
ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Database Systems IIB:
DBMS-Implementation

Chapter 9: Storage of Relations II:
Sets of Bytestrings

Prof. Dr. Stefan Brass
Martin-Luther-Universität Halle-Wittenberg

Wintersemester 2021/22

http://www.informatik.uni-halle.de/˜brass/dbi21/

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-1 / 66

http://www.informatik.uni-halle.de/~brass/dbi21/


ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Objectives

After completing this chapter, you should be able to:

write a short paragraph explaining how blocks are
allocated in Oracle (mention segments, extents).

find storage information in the data dictionary.
And use the ANALYZE TABLE command to populate the dictionary tables.

explain how relations are stored in Oracle
(row and block format, TIDs/ROWIDs, migrated rows).

estimate the number of blocks needed for a table.

set the basic storage parameters for relations in Oracle for
good performance.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-2 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Contents

1 ROWIDs

2 Fixed-Length Rows

3 Variable-Length Rows

4 PCTFREE

5 INSERT

6 Full Scan

7 ANALYZE TABLE

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-3 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Row Manager/Heap Files (1)

Table rows are stored physically in disk blocks. Normally,
each block stores rows from one table only.

Clusters in Oracle are an exception.

The disk space manager assignes a sequence of disk
blocks to every table (called a segment in Oracle).

The row manager has to store a set of rows in this space.
The lower level modules can treat a row as a bytestring without inner
structure, i.e. they do not need to understand how columns are encoded in
the rows. The row format is discussed in the next section.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-4 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Row Manager/Heap Files (2)

The basic operations of the row manager are to

insert, update, and delete a row,

return all existing rows (in a loop),

manage pointers to rows.
I.e. determine the address or some kind of ID of a row, and locate
the row with a given address/ID.

The simplest and most common file structure to store a
table is the heap file. It stores rows in no particular order.

Whereever space is available. After all, relations are sets.
(Note that this heap has nothing to do with the heap of heapsort.)

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-5 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Row Manager/Heap Files (3)

In many database management systems, the heap file is
the only way to store table data.

Of course, they also have indexes, which are organized in a different way.
But indexes contain only access information, not the primary copy of the
table data.

As an alternative to heap files, Oracle also has clusters
and index-organized tables.

In this case, the storage position depends on data within the rows. This
improves the performance, but reduces the flexibility. Heap files remain the
most common method.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-6 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

ROWIDs/TIDs (1)

ROWIDs (row identifiers) are physical pointers to rows.
They are called also TID (tuple identifier).

Indexes provide a fast way to look up the ROWIDs of
those table rows that contain a given value in a certain
column.

An index over column A of a table R can be understood as an auxillary
table I(A,ROWID). The first column contains all data values that currently
appear in R.A, the second column contains the ROWIDs of the matching
rows in R. The index is not organized as a heap file, but e.g. as a B-tree,
which gives fast access to the entry for a specific value (see below). One
could organize the original table as a B-tree, but then only one attribute
could be indexed (since B-trees basically store the entries sorted by A).

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-7 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

ROWIDs/TIDs (2)

So the Row Manager must support two ways to access a row:

Read all rows of the table in a full table scan.

Get a particular row given its address (ROWID).

The access via the ROWID should be especially fast,
i.e. normally only a single block access.

Therefore, ROWIDs usually contain the physical address
of the block in which the row is stored.

I.e. the file number and the block number within the file. Plus e.g. the
number of the row within the block.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-8 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

ROWIDs/TIDs (3)

Most DBMS guarantee that ROWIDs/TIDs do not
change for the entire lifetime of a tuple.

Except when the tuple is exported and imported again. That would
basically create a new row with the same values.

The reason that ROWIDs should be kept stable is

there can be many indexes for the same table. If the
ROWID of a tuple should change, all would have to be
updated.

some DBMS (e.g. Oracle) make ROWIDs available on
the user level.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-9 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

ROWIDs/TIDs (4)

Expert users can use ROWIDs in Oracle to improve
performance.

E.g. foreign keys could be supported by an additional column that contains
the ROWID of the referenced tuple (the real foreign key is then needed
only for export/import). One could also construct one’s own tree
structures (with restrictions). If the user can store ROWIDs, it might be
difficult for the system to determine all pointers to a given row. Then
stable ROWIDs are especially important.

If ROWIDs must remain stable, and ROWIDs must
contain a physical block address, tuples are basically
locked to the block recorded in their ROWID.

Design decision for DBMS vendor: Support stable ROWIDs?
Support the one-block-access to rows by ROWID?

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-10 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

ROWIDs/TIDs (5)

ROWIDs are similar to object identifiers (OIDs):

Even if two rows agree in all attributes, they can be
distinguished by their ROWIDs.

It is bad design to permit duplicate rows. At least, one must really
know what one is doing.

The ROWID remains stable even if primary key
attributes are updated.

Normally, there should be no updates on primary key attributes.

However, if a tuple is deleted, a newly created tuple
might get its ROWID (this differs from real OIDs).

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-11 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Oracle ROWIDs (1)

In Oracle, every table has a “pseudocolumn” ROWID,
which can be queried like a real column:

SELECT ROWID, FIRST, LAST
FROM STUDENTS

The column is not listed with describe or SELECT *.

It is not possible to update the column ROWID.
It is not stored, but computed from the storage position of the row.

The pseudocolumn can also be used in conditions:
SELECT FIRST, LAST
FROM STUDENTS
WHERE ROWID = ’AAACiMAACAAAAYnAAA’;

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-12 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Oracle ROWIDs (2)

An Oracle8 ROWID consists of:

SUBSTR(ROWID,1,6): Data object number.
This identifies the segment. I do not see why it is necessary. Old
Oracle 7 ROWIDs did not contain this part. The data object
number is e.g. shown in USER_OBJECTS.

SUBSTR(ROWID,7,3): Relative file number.

SUBSTR(ROWID,10,6): Block number in the file.

SUBSTR(ROWID,16,3): Row number in the block.

A base 64 encoding is used for the numbers.
Six bits per character (0–63) are coded using the characters A-Z, a-z, 0-9,
+ and /. E.g. AAC is the number 2.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-13 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Oracle ROWIDs (3)

There is a package of stored functions for decoding the
components of a ROWID:
SELECT DBMS_ROWID.ROWID_OBJECT(ROWID),

DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID),
DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID),
DBMS_ROWID.ROWID_ROW_NUMBER(ROWID),
FIRST, LAST

FROM STUDENT

Rows in a block are numbered 0, 1, 2, . . .
Holes in the sequence are numbers of deleted rows.

By querying and decoding the ROWID, it is possible to find
out where a particular row is stored.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-14 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Contents

1 ROWIDs

2 Fixed-Length Rows

3 Variable-Length Rows

4 PCTFREE

5 INSERT

6 Full Scan

7 ANALYZE TABLE

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-15 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Fixed-Length Rows (1)

In old, simple DBMS, rows had to be of fixed length
(i.e. all rows in a table had the same storage size).

Like e.g. a record in C. In newer systems, this might be an option for
certain tables (not in Oracle).

This simplifies the task of the row manager: It stores as
many rows in one block as the space permits.

So if the row size is 100 bytes, the first row would begin e.g. at offset 0
from the beginning of the block, the second at offset 100, the third at
offset 200, etc. (like an array in C).

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-16 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Fixed-Length Rows (2)

Normally, one would not split a row between two blocks,
but rather leave some space unused.

Unless the row is very long, it should be possible to retrieve it with one
block access. E.g. block size 2048: 48 Byte wasted.

In order to manage the space within a block, a flag
“deleted” (or “free”) is needed for every slot that can
contain a row.

In addition, e.g. a linked list of blocks with empty space is
needed to find a free slot when a new row is inserted.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-17 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Fixed-Length Rows (3)

There must also be a mechanism to find all blocks that
might contain rows in them (for a full table scan).

With fixed-length rows, stable addresses mean that we
cannot move a row after it has been created.

E.g. even if after some deletions only one row remains in a block, we are
not allowed to move it to another block with free space, since this would
change its ROWID (and a full table scan runs the faster the less blocks are
needed).

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-18 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Contents

1 ROWIDs

2 Fixed-Length Rows

3 Variable-Length Rows

4 PCTFREE

5 INSERT

6 Full Scan

7 ANALYZE TABLE

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-19 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Variable-Length Rows (1)

Often rows in a table have a variable size.
E.g. because of VARCHAR columns.

Then rows can also grow or shrink via updates.

Oracle treats all rows as variable-length.
Since columns can be added to a table with ALTER TABLE, one must either
copy the entire table at this point, or abandon the idea of fixed-length
rows. Also when null values should be stored with less space than the
normal column value, the row length becomes variable.

Variable-length rows are usually managed in a block with
a row directory, i.e. a small table giving the offsets (start
addresses) of the rows in the block.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-20 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Variable-Length Rows (2)

Block Header

Row
Dir.

0:
1:
2:

Free Space

Row A

Row B
Row C

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-21 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Variable-Length Rows (3)

The ROWID consists of file number, block number, and
the index in the row directory.

The indirect addressing via the row directory makes it
possible that rows are moved within the block:

E.g. Row B is updated and grows slightly.
Then Row A has to be moved towards the beginning of the block
(where there is still free space) to make room.

Or suppose that Row B is deleted.
Then Row A would be moved towards the end of the block, such
that the free space is not fragmented. However, most systems
including Oracle merge free space only if necessary to insert a new
row.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-22 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Variable-Length Rows (4)

The block header may e.g. contain

Block address, type of segment, table name.

The size of the row directory, size of free space.

Next block in the list of blocks with free space.

A serial version number for this block which is
incremented for every update.

This is needed for crash recovery.

A bit pattern to detect partially written blocks.
The pattern at the begin and end of the block must agree, they are
both inversed on every write.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-23 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Variable-Length Rows (5)

Block overhead in Oracle: ca. 84–107 Byte.
(Gurry/Corrigan use 90 Byte in computations.)

In Oracle, the row directory needs two bytes per entry.
Oracle never releases elements of the row directory. If at some point in
time, 50 rows were stored in the block, the row directory will always need
100 bytes, even if it contains only a single row. Of course, if the row is
stored in location 50, there is would be in any case no way to shorten the
row directory, because the ROWID must be kept stable.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-24 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Variable-Length Rows (6)

If a row grows and there is not enough free space left in
the block, it must be moved (“migrated”) to another
block.

A pointer must be left behind in this block so that the
row can still be found via its ROWID.

Thus, e.g. its entry in the row directory is still used.

So now two block accesses are needed in order to retrieve
this row, given its ROWID.

This decreases performance, especially since the row might be stored far
away on the disk.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-25 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Variable-Length Rows (7)

File 4, Block 497:
Block Header

Row
Dir.

0:
1:
2:

Free Space

Row A

Ref: 4/526/1
Row C

File 4, Block 526:
Block Header
Row
Dir.

0:
1:

Free Space

Row B

Row D

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-26 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Variable-Length Rows (8)

If Row B should have to move again, the original
reference in block 497 is updated. In this way, two block
accesses remains the maximum to retrieve a row with
given ROWID.

The new address is stored only in the reference under the old (and only)
ROWID.

When a new row is stored, storage must be reserved that
is at least large enough to contain a reference to a new
place.

Each row will at least need e.g. 14 Bytes.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-27 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Variable-Length Rows (9)

File 4, Block 497:
Block Header

Row
Dir.

0:
1:
2:

Free Space

Row A

Ref: 4/573/0
Row C

File 4, Block 573:
Block Header

Row Dir. 0:
Free Space

Row B

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-28 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Variable-Length Rows (10)

Oracle can also store rows in multiple pieces in different
blocks (“chained rows”).

This is only done for rows longer than a block. If the row
fits in a block, it is completely moved to another block.

If there are many chained rows, consider increasing the
DB_BLOCK_SIZE (requires recreation of the DB).

Depending on the version, the default size might be 2KB. The block size
should be a multiple of the OS block size (often 4KB or 8KB). The
parameter can only be set when the database is created. A block size
which is too large can decrease the performance for accesses to single rows
(e.g. via an index) and also the caching performance.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-29 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Summary: Row Manager (1)

Main Operations of the Row Manager for Heap Files:

Operations for full table scans:
Open a scan (“cursor”) over a given table.
Are there further rows? (“end of scan”)
Get next row for a given scan.

Implementation detail: Row is not copied. Instead the containing
block is pinned in the buffer, pointer is returned.

Determine the ROWID of the current row.
Close a scan.

Get a row given its ROWID.

Insert/Update/Delete a row.
Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-30 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Summary: Row Manager (2)

The main tasks of the row manager are:

Free space management
In which block should a new row be stored?
What happens if a row grows or shrinks?

Used space management
Which blocks actually contain rows and must be read during a full table
scan?

Management of stable addresses for rows.
Of course, the access via ROWIDs should be efficient (usually one block
access, sometimes two).

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-31 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Summary: Row Manager (3)

Problem: Rows have in general variable length and can
grow and shrink.

The row manager determines the block format.
A small part of the block might already be used by the disk manager to
implement segments.

The heap file is very common, but there are alternatives.
These might support associative access to the rows.

I.e. return the row with a given attribute value. E.g., in the Transbase
DBMS, all relations are stored as B-trees.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-32 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Contents

1 ROWIDs

2 Fixed-Length Rows

3 Variable-Length Rows

4 PCTFREE

5 INSERT

6 Full Scan

7 ANALYZE TABLE

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-33 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

PCTFREE (1)

To avoid migrated rows, some free space in each block
should be reserved for growth of the rows.

Then INSERT commands will not use up all space, only subsequent UPDATE

commands can fill a block entirely.

Oracle has a parameter PCTFREE in the CREATE TABLE
which determines this space reserve (in percent of the
block size).

E.g. if PCTFREE is 20, and the block size is 2KB (2048 Byte), the space
reserve is (20/100) ∗ 2048 = 410 bytes. This space must remain free after
the INSERT. If the row to be inserted is 50 bytes long, it will be inserted
only in a block with at least 460 bytes of free space (two additional bytes
might be needed for the row directory entry).

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-34 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

PCTFREE (2)

One must estimate how much the row length will grow
over the row’s lifetime

This is part of physical DB design. Typical case for growing rows: Some
attributes are null when the row is inserted, and later filled out.

If PCTFREE is too small, there will be migrated rows.

If PCTFREE too large, space is wasted and full table scans
will run longer.

If there are many migrated rows: Export all rows, empty
or recreate the table, import the rows again.

And of course PCTFREE should be changed. This can be done with ALTER

TABLE. It effects all future insertions.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-35 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

PCTFREE (3)

If rows are only inserted and deleted, but not updated
(or at least to not become longer by updates),
PCTFREE = 0 can be chosen.

PCTFREE = 10 is a common value (default value).

PCTFREE = 20 would be chosen if it is known that rows
quite significantly grow because of updates.

In general, the following formula can be used:

Rowsize after Update − Rowsize at Insertion
Rowsize after Update ∗ 100

This value can be too large: Simplified calculation+problem on Slide 38.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-36 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

PCTFREE (4)

Suppose that rows are inserted at 40 Bytes length,
but they all will become 60 Bytes due to updates.

Then a block of 2048 bytes can contain
(2048 − 90)/(60 + 2) = 31rows.

90 Bytes are the overhead for the block header, 2 Bytes the overhead for
the entry in the row directory.

Thus, 31 ∗ (60 − 40) = 620 Bytes should remain free at
insertion, i.e. PCTFREE = 620/2048 = 30%.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-37 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

PCTFREE (5)

The above calculation assumes that a block is filled with
short rows before the first row grows.

This would hold e.g. when there are only insertions into a table (no
deletions), and when the time difference between the insertion and the
update is longer than the time needed to fill a block.

If this is not the case, PCTFREE can be chosen (much)
smaller.

Basically, the PCTFREE model does not treat this case. No formula can be
applied, only rules of thumb. Advanced exercise: Propose other ways to
control the space reserve.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-38 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Contents

1 ROWIDs

2 Fixed-Length Rows

3 Variable-Length Rows

4 PCTFREE

5 INSERT

6 Full Scan

7 ANALYZE TABLE

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-39 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

PCTUSED (1)

Classic Solution in Oracle to Find a Block with Free Space:

For each table/segment, Oracle manages a linked list of
blocks that still have space for new rows.

Oracle can manage more than one such list (parameter FREELISTS) for
tables with many concurrent insertions.

The Parameter PCTUSED determines which blocks are
kept on this free list.

When Oracle needs to insert a new row, it looks at the
first block on the free list.

If after the insertion, there would be still PCTFREE free
space left, the insertion is done.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-40 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

PCTUSED (2)

Otherwise (insertion attempt fails), Oracle removes the
block from the free list, unless is is filled to less than
PCTUSED percent.

This exception ensures that exceptionally long rows do
not remove blocks with a reasonable amount of free space
from the free list.

Blocks are removed from the free list only if an insertion
attempt fails. Only then PCTUSED becomes important
(for insertions).

PCTUSED is also important for deletions, see below.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-41 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

PCTUSED (3)
Exercise:

Suppose the block size is 1000 (to simplify the calculation).
Let PCTFREE=20 and PCTUSED=60.

The free list looks as follows:
Block 1
300 Byte free

700 used

Block 2
700 Byte free

300 used

Block 3
800 Byte free

200 used

What happens if the following rows are inserted?

Row A: 200 Byte,
Row B: 500 Byte,
Row C: 200 Byte.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-42 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

PCTUSED (4)

The sum of PCTFREE and PCTUSED can be no more than
100, but it should be less in order to allow blocks to be
removed from the free list.

If the sum is 100, blocks are in effect not removed from
the free list (unless they are filled exactly to the right byte).

Then INSERTs will take a long time since they have to
scan a large number of blocks for free space.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-43 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

PCTUSED (5)

Suppose that all rows are 200 Bytes long, and let
PCTFREE: 10, blocksize: 2048, header size: 90 Bytes.

Blocks have 2048 − (90 + 205) = 1753 Bytes available
space, rows need 200 + 2 byte, so after 8 rows are
inserted, the next insertion fails.

Only (8 ∗ 202) + 90 = 1706 bytes are actually used,
so PCTUSED must be less than 1706/2048 = 83% in order
to remove the block from the free list.

Choosing PCTFREE smaller has no effect for insertions, still 8 rows are
inserted until PCTUSED is considered.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-44 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

PCTUSED (6)

The maximum value for PCTUSED can be computed as follows
(it leaves space for one average row, so that when such an
insertion fails, the block is removed from the free list):

Available Space − Length of one Row
Blocksize ∗ 100

where the available space is
(Blocksize ∗ (100 − PCTFREE)/100) − Header Size.

The default value is PCTUSED=40.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-45 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

PCTUSED (7)

If rows are deleted from a block, the block is put on the
free list once less than PCTUSED space is used.

Since there is some overhead involved in putting blocks on the free list and
removing them again, it makes sense that there should be space for several
rows before a block is put back on the free list.

The smaller PCTUSED is chosen, the longer it takes until
the block is again considered having free space after deletions.

E.g. if in the example PCTUSED were 50%, less than
2048 ∗ 0.50 = 1024 Bytes must be used (4 rows) before
the block is put back on the free list.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-46 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Automatic Segment Space Management (1)

Newer Solution in Oracle:

Since Oracle9i, there is an alternative to the use of freelists:
Automatic segment space management (ASSM).

It uses bitmaps that distinguish between

blocks that are full (no candidate for insertion),

blocks with 0-25% of free space (FS1),

blocks with 25-50% of free space (FS2),

blocks with 50-75% of free space (FS3),

blocks with 75-100% of free space (FS4),

blocks that are not yet formatted.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-47 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Automatic Segment Space Management (2)
Probably “unformatted blocks” are blocks above the high
water mark and “full blocks” correspond to blocks into
which an insertion has failed.
One can query the number of blocks of each class with
the procedure DBMS_SPACE.DBMS_SPACE_USAGE.
dbms_space.space_usage(
segment_owner IN VARCHAR2,
segment_name IN VARCHAR2,
segment_type IN VARCHAR2,
unformatted_blocks OUT NUMBER,
unformatted_bytes OUT NUMBER,
fs1_blocks OUT NUMBER, fs1_bytes OUT NUMBER,
fs2_blocks OUT NUMBER, fs2_bytes OUT NUMBER,
fs3_blocks OUT NUMBER, fs3_bytes OUT NUMBER,
fs4_blocks OUT NUMBER, fs4_bytes OUT NUMBER,
full_blocks OUT NUMBER, full_bytes OUT NUMBER,
partition_name IN VARCHAR2 DEFAULT NULL);

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-48 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Automatic Segment Space Management (3)

Example for calling this procedure:

First declare SQL*Plus variables, e.g.
variable unformatted_blocks number;

Use a PL/SQL block to call the procedure:
begin

DBMS_SPACE.SPACE_USAGE(’USER1’, ’TAB1’,
’TABLE’, :unformatted_blocks, ...);

end;
/

Then print the variable values:
print unformatted_blocks;

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-49 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Automatic Segment Space Management (4)

The advantage of automatic segment space management
is that the DBA does not have to think about PCTUSED,
FREELISTS, and FREELIST GROUPS:
These parameters become obsolete.

Automatic segment space management can better adapt
to varying workloads.

With manual segment space management, one must increase the
parameter FREELISTS if there are many parallel insertions (otherwise there
is contention on the single freelist). If one has a DB with many server
machines (in an Oracle Real Application Clusters environment), the
FREELIST GROUPS determine how machines are mapped to freelists.
With automatic segment space management, these situations are handled
automatically.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-50 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Automatic Segment Space Management (5)

The kind of segment space management is selected on
the level of the tablespace (and cannot be changed after
tablespace creation):

CREATE TABLESPACE TBSP1
DATAFILE ’/data/tbsp1.dbf’ size 100M
EXTENT MANAGEMENT LOCAL AUTOALLOCATE
SEGMENT SPACE MANAGEMENT AUTO;

Alternative (use of freelists):
SEGMENT SPACE MANAGEMENT MANUAL;

Automatic segment space mgmt. is now the default.
It works only in tablespaces with local extent management.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-51 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Contents

1 ROWIDs

2 Fixed-Length Rows

3 Variable-Length Rows

4 PCTFREE

5 INSERT

6 Full Scan

7 ANALYZE TABLE

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-52 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Full Table Scan (1)

As explained above, the row manager module must be
able to find all blocks that contain rows (or might contain
rows) of a given table.

The disk manager below returns a list of blocks for each table (a segment),
but not all blocks do necessarily contain rows.

Oracle manages a “high water mark” for each table, that
is the number of blocks that were ever used for storing
rows of this table.

In a full table scan, Oracle will read all blocks until this
“high water mark”.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-53 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Full Table Scan (2)

Suppose that a table contains 100000 rows, stored in
1000 blocks. Even if then all rows are deleted, a full table
scan will nevertheless read all 1000 blocks.

Normally, such extreme situations do not happen.

But if there should be a large number of deletes, consider
exporting and reimporting the table.

Unless a similar number of insertions is expected soon.

To delete all rows from a table use the TRUNCATE
command. This resets the high water mark.

No ROLLBACK is possible for this command.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-54 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Contents

1 ROWIDs

2 Fixed-Length Rows

3 Variable-Length Rows

4 PCTFREE

5 INSERT

6 Full Scan

7 ANALYZE TABLE

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-55 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

ANALYZE TABLE (1)

The following Oracle SQL command gathers statistical
information about a table, e.g. EMP:

ANALYZE TABLE EMP COMPUTE STATISTICS

This command stores size information about the table in
the data dictionary, e.g.

The number of rows in the analyzed table.

The average row length in bytes.

How full these blocks are on average.

How many different values each attribute has.

How many rows contain a null value in a given attribute.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-56 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

ANALYZE TABLE (2)

This information is used by the query optimizer in order
to estimate the cost (execution time) for each alternative
query evaluation plan.

Oracle does not automatically keep this information
up-to-date.

If the DBMS wanted to keep the number of rows of a
table (table size) current, any insertion on table R would
lock the data dictionary entry for R .

Then no parallel insertions would be possible, e.g. different users could not
enter orders concurrently.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-57 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

ANALYZE TABLE (3)

The query optimizer does not need exact values for size
parameters.

In the worst case it chooses a query evaluation plan that
takes longer than the optimal one.

Therefore, it is no problem that the data about the table
size are slightly outdated.

One should execute the ANALYZE TABLE again from time
to time, at least after significant changes in the size of
the table.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-58 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

ANALYZE TABLE (4)

The ANALYZE TABLE command can take a long time to
execute for large tables.

E.g. in order to compute the number of different values in each attribute,
it must sort the set of attribute values.

Therefore, one can also request to estimate statistics
from a sample of rows

ANALYZE TABLE EMP ESTIMATE STATISTICS
One can also add e.g. “SAMPLE 10 PERCENT”.

The DBA should execute the ANALYZE TABLE outside of the main business
hours.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-59 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

ANALYZE TABLE (5)

The output of the ANALYZE TABLE command is stored in
the data dictionary tables, especially TABS, COLS,
USER_TAB_COL_STATISTICS.

The entries in COLS remain only for backward compatibility, Oracle
suggests to use now USER_TAB_COL_STATISTICS

(USER_PART_COL_STATISTICS for partitioned tables). More information
about the data distribution in a column can be collected with histograms
(explained in the chapter about query optimization).

The command itself prints only “Table analyzed.”.

All data dictionary columns that contain output from the
ANALYZE TABLE are null until the table is analyzed for
the first time.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-60 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Data Dictionary: TABS (1)

TABS is a synonym for USER_TABLES. It contains one row
for each table owned by the current user (not including
views). It has 44 columns, e.g.:

TABLE_NAME: Name of the table.

TABLESPACE_NAME: Tablespace in which the table is
stored.

PCT_FREE, PCT_USED, INITIAL_EXTENT, NEXT_EXTENT,
MIN_EXTENTS, MAX_EXTENTS, PCT_INCREASE, FREELISTS:
Storage parameters set in the CREATE TABLE.

PCTFREE etc. are reserved words. Therefore the different spelling.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-61 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Data Dictionary: TABS (2)

Columns of TABS, continued:

NUM_ROWS: Number of rows in the table.

BLOCKS: The number of used data blocks.
This is the “high water mark” mentioned above (i.e. blocks that
ever contained rows), not the total number of blocks allocated for
the table.

EMPTY_BLOCKS: Number data blocks that are allocated
for the table, but not yet used.

Since every segment needs one header block, the total number of
allocated blocks (segment size) is BLOCKS+EMPTY_BLOCKS+1.

CHAIN_CNT: Number of rows which are split between
blocks (includes migrated rows).

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-62 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Data Dictionary: TABS (3)

Columns of TABS, continued:

AVG_ROW_LEN: Average length of a row in bytes.

AVG_SPACE: Average amount of free space (in bytes) in
blocks below the high water mark.

AVG_SPACE_FREELIST_BLOCKS: Average free space in
blocks on the free list (used for insertions).

NUM_FREELIST_BLOCKS: Number of blocks on the free
list (the free list contains only blocks below the high
water mark).

LAST_ANALYZED: Date of last ANALYZE TABLE.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-63 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Data Dictionary: COLS

COLS (a synonym for USER_TAB_COLUMS) contains the
following information set by the ANALYZE TABLE:

TABLE_NAME, COLUMN_NAME: Identifies the column.

NUM_DISTINCT: Number of distinct data values.

NUM_NULLS: Number of rows for which this column is null.

LOW_VALUE, HIGH_VALUE: Smallest/greatest value.
They are shown in the internal format (not readable).

See also USER_TAB_COL_STATISTICS.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-64 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

Summary: CREATE TABLE Syntax

Example (clauses discussed in this course):

CREATE TABLE STUDENT(
SID NUMERIC(4) PRIMARY KEY,
FIRST VARCHAR(20),
LAST VARCHAR(20) NOT NULL)

TABLESPACE USER_DATA
STORAGE(INITIAL 10K

NEXT 10K -- Not with locally managed TBSP
PCTINCREASE 50 -- This, too
BUFFER_POOL KEEP)

PCTFREE 20
PCTUSED 60 -- Not with automatic segm. sp. mgmt.
CACHE;

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-65 / 66



ROWIDs Fixed-Length Rows Variable-Length Rows PCTFREE INSERT Full Scan ANALYZE TABLE

References
Elmasri/Navathe: Fundamentals of Database Systems, 3rd Edition. Section 5.5,5.7.

Ramakrishnan/Gehrke: Database Management Systems, 2nd Edition.
Section 7.3, 7.5–7.8.

Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Ed., Chap 10.

Kemper/Eickler: Datenbanksysteme (in German), Chap. 7, Oldenbourg, 1997.

Garcia-Molina/Ullman/Widom: Database System Implementation. Chapter 3.

Härder/Rahm: Datenbanksysteme, Konzepte und Techniken der Implementierung
(in German). Chapter 2, 5.

Jason S. Couchman: Oracle8i Certified Professional: DBA Certification Exam
Guide with CDROM. Osborne/ORACLE Press, ISBN 0-07-213060-1, ca. 1257 pages.

Mark Gurry, Peter Corrigan: Oracle Performance Tuning, 2nd Edition (with disk).

Gray/Reuter: Transaction Processing: Concepts and Techniques. 1993.

Oracle 8i Concepts, Release 2 (8.1.6), Oracle Corporation, 1999,
Part No. A76965-01.

Oracle 8i Designing and Tuning for Performance, Release 2 (8.1.6),
Oracle Corporation, 1999, Part No. A76992-01.

Stefan Brass: DB IIB: DBMS-Implementation 9. Storage of Relations II 9-66 / 66


	ROWIDs
	Row Manager, Heap Files, ROWIDs/TIDs

	Fixed-Length Rows
	Fixed-Length Rows

	Variable-Length Rows
	Variable-Length Rows

	PCTFREE
	PCTFREE

	INSERT
	Block Free Space Management in Oracle: Freelist
	ASSM: Automatic Segment Space Management in Oracle

	Full Scan
	Full Table Scan

	ANALYZE TABLE
	ANALYZE TABLE Command
	Information Collected by ANALYZE TABLE
	Summary
	References


