
Datenbanken IIB:
DBMS-Implementierung

Chapter 1: Introduction

Prof. Dr. Stefan Brass

Martin-Luther-Universität Halle-Wittenberg

Wintersemester 2019/20

http://www.informatik.uni-halle.de/˜brass/dbi19/

1. Introduction 1/65

http://www.informatik.uni-halle.de/~brass/dbi19/

Objectives

After completing this chapter, you should be able to:

explain some functions of a DBMS.

give an overview of the architecture of a DBMS.
Name some important components.

enumerate tasks of the database administrator.

explain the structure of the Oracle Data Dictionary.

formulate queries against data dictionary tables.

name at least three tables of the Oracle data dictionary
and their most important columns.

1. Introduction 2/65

Inhalt

1 DB Services

2 Tasks of the DBA

3 The Oracle Data Dictionary

4 DB Schema Information in Oracle

1. Introduction 3/65

Database Services (1)

The main task of a database management system
(DBMS) is to manage persistently stored data.

Persistent means that the data needs to be remembered longer than a
single program execution, it even has to survive a shutdown of the OS.
Today this basically means it must be stored on disk.

The data is shared between many users and many
application programs.

The DBMS acts as a server: It receives requests (queries
and updates) over the network and sends responses
(answers, results) back.

The DBMS is usually a set of background processes (∼ web server).

1. Introduction 4/65

Database Services (2)

Most of the queries and updates are executed by
application programs.

Ad-hoc queries are relatively seldom in practice. In a heavily loaded system,
the DBA will forbid that ad-hoc queries are entered during standard
working hours.

Therefore, most of the queries/updates are known in advance,
including estimates for their frequency (e.g. 5 per min).

“Load profile”: List of DB commands with frequencies. Of course, the
queries/updates are not completely known. They usually contain parameters
(e.g. in the form :X with a program variable X), in place of constants.
Values for the parameters are known at runtime when the command is executed.

1. Introduction 5/65

Database Services (3)

The data is an important asset of the company.
Hardware/software failures should not lead to a loss or
corruption of data.

Transactions are an important concept to protect the data in the presence
of failures (see below).

Some systems must run 7 days a week, 24 hours a day
(very high availability requirements).

Many users are (usually) working with a DBMS at the
same time. This requires synchronization of concurrent
accesses, e.g., via locks.

1. Introduction 6/65

Database Services (4)

Not every user is allowed to do everything: The DBMS
must manage access rights for each user.

It might also have to identify (authenticate) the users, if this service is not
taken from the operating system.

Other database services are, e.g.:

Integrity enforcement,

views,

stored procedures, triggers,

system catalog (Data Dictionary).

1. Introduction 7/65

Physical Data Independence (1)

Application programs depend only on the logical structure
of the data (e.g. tables and columns).

Queries and updates in SQL do not depend on the way
the data is stored, e.g.

how the tables are distributed over disks,

which access paths / indexes exist,
An index over attribute A of relation R is a data structure that
permits efficient access to the tuples of R with a given value for A.

how free-space management parameters are set.
These determine where on the disk a new row is stored. E.g. it
might be possible that rows are stored clustered by an attribute
(rows with the same value are stored near to each other).

1. Introduction 8/65

Physical Data Independence (2)

SQL is a declarative query language:

An SQL query specifies only what information is sought,

but does not prescribe any particular method how to
compute this information.

Declarative languages often allow simpler/shorter
formulations.

The user does not have to think about efficient execution.

Physical storage details are abstracted away on the SQL level.

1. Introduction 9/65

Physical Data Independence (3)

The DBMS automatically translates the given SQL query
into a query evaluation plan (QEP) which is then
executed to compute the result of the query.

The translation is done by the query optimizer. A QEP is a program for
the execution engine in the DBMS. QEPs is also called access plans or
execution plans. They are similar to relational algebra expressions.

The physical parameters (indexes etc.) do influence the
performance of query evaluation (and the required disk
space).

Certain QEPs depend on the existence of an index.

1. Introduction 10/65

Physical Data Independence (4)

The task of physical DB design is to find good settings
for the physical parameters, e.g. to select indexes.

The physical design needs to be modified from time to
time because

the size of the database objects changes,

the invocation frequency of programs changes,

new applications are developed.

Because of physical data independence, application
programs are not affected by this modification.

1. Introduction 11/65

Performance Tuning

The goal of performance tuning is to meet given
performance requirements. Techniques are:

Modifying the physical design.

Changing parameters of the DBMS or the OS.
E.g. sizes of certain main-memory areas (buffer cache).

Extending the given hardware.
Buying e.g. more main memory or additional disks.

Changing the application programs.

Changing logical design (e.g. denormalization).

Changing business rules (requirements).

1. Introduction 12/65

Transactions (1)

A transaction is a sequence of DB commands, particularly
updates, which the DBMS treats as a unit.

E.g. a transfer of 50 dollars from account 1 to account 2 consists of
(1) checking the current balance/credit limit of account 1,
(2) decreasing the balance of 1 by 50 (debit),
(3) increasing the balance of 2 by 50 (credit).

Transactions have the ACID-Properties:
Atomicity, Consistency, Isolation, Durability.

The successful end of a transaction is marked with the
SQL command COMMIT.

One can explicitly declare the unsuccessful end with the command
ROLLBACK. Implicitly this happens when the program crashes.

1. Introduction 13/65

Transactions (2)

Atomicity:

DBMS guarantee that each transaction is either executed
in total, or not at all.

If the transaction cannot be executed until the end (e.g. because of a
power failure or system crash), the DB state before the transaction has
begun will be restored when the DBMS is started the next time.

As long as the transaction has not been declared as
complete all changes can be undone (ROLLBACK).

I.e. the DBMS needs to log changes / remember old
versions until the transaction is finished.

This is the purpose of the rollback segments in Oracle.

1. Introduction 14/65

Transactions (3)

Durability:

When a DBMS acknowledges the COMMIT, it guarantees
that the changes are durable.

The changes are stored on disk — they are not lost even
if there is a power failure one second later.

In operating systems, one often cannot be sure whether the data is on disk
or still in a buffer. In a typical DBMS (like Oracle), the changes are not
immediately written to the right place on disk, but to sequential file, the
redo log (for efficiency reasons).

Larger DBMS have powerful backup and recovery
mechanisms: Even if a disk fails, no data is lost.

With OS utilities, typically only one backup per day is created.

1. Introduction 15/65

Transactions (4)

Atomicity and Durability Together:

There is one point in time that lies between

the user telling the system that the transaction is
complete (COMMIT), and

the system telling the user that this command was
successfully processed,

when all changes become effective.
If the system crashes before this point, the database state is not changed. If
the system crashes after this point, the database state contains all changes
that the transaction has executed. In a typical DBMS, this is the point
when the entry for the COMMIT is completely contained in the redo log.

1. Introduction 16/65

Transactions (5)

Isolation:

Different processes can access the database concurrently.
Without control, this could have strange effects including
lost updates.

DBMS try to create the impression that every transaction runs in isolation,
i.e. has exclusive access to the complete DB. The theoretical goal of
“Serializability” is not quite reached in practice, some support from the
programmer is needed.

Usually, a DBMS manages locks on database objects
(tables, rows, table entries) for this purpose.

Different types of locks (e.g. shared, exclusive) are used. For the most part,
lock management is done automatically by the DBMS. Locks are typically
kept until the end of the transaction.

1. Introduction 17/65

Transactions (6)

Consistency:

User and system can be sure that the current state is the
result of a sequence of completely executed transactions.

E.g., it is not possible that a tuple was entered into a table, but not into
the index on this table because of a power failure in between.

The user must ensure that each transaction, if applied
fully and in isolation to a consistent state, will produce a
consistent state.

Modern DBMS offer some support for this: Declarative
constraints, triggers, stored procedures.

1. Introduction 18/65

DBMS Architecture: Example

Disk Manager

Buffer Manager

Record and Access Path Manager

Execution Engine

Query Optimizer (→ QEP)

Syntax Analysis (SQL → Internal Form)



Data
Dictionary

Lock
Manager

Logging
Recovery

1. Introduction 19/65

Inhalt

1 DB Services

2 Tasks of the DBA

3 The Oracle Data Dictionary

4 DB Schema Information in Oracle

1. Introduction 20/65

DB Administrator Tasks (1)

The DBA ensures that the DBMS keeps running:

Monitors available disk space, installs new disks.
If disks fill up, the system will come to a standstill.

Ensures that backup copies are made.
Does the recovery after disk failures etc.

Kills sessions of users who locked an important object
and then went to lunch.

Monitors performance, ensures that users do not
monopolize the system.

He/she administers quotas (disk, CPU) and usage rules.

1. Introduction 21/65

DB Administrator Tasks (2)

The DBA ensures security and confidentiality of the data
(some companies have a special security administrator):

The DBA creates new user accounts.
And deletes or locks unused accounts.

The DBA manages access rights to DB objects.

The DBA might do auditing (who did what) and
analyzes the collected data for suspicious events.

The DBA sometimes needs powerful privileges for the OS.
He/she can damage everything.

1. Introduction 22/65

DB Administrator Tasks (3)

The DBA tries to ensure data correctness.

The DBA does performance tuning.
Sometimes, external experts are asked to do this.

The DBA should be an expert for

the DBMS software,
Oracle 8 had ≥ 95 volumes (= 1.70 m) of documentation.

the database schema (or schemas).
In addition, he/she should know the users of the system.

1. Introduction 23/65

DB Administrator Tasks (4)

The DBA installs new versions of the DBMS software.

The DBA is the technical contact point for the DBMS
vendor.

E.g., for support, information about security holes.

The DBA is responsible for keeping the terms of the
software licence agreement.

In all new developments of application programs for this
database the DBA has a say.

1. Introduction 24/65

Inhalt

1 DB Services

2 Tasks of the DBA

3 The Oracle Data Dictionary

4 DB Schema Information in Oracle

1. Introduction 25/65

Data Dictionaries (1)

Most DBMS have a large collection of system tables,
called the “data dictionary” (system catalog).

In Oracle, it contains the following information:

Tables, views, etc. (database schema).

Comments on tables/columns (documentation).

Database Users, Access Rights, Auditing Data.

Indexes, Physical Storage Parameters, File space usage
(e.g. allocation of disk blocks for tables).

Statistical Information, Performance Data.

1. Introduction 26/65

Data Dictionaries (2)

Data dictionaries are very system-dependent.
The tables Oracle uses are completely different from those used in DB2 or
SQL Server. The data dictionary even changed substantially between
different versions of Oracle. However, the SQL-92 standard proposes an
information schema with some standard views (currently only implemented
in SQL Server).

The data dictionary is an important tool for the DBA!
All information that the DBMS has should be available in system tables.
Therefore, to understand all information in the data dictionary is to
understand the system. A seasoned DBA should know many of the data
dictionary tables (at least 50). The Oracle certification exams also contain
exercises that ask for data dictionary tables.

1. Introduction 27/65

Data Dictionaries (3)

Of course, modern DBMS also have a graphical user
interface to the system data, e.g. the Oracle Enterprise
Manager.

Or: http://dbs.informatik.uni-hannover.de/ftp/software/oddis/

However, such tools fetch their information from the data
dictionary.

In addition, they support only browsing of the data. More
complicated evaluations still must be done using SQL
queries (possibly in scripts) to the data dictionary.
E.g. find disks that are nearly full.

1. Introduction 28/65

http://dbs.informatik.uni-hannover.de/ftp/software/oddis/

Example: Catalog (1)

Names of schema objects (e.g. tables, columns) are now
stored as data in the database.

Such data is called “meta-data” (data about data).

In this way, queries to data and meta-data can be
formalized in the same language.

A general query language like SQL is much more powerful than a
specialized set of commands like “describe” in Oracle SQL*Plus.

E.g., this query lists all tables of the current user:
SELECT TABLE_NAME FROM CAT

CAT is a table (view) from the data dictionary.

1. Introduction 29/65

Example: Catalog (2)

E.g., for the guest user SCOTT, CAT looks as follows:

CAT
TABLE_NAME TABLE_TYPE
DEPT TABLE
EMP TABLE...

...

CAT lists also views, sequences, synonyms.
CAT lists all table-like objects (TABLE_TYPE shows the exact type). CAT is
not listed because it is not owned by SCOTT. Sequencs are generators for
unique numbers, for synonyms see below. Both exist only in Oracle.

Note that table names etc. are stored in uppercase!
While normally, case is not important for table and column names, it is
important for string data.

1. Introduction 30/65

Example: Catalog (3)

All table-like objects accessible by the current user are
listed in the data dictionary view “ALL_CATALOG”:

ALL_CATALOG
OWNER TABLE_NAME TABLE_TYPE
SCOTT BONUS TABLE
SCOTT DEPT TABLE...

...
...

SYS USER_CATALOG VIEW
PUBLIC USER_CATALOG SYNONYM
PUBLIC CAT SYNONYM
SYS ALL_CATALOG VIEW
PUBLIC ALL_CATALOG SYNONYM...

...
...

1. Introduction 31/65

Users and Schemas in Oracle

In Oracle, database objects (like tables) are globally identified
by their owner and their name.

The owner is the user who created the object.

Different users can create tables with the same name,
these are different tables in Oracle.

I.e. every user has his/her own database schema. In Oracle, there is a
1:1-mapping between DB schemas and users (accounts). Of course, it is
possible that the same person has two separate user accounts.

If one has read access to the table DEPT owned by SCOTT,
one can access it with

SELECT * FROM SCOTT.DEPT

1. Introduction 32/65

Synonyms in Oracle (1)

The data dictionary is owned by the user SYS.
SYS is the most powerful account in Oracle.

E.g., one can query ALL_CATALOG with
SELECT *
FROM SYS.ALL_CATALOG
WHERE OWNBER = 'SCOTT'

However, Oracle has introduced synonyms (abbreviations,
macros) to simplify this. E.g., try

CREATE SYNONYM DEPARTMENTS FOR SCOTT.DEPT
Then “SELECT * FROM DEPARTMENTS” means actually

SELECT * FROM SCOTT.DEPT

1. Introduction 33/65

Synonyms in Oracle (2)

Normal synonyms are only applicable for commands of
the user who created them.

However, Oracle also has “public synonyms”, which are
available to all users (who do not have a table etc. of the
same name).

Only a DBA can use “CREATE PUBLIC SYNONYM”. Public synonyms appear
in the data dictionary as synonyms owned by the special user “PUBLIC”.

CAT and ALL_CATALOG are such public synonyms.
It is possible to create a table called “ALL_CATALOG”. Then one must use
“SYS.ALL_CATALOG” in order to access the data dictionary “table”.

1. Introduction 34/65

Oracle Data Dictionary (1)

There are three versions of the catalog table:

USER_CATALOG: Table-like objects owned by the current
user.

Columns are TABLE_NAME and TABLE_TYPE. The column OWNER

(present in the other two versions) would always be the current user.

ALL_CATALOG: Table-like objects accessible by the
current user.

DBA_CATALOG: All table-like objects in the system.
Of course, DBA_CATALOG is accessible only to DBAs.

Most data dictionary tables in Oracle exist in three
versions with the prefixes USER, ALL, and DBA.

1. Introduction 35/65

Oracle Data Dictionary (2)

The “real” system tables have a rather unreadable format
for performance reasons.

A system can use any data structure for the system data, as long as it
offers a relational interface to these data. It does not necessarily have to be
the same data structure as used for normal user tables.

However, Oracle has defined many views to give a more
user-friendly (and stable) interface.

The definitions of the data dictionary views are in:
$ORACLE_HOME/rdbms/admin/catalog.sql

USER_CATALOG etc. are views owned by SYS.
They must be views, because otherwise they could not show every user a
different result (the query uses the SQL-function “USER”).

1. Introduction 36/65

Oracle Data Dictionary (3)

In addition, Oracle has defined public synonyms that
simplify the access to these views.

E.g., USER_CATALOG is a public synonym that points to
SYS.USER_CATALOG.

The public synonyms are not defined in all Oracle installations (at least for
the DBA-views). Then one must write, e.g., SYS.USER_CATALOG.

Furthermore, abbreviations have been defined (as public
synonyms) for the most important data dictionary tables.

E.g., CAT is a synonym for SYS.USER_CATALOG.

1. Introduction 37/65

Oracle Data Dictionary (4)

The data dictionary contains also “Dynamic Performance
Views”. Their names start with V$.

In contrast, the above data dictionary views are called the “Static Data
Dictionary Views”.

These “tables” give a relational interface to data
structures of the server (in main memory).

E.g., currently active sessions (users logged into Oracle)
are listed in V$SESSION.

Dynamic performance views use the singular form, whereas the static data
dictionary views normaly use the plural form (e.g., USER_TABLES). This is
inconsistent and confusing.

1. Introduction 38/65

Oracle Data Dictionary (5)

The Oracle Data Dictionary is documented in the “Oracle
Database Reference”.

Don’t mix this up with the “Oracle Database SQL Reference”. Part II is
about Static Data Dictionary Views, Part III about Dynamic Performance
Views. For an introduction, see Chapter 7 of the Oracle Database
Concepts Manual. The real system tables are not documented. However,
one could analyze the view definitions.

The data dictionary tables are read-only to ensure
consistency.

E.g. INSERT cannot be used on system tables. They can only be changed
with specialized commands like CREATE TABLE. As SYS, it might be
possible to update the real system tables, but it is quite likely that this will
destroy the entire database.

1. Introduction 39/65

Data Dictionary (1)

DICT lists all data dictionary tables/views:

DICT
TABLE_NAME COMMENTS
ALL_CATALOG All tables, views, synonyms,

sequences accessible to the user
USER_CATALOG Tables, Views, Synonyms and

Sequences owned by the user
DICTIONARY Description of data dictionary

tables and views
DICT_COLUMNS Description of columns in data

dictionary tables and views
DICT Synonym for DICTIONARY
...

...

1. Introduction 40/65

Data Dictionary (2)

Columns of DICT are:

TABLE_NAME: Name of the table, view, synonym.

COMMENTS: Short description.

In Oracle 9.2.0, it has 508 rows when queried as normal
user, and 1284 rows when queried as DBA.

It is difficult to remember all data dictionary tables, but if
one only remembers DICT and DICT_COLUMNS, one has a
good chance to find the right table.

DICT and DICT_COLUMNS contain meta-meta data.
The schema of the data dictionary. There are no (meta)3-data tables.

1. Introduction 41/65

Data Dictionary (3)

E.g. this query prints all data dictionary objects
containing “CAT” in their name:

SELECT *
FROM DICT
WHERE TABLE_NAME LIKE '%CAT%'

The output in SQL*Plus looks better if the following
formatting commands are entered before the query
(works only in SQL*Plus, is not part of SQL):

COLUMN TABLE_NAME FORMAT A25
COLUMN COMMENTS FORMAT A50 WORD WRAP
SET PAGESIZE 100

1. Introduction 42/65

Data Dictionary (4)

DICT_COLUMNS contains information about the single
columns of the data dictionary tables (views):

DICT_COLUMNS
TABLE_NAME COLUMN_NAME COMMENTS
DICT TABLE_NAME Name of the object
DICT COMMENTS Text comment on the object
DICT_COLUMNS TABLE_NAME Name of the object that

contains the column
DICT_COLUMNS COLUMN_NAME Name of the column
DICT_COLUMNS COMMENTS Text comment on the object
...

...
...

It has 13 375 entries for the DBA, 10 554 for normal users.

1. Introduction 43/65

Inhalt

1 DB Services

2 Tasks of the DBA

3 The Oracle Data Dictionary

4 DB Schema Information in Oracle

1. Introduction 44/65

Database Objects (1)

USER_OBJECTS (synonym OBJ) lists all database objects
(tables etc. like in CAT, but also e.g. indexes, procedures,
triggers) owned by the current user:

OBJ
OBJECT_NAME · · · OBJECT_TYPE CREATED · · ·
DEPT · · · TABLE 29-JAN-98 · · ·
PK_DEPT · · · INDEX 29-JAN-98 · · ·
EMP · · · TABLE 29-JAN-98 · · ·
PK_EMP · · · INDEX 29-JAN-98 · · ·

...
...

...
...

...

1. Introduction 45/65

Database Objects (2)

The most important columns of OBJ are:

OBJECT_NAME: Name of the table, index, etc.

OBJECT_TYPE: E.g. TABLE, INDEX.
OBJECT_TYPE can be: CLUSTER, FUNCTION, INDEX, LIBRARY,
PACKAGE, PACKAGE BODY, PROCEDURE, SEQUENCE, SYNONYM, TABLE,
TRIGGER, TYPE, UNDEFINED, VIEW.

CREATED: Date/Time when object was created.

LAST_DDL_TIME: Last ALTER TABLE, GRANT, etc.

TIMESTAMP: Last change of object specification.
This changes e.g. when a column is added, but it does not change
when constraints are added or a grant is made.

1. Introduction 46/65

Database Objects (3)

Columns of OBJ, continued:

GENERATED: Was object name system generated?
E.g. when the user does not specify a constraint name for a primary
key, the name of the corresponding index will be something like
“SYS_C001284”, and this column will contain a “Y”.

STATUS: VALID, INVALID, or N/A.
Normally, it is “VALID”. But if e.g. a view references a table that is
deleted, the view is not automatically deleted, but its status
becomes “INVALID”.

TEMPORARY: No multi-user sync., no recovery.
Each process/session can see only the data it has placed itself in the
object.

1. Introduction 47/65

Database Objects (4)

Of course, there are also ALL_OBJECTS/DBA_OBJECTS
that list all accessible/all objects of the database.

These have also a column OWNER. All columns: OWNER, OBJECT_NAME,
SUBOBJECT_NAME, OBJECT_ID, DATA_OBJECT_ID, OBJECT_TYPE, CREATED,
LAST_DDL_TIME, TIMESTAMP, STATUS, TEMPORARY, GENERATED.

E.g. when was the table “EMP” created?
SELECT CREATED
FROM OBJ
WHERE OBJECT_NAME = 'EMP'

To see also the time, select the following:
TO_CHAR(CREATED, 'DD.MM.YYYY HH24:MI:SS')

1. Introduction 48/65

Table Columns (1)

USER_TAB_COLUMNS (synonym COLS) describes the
columns of tables owned by the current user:

COLS
TABLE_NAME COLUMN_NAME DATA_TYPE · · · COLUM_ID · · ·
DEPT DEPTNO NUMBER · · · 1 · · ·
DEPT DNAME VARCHAR2 · · · 2 · · ·
DEPT LOC VARCHAR2 · · · 3 · · ·
EMP EMPNO VARCHAR2 · · · 1 · · ·
EMP ENAME VARCHAR2 · · · 2 · · ·
...

...
...

...
...

...
EMP DEPTNO NUMBER · · · 8 · · ·
...

...
...

...
...

...
In Oracle, NUMERIC is called NUMBER, and VARCHAR2 is currently used
instead of VARCHAR. Of course, Oracle understands the SQL-92 type names
and internally translates them to its native types.

1. Introduction 49/65

Table Columns (2)

The most important columns of COLS are:

TABLE_NAME, COLUMN_NAME: Identify the column.

COLUMN_ID: Column position (1,2,. . .) in table.

DATA_TYPE: E.g., CHAR, VARCHAR2, NUMBER, DATE.

DATA_PRECISION, DATA_SCALE: For numeric types.
DATA_PRECISION is the total number of decimal digits, DATA_SCALE

the number of digits after the decimal point. For FLOAT, binary
digits are counted in DATA_PRECISION, and DATA_SCALE is null.

CHAR_COL_DECL_LENGTH: Length of string types.

DATA_LENGTH: Maximum column length in bytes.

NULLABLE: “N” if “NOT NULL”, “Y” otherwise.

1. Introduction 50/65

Table Columns (3)

E.g., list all columns of the table “DEPT”:
SELECT COLUMN_ID, COLUMN_NAME
FROM COLS
WHERE TABLE_NAME = 'DEPT'
ORDER BY COLUMN_ID

In SQL*Plus, the following command shows the columns
of a table together with their types:

DESCRIBE 〈Table〉

As can be expected, there are also ALL_TAB_COLUMNS
and DBA_TAB_COLUMNS.

1. Introduction 51/65

Table Columns (4)

In total, COLS has 25 columns.
TABLE_NAME, COLUMN_NAME, DATA_TYPE, DATA_TYPE_MOD,
DATA_TYPE_OWNER, DATA_LENGTH, DATA_PRECISION, DATA_SCALE,
NULLABLE, COLUMN_ID, DEFAULT_LENGTH, DATA_DEFAULT, NUM_DISTINCT,
LOW_VALUE, HIGH_VALUE, DENSITY, NUM_NULLS, NUM_BUCKETS,
LAST_ANALYZED, SAMPLE_SIZE, CHARACTER_SET_NAME,
CHAR_COL_DECT_LENGTH, GLOBAL_STATS, USER_STATS, AVG_COL_LEN.
The sequence of columns is historically determined: Extensions at the end.

Especially, COLS also contains statistical information
about the columns that is used by the optimizer.

E.g. NUM_DISTINCT contains the number of distinct column values. But
this information is not kept current for performance reasons: Every
transaction would need to lock these data. One must use e.g. the
command “ANALYZE TABLE DEPT COMPUTE STATISTICS”, to create or
update the statistical information for the columns of DEPT (see below).

1. Introduction 52/65

Constraints (1)

USER_CONSTRAINTS lists all constraints on tables that are
owned by the current user.

USER_CONSTRAINTS
OWNER CONSTRAINT_NAME CONSTRAINT_TYPE TABLE_NAME · · ·
SCOTT PK_DEPT P DEPT · · ·
SCOTT SYS_C001293 C DEPT · · ·
SCOTT PK_EMP P EMP · · ·
SCOTT FK_DEPTNO R EMP · · ·

...
...

...
...

...

The columns in a key etc. are listed in the table
USER_CONS_COLUMNS, see below.

1. Introduction 53/65

Constraints (2)

Columns of USER_CONSTRAINTS (slide 1/4):

OWNER: Owner of constraint definition.
This seems to be always the same as the owner of the table. Even if
user A gives the ALTER right on a table to user B, and user B adds a
constraint, still A is listed as owner. Also, even ALL_CONSTRAINTS

has not two owner columns (one for the table and one for the
constraint).

CONSTRAINT_NAME: Name of the constraint.

CONSTRAINT_TYPE: E.g. “P” for primary key.
The complete list of type codes is: C for a check constraint (includes
NOT NULL), P for primary key, U for unique constraint, R for a foreign
key, V for “with check option” in a view declaration, O for “with read
only” in a view declaration.

1. Introduction 54/65

Constraints (3)

Columns of USER_CONSTRAINTS (slide 2/4):

TABLE_NAME: Table on which constraint is defined.

SEARCH_CONDITION: Text of the CHECK-condition.
NOT NULL constraints have “A IS NOT NULL”.

R_OWNER and R_CONSTRAINT_NAME: Referenced key
constraint (for foreign key constraints).

I.e. in order to print the referenced table of a foreign key constraint,
one needs to consider two rows in USER_CONSTRAINTS: One row (X)
for the foreign key, and one (Y) for the referenced key.
Y.TABLE_NAME is the result. Join condition: X.R_OWNER = Y.OWNER

AND X.R_CONSTRAINT_NAME = Y.CONSTRAINT_NAME.

DELETE_RULE: CASCADE or NO ACTION.

1. Introduction 55/65

Constraints (4)

Columns of USER_CONSTRAINTS (slide 3/4):

STATUS: ENABLED or DISABLED.
DISABLED means that the constraint is not checked for new or
modified rows. I.e. it is still in the data dictionary, but is currently
not applied. RELY (see below) together with ENABLED would also
mean that the constraint is not checked.

DEFERRABLE: DEFERRABLE or NOT DEFERRABLE.
For a deferrable constraint, the user can choose to check it at the
end of the transaction instead immediately after every statement.

DEFERRED: IMMEDIATE or DEFERRED.
Default setting for checking this constraint (until the user specifies
something different for his transaction: SET CONSTRAINTS). For a
NOT DEFERRABLE constraint, it can only be IMMEDIATE.

1. Introduction 56/65

Constraints (5)

Columns of USER_CONSTRAINTS (slide 4/4):

VALIDATED: VALIDATED or NOT VALIDATED.
VALIDATED means that all data obeys the constraint. It is possible to
change the constraint from DISABLED to ENABLED without validating
the existing data.

GENERATED: USER NAME or GENERATED NAME.

BAD: Possible Year-2000 problem.

RELY (new in 8i): System assumes that the constraint is
satisfied without actually checking it.

This might be important for query optimization.

LAST_CHANGE: When was it enabled/disabled?

1. Introduction 57/65

Constraints (6)

USER_CONS_COLUMNS: Columns of a key or foreign key, or
referenced in CHECK/NOT NULL constraints.

USER_CONS_COLUMNS
OWNER CONSTRAINT_NAME TABLE_NAME COLUMN_NAME POSITION
BRASS PK_STUDENTS STUDENTS SID 1
BRASS PK_RESULTS RESULTS SID 1
BRASS PK_RESULTS RESULTS CAT 2
BRASS PK_RESULTS RESULTS ENO 3
BRASS FK_RES_STUD RESULTS SID 1
BRASS FK_RES_EX RESULTS CAT 1
BRASS FK_RES_EX RESULTS ENO 2

...
...

...
...

...

1. Introduction 58/65

Constraints (7)

Columns of USER_CONS_COLUMNS:

OWNER, CONSTRAINT_NAME: Identify the constraint.

TABLE_NAME: Table on which constraint is defined.
Redundant: Same as in USER_CONSTRAINTS.

COLUMN_NAME: Column that participates in key, foreign
key, or CHECK-constraint (includes NOT NULL).

POSITION: Sequence number of column in key.
1 for the first column of a composed key or foreign key, 2 for the
second, and so on. The column sequence is not necessarily the same
as the sequence in the table (although that should be avoided).
POSITION is null for CHECK-constraints.

1. Introduction 59/65

Constraints (8)

E.g. print composed primary key of table “XYZ”:

SELECT COL.POSITION, COL.COLUMN_NAME
FROM USER_CONSTRAINTS CON,

USER_CONS_COLUMNS COL
WHERE CON.TABLE_NAME = 'XYZ'
AND CON.CONSTRAINT_TYPE = 'P'
AND CON.OWNER = COL.OWNER
AND CON.CONSTRAINT_NAME = COL.CONSTRAINT_NAME
ORDER BY COL.POSITION

Exercise: Print all tables that contain a foreign key that
references table “XYZ”.

1. Introduction 60/65

Views

USER_VIEWS contains the view-defining queries:
USER_VIEWS

VIEW_NAME TEXT_LENGTH TEXT · · ·
SALESMEN 62 SELECT ENAME, · · ·

SAL+COMM AS SAL
FROM EMP
WHERE JOB = ’SALESMAN’

The column TEXT contains the view-defining query. It has data type LONG

(many restrictions, e.g. it cannot be input for string concatenation “||”).
In SQL*Plus, use e.g. “SET LONG 10000” to see queries up to
10000 characters. TEXT_LENGTH is the string length of the query.

COLS: Shows columns also of views.

USER_DEPENDENCIES: Dependencies of views and
procedures on tables etc. (tables used in a view).

1. Introduction 61/65

Synonyms

Suppose user SCOTT creates a synonym with:
CREATE SYNONYM PRES FOR BRASS.PRESIDENTS

USER_SYNONYMS (or SYN) list all synonyms that were
created by the curent user:

USER_SYNONYMS
SYNONYM_NAME TABLE_OWNER TABLE_NAME DB_LINK
PRES BRASS PRESIDENTS

ALL_SYNONYMS lists all accessible synonyms.

PUBLICSYN lists all public synonyms.

1. Introduction 62/65

Comments (1)

It is possible to store some documentation about tables
and columns in the data dictionary:

COMMENT ON TABLE 〈Table〉 IS ’〈Text〉’
COMMENT ON COLUMN 〈Table〉.〈Column〉 IS ’〈Text〉’

These commands are Oracle-specific.

USER_TAB_COMMENTS contains comments about own
tables and views:

USER_TAB_COMMENTS
TABLE_NAME TABLE_TYPE COMMENTS
EMP TABLE List of all employees

...
...

...

1. Introduction 63/65

Comments (2)

USER_COL_COMMENTS contains comments about the
columns of one’s own tables and views:

USER_COL_COMMENTS
TABLE_NAME COLUMN_NAME COMMENTS
EMP EMPNO Employee number (ID)

...
...

...

All tables and all columns are listed.
If no comment was stored, a null value appears in the
column “COMMENTS”.

Comments can be up to 4000 characters long.

1. Introduction 64/65

References

Ramez Elmasri, Shamkant B. Navathe: Fundamentals of Database Systems, 3rd Ed.
Chapter 17: “Database System Architectures and the System Catalog”,
Chapter 10: “Examples of Relational Database Management Systems: Oracle
and Microsoft Access”

Raghu Ramakrishnan, Johannes Gehrke: Database Management Systems, 2nd Ed.
McGraw-Hill, 2000, ISBN 0-07-232206-3, 906 pages.

H. Garcia-Molina, J. D. Ullman, J. Widom: Database System Implementation.
Prentice Hall, ISBN 0130402648, 672 pages, ca. $60.00

Jason S. Couchman: Oracle8i Certified Professional: DBA Certification Exam Guide
with CDROM. Osborne/ORACLE Press, ISBN 0-07-213060-1, ca. 1257 pages,
ca. $99.99.

Jim Gray, Andreas Reuter: Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, 1993, ISBN 1-55860-190-2, 1070 pages, ca. $84.95

Oracle 8i Concepts, Release 2 (8.1.6), Oracle Corporation, 1999,
Part No. A76965-01.

Oracle 8i Administrator’s Guide, Release 2 (8.1.6), Oracle Corporation, 1999,
Part No. A76956-01.

1. Introduction 65/65

	DB Services
	DB Services

	Tasks of the DBA
	Tasks of the DBA

	The Oracle Data Dictionary
	Introduction to Data Dictionaries
	Catalog
	Oracle Data Dictionary Overview

	DB Schema Information in Oracle
	Database Objects
	Table Columns
	Constraints
	Views
	Synonyms
	Comments
	References

