operations.

OPERATION: E.g. “TABLE ACCESS”, “MERGE JOIN”.

OPTIONS: E.g. “FULL” for operation “TABLE ACCESS”.

OBJECT_OWNER, OBJECT_NAME: Identifies the table or
index used in the operation.

Null for operations which get input only from their children.

OBJECT_INSTANCE: Position of table in the FROM-list.
E.g. useful if there are two tuple variables over one table.

OBJECT_TYPE: “UNIQUE”/“NON-UNIQUE” for indexes.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-15 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Processing of QEPs (1)

A QEP is a tree with operations attached to nodes.

Every node computes a relation which is passed as input
to its parent node (up in the tree).

The relation computed by the root node is returned to
the user as the answer to the given SQL query.

The leaf nodes access tables or indexes to compute their
relation.

Operations in other nodes process or combine relations
which they get from their child nodes.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-16 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Processing of QEPs (2)

Such a tree representation is known for arithmetic expressions.
For example: (x − y) + 5 ∗ z

+

−

x y

∗
5 z

Arithmetic expressions are usually compiled by using
registers as temporary storage:

R1 := x - y;
R2 := 5 * z;
R1 := R1 + R2; // R1 contains now result

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-17 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Processing of QEPs (3)

It would be possible to

compute every operation at once completely,

store the result in a temporary relation, and

let the parent operation read this relation.

This corresponds to the compilation of arithmetic expressions
with registers as temporary storage for intermediate results:

R1 := σJOB=’MANAGER’(EMP);
R2 := R1 DEPT;
R3 := πENAME, DNAME(R2);
print R3;

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-18 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Processing of QEPs (4)

However, in this way a lot of memory is needed for the
intermediate results.

Sometimes intermediate results are so large that they
have to be written to disk and then read again.

But one can eliminate nearly all temporary storage since
most operations work “tuple by tuple”.

Sorting is an exception (see next section).

In the example, when the join has computed some tuple,
one can immediately compute the projection result for
that tuple (instead of first storing it).

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-19 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Processing of QEPs (5)

Most operations compute tuples only on demand (when
the parent node needs them), and only one tuple at a time.

E.g. the join node requests a tuple from the selection node. In order to
satisfy the request, it requests a tuple from the relation EMP and checks the
condition JOB=’MANAGER’. If the condition is satisfied, it returns the tuple
and is done. If not, it requests another tuple from the relation EMP.

Thus, tuples flow immediately from the child to the
parent, even before the child has computed the complete
result.

This is called “Pipelined/Lazy Execution”.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-20 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Pipelined Evaluation: Interface (1)

Interface of QEP Nodes (Example):

The interface is very similar to an SQL cursor.
One opens the relation that is the result of this operation, fetches every
tuple in a loop, and closes it. (Other names:“scan”, “iterator”).

In object-oriented terms, there is an abstract class
QEP_Node, with subclasses for every kind of operator.

E.g. QEP_Node_Selection or QEP_Node_Merge_Join.

Constructor: This creates a new QEP node.
The parameters depend on the type of operation.

E.g. a the constructor for QEP_Node_Selection needs the child QEP node
and the selection condition.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-21 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Pipelined Evaluation: Interface (2)

open: Open input.
This method may have parameters (depending on the type of operation).
E.g. the search values for an index scan.
In this way, Information can also flow down in the tree.

next: Advance input to next tuple.
Returns false if end of input.

attr(i): Value of i-th attribute of current tuple.
This returns a pointer to the attribute value. In this way we avoid
constructing an entire new tuple for the result.

close: Close input. It may then be opened again.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-22 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Pipelined Evaluation: Interface (3)

Less common operations:

save/restore: Remember the current position in the
stream of result tuples / switch back to it.

Needed for merge join if duplicate values on both sides (× for subset).

back: Switch back to previous result tuple.
This operation is inverse to next. Needed for zig-zag nested loop join.

num_attrs: Number of attributes in the result.

size/cost: Estimates for number of tuples in the result
and the runtime needed for computing them.

This is useful for query optimization.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-23 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Example: Selection (1)

Suppose we want to implement a simple selection of the
form σAttr = Val(Input).

In a real system we must be able to pass any condition on tuples (with ¬,
∨, ∧ and <, >, like, is null, . . .).

QEP_Node_Selection(Input, AttrNo, Val):
The constructor stores the three parameters in instance
variables (attributes) of this object.

open():
Input->open(); // Simply pass to child node

close():
Input->close();

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-24 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Example: Selection (2)

next():
bool End_of_Input;
End_of_Input = Input->next();
while(!End_of_Input

&& Input->attr(AttrNo) != Val)
End_of_Input = Input->next();

return(End_of_Input);

attr(i):
return(Input->attr(i));

num_attrs():
return(Input->num_attrs());

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-25 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Contents

1 Query Evaluation Plans

2 Sorting

3 Algorithms for Joins

4 Operators in Oracle QEPs

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-26 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Temporary Storage (1)

Not all operations can compute their results “on demand”.

E.g. a sort operation needs to see all input tuples before
it can return the first result tuple.

Otherwise it is possible that a tuple which is earlier in the sort order is still
to come.

Thus, a sort operation needs temporary space for storing
all input tuples.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-27 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Temporary Storage (2)

Of course, the sort operation has the same external
interface as all other QEP nodes.

open, next, close, . . .

However:

During the open, it will already read and sort all its
input tuples (i.e. the real work is done here).

Then later requests for the next result tuple will be
answered from the intermediate storage.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-28 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Temporary Storage (3)

Sometimes it would also be good to materialize other
intermediate results which have to be read more than
once (e.g. in a nested loop join).

Some systems have a special operator for doing this (“Bucket”). But
Oracle seems to use intermediate space only for sorting.

In Oracle, the maximal size of temporary storage that a
single sort operation can request in memory is set by the
initialization parameter SORT_AREA_SIZE.

If the space needed for sorting is larger, Oracle will use
temporary segments on disk.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-29 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Temporary Storage (4)

The current value of this parameter is shown with:
SELECT VALUE
FROM V$PARAMETER
WHERE NAME = 'sort_area_size';

On our UNIX systems, the default is 65536 Bytes.

The parameter can be changed with
ALTER SESSION SET SORT_AREA_SIZE = 131072;

The memory is taken from the Program Global Area (PGA), i.e. inside the
dedicated server process, not from the SGA. However, in the multithreaded
server configuration, it is taken from the SGA.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-30 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Temporary Storage (5)

After the sort is done, the sorted rows must be
temporarily stored until they are fetched.

SORT_AREA_RETAINED_SIZE controls how much memory
can be used for this purpose.

By default, this parameter is the same as SORT_AREA_SIZE. But if memory
is scarce, it should be used for running sorts rather than afterwards when
the rows only wait to be fetched.

There are more initialization parameters controlling the
sorting.

SELECT NAME, VALUE, DESCRIPTION FROM V$PARAMETER

WHERE NAME LIKE ’%sort%’

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-31 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Temporary Storage (6)

Temporary segments can be allocated in any tablespace,
but it is better to use a special “temporary tablespace”.

The storage parameters for the temporary segments are inherited from the
tablespace in which they are allocated. INITIAL should be a multiple of
the SORT_AREA_SIZE plus one block for the segment header.

The tablespace used for temporary segments can be
defined separately for each user.

See CREATE USER statement. It can be changed with ALTER USER.

Information about temporary segments is available in
V$SORT_SEGMENT and V$SORT_USAGE.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-32 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Performance Statistics (1)

How many sorts in the current session were done in
memory? How many on disk? And how many rows were
sorted?

SELECT X.VALUE, Y.NAME
FROM V$SESSTAT X, V$STATNAME Y, V$SESSION Z
WHERE X.STATISTIC# = Y.STATISTIC#
AND Y.NAME LIKE '%sort%'
AND X.SID = Z.SID AND Z.USERNAME = USER

There is also a table V$SYSSTAT which contains accumulated counts since
the DBMS was last started. These statistics are also contained in the
report produced by utlbstat.sql/utlestat.sql (see above).

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-33 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Performance Statistics (2)

After SET AUTOTRACE ON, SQL*Plus prints not only the
QEP for every query, but also performance statistics
(including information about sorts).

SET AUTOTRACE ON STATISTICS prints only the statistics.

The role PLUSTRACE gives access to some dynamic
performance views. It must be granted to all users who
should be able to use this feature.

It contains access to sys.v_$sesstat, sys.v_$statname,
sys.v_$session. To declare this role, the DBA (user SYS) must execute
the script plustrce.sql. It is located in $ORACLE_HOME/sqlplus/admin.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-34 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Sort Algorithm (1)

Sorting is needed quite often, and it is a relatively
expensive operation.

Thus, many thoughts were put into developing an
efficient sort algorithm, and new improvements are still
proposed in the literature.

Sorting with external memory is usually based on the
merge sort algorithm, which you should know from your
data structures course.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-35 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Sort Algorithm (2)

Mergesort is based on the notion of “runs”, which are
already sorted sequences of elements.

E.g. when you want to sort n elements, you start with n
runs of length 1.

Then you always merge two such sorted sequences
(“runs”) of length l to one sorted sequence of length 2 ∗ l .

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-36 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Sort Algorithm (3)

The merging can be done in linear time: You look at the
first element of both runs, take the smaller one and put it
into the output. Repeat this until both runs are empty.

Since the size of the runs doubles every time, you need a
logarithmic number of iterations until you have only one
run which contains all elements. → Complexity
O
(
n ∗ log(n)

)
.

You can implement it with four files: Two for the input runs and two for
the output runs. Output runs are written to the two files in alternating
fashion so that they contain the same number of runs.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-37 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Example (Basic Mergesort)
Input (16 runs of length 1):

12 5 9 20 16 18 3 7 17 10 2 25 13 15 6 8

After first step (8 runs of length 2):
5 12 9 20 16 18 3 7 10 17 2 25 13 15 6 8

Second and third step:
5 9 12 20 3 7 16 18 2 10 17 25 6 8 13 15

3 5 7 9 12 16 18 20 2 6 8 10 13 15 17 25

After fourth step (1 runs of length 16: final result):
2 3 5 6 7 8 9 10 12 13 15 16 17 18 20 25

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-38 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Example (Merging of Runs)

One first compares the first elements of both runs:

5 9 12 20 3 7 16 18

3 is smaller, so it is written to the output and the current
position in the second file is moved forward:

5 9 12 20 3 7 16 18 → 3

Now 5 is smaller, and written to the output:

5 9 12 20 3 7 16 18 → 3 5

And so on (exercise). When the end of file is reached on one side, the rest
of the other side is written to the output.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-39 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Sort Algorithm Optimizations

There are many optimizations to Mergesort, e.g.:

One tries to produce large initial runs by sorting chunks
of the given elements in the available main memory. The
longer the initial runs, the less iterations are needed later.

Once a block of such an initial run was written to disk, one can
reuse the memory page for more input elements. New elements
which happen to be greater than the greatest element already
written to the output can still become part of the current run.

If one has k buffer frames available during the merge
phase, one merges k − 1 runs instead of only 2 runs.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-40 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Contents

1 Query Evaluation Plans

2 Sorting

3 Algorithms for Joins

4 Operators in Oracle QEPs

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-41 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Nested Loop Join (1)

The nested loop join

looks at all combinations of tuples from both relations,
This is done (in the most simple version) by an outer loop over the
tuples of the left relation, in which an inner loop on the right
relation is nested, see the algorithm on the next slide.

evaluates the join condition, and

returns those combinations for which the condition is true.

R
Ai =Bj

S is evaluated similarly to σAi =Bj (R × S) but
without materializing the intermediate result of ×.

Our pipelined evaluation anyway would not materialize the result,
but we nevertheless save many function calls.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-42 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Nested Loop Join (2)

Without the pipelined evaluation, the algorithm for
R

Ai =Bj
S looks as follows:

(1) foreach tuple t = (d1, . . . , dn) in R do
(2) foreach tuple u = (e1, . . . , em) in S do
(3) if di = ej then
(4) output t ◦ u = (d1, . . . , dn,
(5) e1, . . . , em);
(6) fi;
(7) od;
(8) od;

Thus the name “nested loop”.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-43 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Nested Loop Join (3)

If both relations have approximately n tuples each,
n2 tuple combinations are checked.

Thus, the nested loop join needs quadratic time,
i.e. its complexity is O(n2).

The merge join (see below) is asymptotically faster:
It has complexity O(n ∗ log(n)).

However, the nested loop join works for arbitrary join
conditions, not only equality conditions.

The merge join and other specialized join methods work only with equality
conditions like A = B.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-44 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Nested Loop Join: Optimizations (1)

If the left (outer) relation has ` tuples, the right (inner)
relation will be read ` times.

This can be improved by reading as many as possible
tuples from the left relation into memory, and then doing
the join with all these tuples during one pass through the
inner relation.

If n tuples from the left relation fit into the available memory, the right one
will be read only `/n times.

It is better to use the smaller relation as left (outer) relation.
It must be read once in addition to the ` ∗ r or r ∗ ` tuples read in the inner loop.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-45 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Nested Loop Join: Optimizations (2)

If one of the two relations is small enough to fit into main
memory, each relation must be read only once from disk.

Since the smaller relation is used as outer relation and the outer relation
gets all available buffer space, this happens automatically in the above scheme.
Note that still ` ∗ r tuple combinations have to be considered, only the
number of tuples read from disk shrinks to ` + r .

Even if only one buffer frame can be used for the inner
relation, it should be read forward and backward in
alternating fashion (zig-zag). This gives one block access
less in every pass (starting from the second).

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-46 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Nested Loop Join: Optimizations (3)

If the left (outer) input relation is sorted, the unoptimized
version would protect the sorting. The optimized version
destroys it.

If the other (unsorted) relation fits into main memory, one can use it as
inner relation to protect the sorting on the outer one.

Since there are multiple passes through the inner input
relation, it might be useful to store it explictly (not using
pipelined evaluation) as compact as possible.

This discussion should demonstrate that even for a
relatively simple operation like the nested loop join,
there are many optimization tricks.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-47 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Merge Join (1)

The merge join works very similar to merge sort.

Both input relations must be sorted on the join attribute.

Then the algorithm does a parallel pass on both relations:

It advances always the scan with the smaller value in the
join attribute.

That value cannot have a join partner on the other side, since all
following values there will be even bigger than the current one.

In this way it finds all matches (equal values).

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-48 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Merge Join (2)

R
Ai =Bj

S:

(1) open(R); open(S);
(2) read t = (d1, . . . , dn) from R;
(3) read u = (e1, . . . , em) from S;
(4) while not eof(R) and not eof(S) do
(5) if di < ej then
(6) read t = (d1, . . . , dn) from R;
(7) else if di > ej then
(8) read u = (e1, . . . , em) from S;
(9) else /* di = ej */

(10) output t ◦ u = (d1, . . . , dn, e1, . . . , em);
(11) read u = (e1, . . . , em) from S;

This program code assumes that Ai is a key in R. Therefore, after a match is
found, the other side S is advanced for a possible further match.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-49 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Example (Merge Join)

Selection on EMP
EMPNO ENAME DEPTNO
7782 CLARK 2
7839 KING 2
7934 MILLER 2
7369 SMITH 3
7876 JONES 3
7788 SCOTT 3
7566 ADAMS 6
7499 ALLEN 7
7654 MARTIN 7

DEPT
DEPTNO DNAME
1 ACCOUNTING
2 RESEARCH
3 SALES
4 OPERATIONS
7 SHIPPING

ADAMS violates the foreign key, but makes the example more interesting.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-50 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Merge Join (4)

The time needed for the join itself is linear in the size of
the two relations.

We assume again that the join attribute on one side is a key of that
relation, so there are no duplicate values on that side. If duplicate values
were allowed on both sides, the extreme case (a single value repeated
n times) would always lead to quadratic complexity: This would simply be
a kartesian product.

If we have to sort them, the total complexity is
O
(
n ∗ log(n)

)
.

In comparison, the runtime (CPU time) of the nested loop join is always
quadratic in the sizes of the input relations. The number of block accesses
is only quadratic if neither one fits into memory. However, the merge join
works only for equality conditions.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-51 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Index Join

Suppose we have to compute R
A=B

S and that there is
an index on S(B).

Then we can loop over all tuples in R and locate the
corresponding tuples from S via the index.

Since every access to S via the index potentially needs one
or more block accesses, this is only useful if R contains
only relatively few tuples (less tuples than S has blocks).

Otherwise the merge sort is better.
The index is also useful if S is small and will be completely buffered,
but then there probably should be no index.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-52 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Hash Join (1)

The idea of the hash join is to partition both relations
into small pieces by applying a hash function to the join
attribute.

Possible matches can only occur between tuples with the
same hash value. Only such tuple combinations must be
tried, not all tuple combinations.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-53 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Hash Join (2)

The partitioning is done such that the smaller parts fit
into main memory.

If needed, the partitioning step is iterated.

Then a hash table is built in memory for each such
partition and an index join is done with the corresponding
partition of the other table.

The result is the union of the joins of the pairs of partitions
with the same hash value.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-54 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Hash Join (3)

Example: hash(row) =
{

1 if DEPTNO odd
2 otherwise

Selection on EMP
EMPNO ENAME DEPTNO
7369 SMITH 3
7499 ALLEN 7
7654 MARTIN 7
7788 SCOTT 3
7782 CLARK 2
7839 KING 2
7566 ADAMS 6
7934 MILLER 2

DEPT
DEPTNO DNAME
1 ACCOUNTING
3 SALES
7 SHIPPING
2 RESEARCH
4 OPERATIONS

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-55 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Contents

1 Query Evaluation Plans

2 Sorting

3 Algorithms for Joins

4 Operators in Oracle QEPs

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-56 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Optimizer Modes

Oracle has four possible optimizer modes (see next chapter):
RULE: Older optimizer which does not depend on
statistics about table sizes (rule-based optimizer).
FIRST_ROWS: Newer cost-based optimizer with the goal
to produce the first row fast (best response time).
ALL_ROWS: Newer cost-based optimizer with the goal to
produce the last row fast (best throughput).
CHOOSE: Use the cost-based approach at least one table
used in the statement was analyzed.

ALTER SESSION SET OPTIMIZER_MODE = ...;

The QEPs shown below were generated with the
rule-based optimizer.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-57 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for Simple Queries (1)

Simple Query = Join, Selection, and Projection.

Above we have looked at query evaluation plans for:
SELECT ENAME, DNAME
FROM EMP, DEPT
WHERE EMP.DEPTNO = DEPT.DEPTNO

It should now be understandable what the merge join means
and why it requires that both inputs are sorted.

The other access plan (page 4-6) is really an index join
but uses Oracle’s NESTED LOOPS operator.

It seems that Oracle tries to evaluate conditions as far
down in the tree as possible (which is good).

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-58 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for Simple Queries (2)

So Oracle’s NESTED LOOPS operator does not itself
evaluate the join condition.

E.g. when the current employee in the outer loop works in
department 20, the condition DEPTNO=20 is passed to the
right child when it is opened.

Also the TABLE ACCESS operator in Oracle can contain a
selection which is not explicitly shown. E.g. the QEP for
the following query consists only of the TABLE ACCESS node:

SELECT EMPNO
FROM EMP
WHERE ENAME LIKE 'F%'

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-59 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for Simple Queries (3)

Suppose we change the join query by adding a condition
on EMP:

SELECT ENAME, DNAME
FROM EMP, DEPT
WHERE EMP.DEPTNO = DEPT.DEPTNO
AND EMP.SAL > 5000

Here Oracle would show the same access plan as without
the condition EMP.SAL > 5000.

But of course, this condition is evaluated in the
TABLE ACCESS operator before the sorting for the merge join.

In general, one tries to evaluate selections as early as
possible to make the intermediate results smaller.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-60 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for Simple Queries (4)

Consider the following query:
SELECT *
FROM EMP
WHERE DEPTNO = 20 AND MGR = 7566

If there are indexes on both attributes, Oracle produces
an evaluation plan which intersects the ROWIDs returned
from both indexes (see next page).

These access plans are computed by the rule-based
optimizer.

If you analyze the tables EMP and DEPT, the cost-based
optimizer becomes applicable. It creates a full table scan
in this case since the table EMP fits into one block.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-61 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for Simple Queries (5)

1
TABLE ACCESS

(BY ROWID)

2
AND-EQUAL

3 INDEX
(RANGE SCAN)

I_EMP_DEPT

4 INDEX
(RANGE SCAN)

I_EMP_MGR

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-62 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for Simple Queries (6)
Consider the following query:

SELECT * FROM EMP
WHERE DEPTNO = 20 OR MGR = 7566

If there are indexes on both attributes, the rule-based
optimizer produces an evaluation plan which uses both
indexes and concatenates the results (see next page).

Tuples which satisfy both conditions are printed only once
(as it should be) although the cheap concatenation does
no duplicate elimination. Probably it is evaluated this way:
SELECT * FROM EMP WHERE MGR = 7566
UNION ALL
SELECT * FROM EMP WHERE DEPTNO = 20

AND NOT (MGR = 7566)
Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-63 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for Simple Queries (7)

1
CONCATENATION

2 TABLE ACCESS
(BY INDEX ROWID)

EMP

4 TABLE ACCESS
(BY INDEX ROWID)

EMP

3 INDEX
(RANGE SCAN)

I_EMP_MGR

5 INDEX
(RANGE SCAN)
I_EMP_DEPTNO

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-64 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for Simple Queries (8)

Oracle can produce index-only QEPs:
SELECT EMPNO
FROM EMP
WHERE MGR = 7566

If there is an index on EMP(MGR, EMPNO), Oracle will
produce this plan:

1 INDEX
(RANGE SCAN)

I_EMP_MGR_EMPNO

However, if there is an index on EMP(MGR), Oracle will
prefer this, even though afterwards it has to access the
table.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-65 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for NOT EXISTS (1)

SELECT *
FROM DEPT D
WHERE NOT EXISTS(SELECT * FROM EMP E

WHERE E.DEPTNO = D.DEPTNO)

1
FILTER

2 TABLE ACCESS
(FULL)
DEPT

3 TABLE ACCESS
(FULL)

EMP

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-66 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for NOT EXISTS (2)

FILTER is an operation that accepts a set of rows,
eliminates some of them, and returns the rest.

See Oracle8 Tuning, page 23-8.

So FILTER is something like a selection, but Oracle never
shows proper selections explicitly, they are done as a
by-product in the other nodes.

FILTER is only needed to evaluate complex conditions,
especially with subqueries (e.g. NOT EXISTS).

FILTER may have any number of child nodes (at least two).
The left child of FILTER computes the rows which are to
be filtered. All other childs correspond to subqueries.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-67 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for NOT EXISTS (3)

Consider again the query for departments without employees:

SELECT *
FROM DEPT D
WHERE NOT EXISTS(SELECT * FROM EMP E

WHERE E.DEPTNO = D.DEPTNO)

If there is an index I_EMP_DEPTNO on EMP(DEPTNO),
Oracle produces an access plan which does not access the
relation EMP, but only the index (see next page).

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-68 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for NOT EXISTS (4)

1
FILTER

2 TABLE ACCESS
(FULL)
DEPT

3 INDEX
(RANGE SCAN)
I_EMP_DEPTNO

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-69 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for NOT EXISTS (5)

The set of rows which have to be filtered can also be
computed by a join.

E.g. consider the following query which computes employees
in the research department which do not have a superviser
in that department (the QEP is shown on the next page):

SELECT E.ENAME
FROM EMP E, DEPT D
WHERE E.DEPTNO = D.DEPTNO
AND D.DNAME = 'RESEARCH'
AND NOT EXISTS (SELECT * FROM EMP X

WHERE X.EMPNO = E.MGR
AND X.DEPTNO = D.DEPTNO)

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-70 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for NOT EXISTS (6)
1

FILTER

2
NESTED LOOPS

3 TABLE ACCESS
(FULL)
DEPT

4 TABLE ACCESS
(BY INDEX ROWID)

EMP

5 INDEX
(RANGE SCAN)
I_EMP_DEPTNO

6 TABLE ACCESS
(BY INDEX ROWID)

I_EMP_DEPTNO

7 INDEX
(RANGE SCAN)
I_EMP_DEPTNO

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-71 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for NOT EXISTS (7)

Oracle also has Anti-Join Operations which can be used
for NOT EXISTS and NOT IN subqueries.

An antijoin works like a join, but returns those tuples
from the first relation which have no join-partner in the
second relation.

Oracle has anti-join versions of the merge join and the
hash join. It seems that FILTER is something like an
anti-join version of a nested loop join.

You can request to use a specific kind of anti-join with
the initialization parameter ALWAYS_ANTI_JOIN.

But this parameter is not modifiable while the system runs.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-72 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for Aggregations (1)
This query returns the number of employees per department:

SELECT DEPTNO, COUNT(*)
FROM EMP
WHERE SAL >= 2000
GROUP BY DEPTNO

The input relation (of course, only tuples satsifying the
WHERE-condition) is sorted by the GROUP BY attribute(s):

1
SORT

(GROUP BY)

2 TABLE ACCESS
(FULL) EMP

[SAL >= 2000]
Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-73 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for Aggregations (2)

A query without aggregation will use the operator
SORT (AGGREGATE):

SELECT COUNT(*)
FROM EMP
WHERE SAL >= 2000

This operator does not sort, but computes the single
tuple which is the result of the aggregation.

A query with DISTINCT uses the operator
SORT (UNIQUE):

SELECT DISTINCT DEPTNO
FROM EMP

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-74 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for Sorting (1)

Consider a simple query with ORDER BY:
SELECT *
FROM EMP
ORDER BY EMPNO

Oracle can use an index for producing a sorted sequence:

1 TABLE ACCESS
(BY INDEX ROWID)

EMP

2 INDEX
(FULL SCAN)
I_EMP_EMPNO

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-75 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Oracle QEPs for Sorting (2)

But this is only possible if the sort attribute is NOT NULL.
Otherwise, not all tuples are represented in the index.

E.g. ORDER BY MGR needs a full table scan, even if there
is an index on EMP(MGR):

1
SORT

(ORDER BY)

2 TABLE ACCESS
(FULL)

EMP

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-76 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Operations in Oracle QEPs (1)
Access Methods (Tables):

Access methods are used for getting data from the disk
(as opposed to operations which combine data, e.g. joins).

TABLE ACCESS (FULL): Retrieval of all rows from a table
by reading all blocks below the high water mark.

TABLE ACCESS (BY ROWID): Retrieval of rows from a table
given their ROWIDs.

TABLE ACCESS (CLUSTER): Retrieval of rows from a table
stored in an index cluster, given the value of the cluster key.

TABLE ACCESS (HASH): Retrieval of rows from a table
stored in a hash cluster, given the value of the cluster key.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-77 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Operations in Oracle QEPs (2)

Access Methods (Indexes):

INDEX (UNIQUE SCAN): Retrieval of a single ROWID
from an index for a key, given a value for the key attribute.

INDEX (RANGE SCAN): Retrieval of attribute values and
ROWIDs from an index, given an interval for the values of
the indexed attributes (or a single attribute value).

INDEX (RANGE SCAN DESCENDING): As before, but
attribute values are produced in descending order.

I have not seen any Oracle QEP using this operation.

INDEX (FULL SCAN): Retrieval of all values for the indexed
column in sorted order (plus the corresponding ROWIDs).

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-78 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Operations in Oracle QEPs (3)

Access Methods (Indexes, Continued):

INDEX (FULL SCAN DESCENDING): Full index scan, but
in inverse order (used for ORDER BY ... DESC).

INDEX (FAST FULL SCAN): Full index scan in the order
in which the blocks are stored on the disk (reading
multiple blocks in one OS call as in a full table scan).

This operation does not return the attribute values in sorted order, but it
can be useful for index-only QEPs. Branch blocks which are read are
simply ignored (there are much more leaf blocks than branch blocks, so
this is not a problem). In order to use this operation, the initialization
parameter FAST_FULL_SCAN_ENABLED must be set to TRUE (before the
system is started).

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-79 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Operations in Oracle QEPs (4)
Join Methods:

NESTED LOOPS: Nested Loops or Index Join.

NESTED LOOPS (OUTER): The same method, but used for
an outer join (protecting tuples from one or both tables).

MERGE JOIN: Merge Join (needs sorted inputs).

MERGE JOIN (OUTER): Outer join based on merge method.

MERGE JOIN (SEMI): The special case of a semi-join
(only checking the existence of a join partner).

MERGE JOIN (ANTI): The merge method applied for finding
tuples without a join partner (for NOT EXISTS, NOT IN).

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-80 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Operations in Oracle QEPs (5)
Join Methods, Continued:

HASH: A hash join (partitioning both tables).
HASH (SEMI): The special case of a semi-join.
HASH (ANTI): The hash method applied for an anti-join.

Sort Operations:
SORT (JOIN): Sorting before a merge join.
SORT (UNIQUE): Sorting and duplicate elimination.
SORT (GROUP BY): Sorting, grouping, aggregation.
SORT (AGGREGATE): Aggregation to a single row (no sort).
SORT (ORDER BY): Sorting because of an ORDER BY clause.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-81 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Operations in Oracle QEPs (6)

Set Operations:

AND-EQUAL: Intersection of ROWIDs returned from
different indexes.

CONCATENATION: Union without duplicate elimination.

UNION-ALL: The same (?).
The documentation also mentions a UNION with duplicate elimination,
but I have seen no QEP which uses it. For queries containing UNION,
Oracle does a UNION-ALL followed by SORT (UNIQUE).

MINUS: Set difference (needs sorted inputs).

INTERSECTION: Set intersection (needs sorted inputs).

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-82 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Operations in Oracle QEPs (7)
More Access Operations:

BITMAP (...): Operations for using bitmap indexes.

REMOTE: Retrieval of data from a remote database.

SEQUENCE: Access to sequences.

Using ROWNUM:
COUNT: Used for queries containing ROWNUM in the select list.

COUNT (STOPKEY): Used for filtering the first n input
rows if the query contains ROWNUM <= n.

FIRST ROW: Retrieval of the first row only.
I haven’t seen this in an actual QEP.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-83 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

Operations in Oracle QEPs (8)
Other Operations:

FILTER: Evaluate complex conditions (e.g. NOT EXISTS).
This is similar to a NESTED LOOPS anti-join.

CONNECT BY: For evaluating queries on tree-structured data
with the CONNECT BY clause (not in the SQL-92 standard).

PARTITION (CONCATENATED): For partitioned tables.

INLIST ITERATOR: Iterates over the operation below it.

PROJECTION: Projection (appears seldom explicitly).

VIEW: Used to mark subqueries which correspond to a view.

FOR UPDATE: Locks the rows flowing through this operator.
Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-84 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

QEP Structural Rules

TABLE ACCESS (FULL) and INDEX cannot have child nodes.

TABLE ACCESS (BY INDEX ROWID) must have exactly
one child node which produces ROWIDs.

NESTED LOOPS/MERGE JOIN must have exactly two children.

If the query contains n tuple variables, you need n− 1 join
operators. In the 1999 exam, some students used more.

NESTED LOOPS passes the information about the current
tuple from the left child down to its right child etc.
Only there an index on the join attribute can be used.

Some students used the index on the join attribute in the left child, or in
the right child of a merge join.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-85 / 86

Query Evaluation Plans Sorting Algorithms for Joins Operators in Oracle QEPs

References
Elmasri/Navathe: Fundamentals of Database Systems, 3rd Ed.,
Chap. 18: “Query Processing and Optimization”

Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Ed.,
Chap. 12: “Query Processing”

Ramakrishnan/Gehrke: Database Management Systems, 2nd Ed.,
Mc-Graw Hill, 2000,
Chap. 11: “External Sorting”, Chap. 12: “Evaluation of Relational Operators”,

Kemper/Eickler: Datenbanksysteme (in German), Chap. 8, Oldenbourg, 1997.

Härder/Rahm: Datenbanksysteme — Konzepte und Techniken der Implementierung
(in German), Springer, 1999.

Garcia-Molina/Ullman/Widom: Database System Implementation.
Prentice Hall, 1999, ISBN 0130402648, 672 pages.

Oracle 8i Concepts, Release 2 (8.1.6), Oracle Corporation, 1999, Part No. A76965-01.
Chapter 21: “The Optimizer”.

Oracle 8i Designing and Tuning for Performance, Release 2 (8.1.6), Oracle
Corporation, 1999, Part No. A76992-01.

Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

Stefan Brass: DB IIB: DBMS-Implementation 13. Query Evaluation 13-86 / 86

	Query Evaluation Plans
	Query Evaluation Plans, Pipelined Evaluation

	Sorting
	Sorting

	Algorithms for Joins
	Algorithms for Joins

	Operators in Oracle QEPs
	Operators in Oracle QEPs
	References

