Prof. Dr. Stefan Brass November 21, 2019
Institut fiir Informatik
MLU Halle-Wittenberg

Databases IIB: DBMS-Implementation
— Exercise Sheet 5 —

Please upload your solution into the StudIP file folder called “Hausaufgabe_5” in the
StudIP entry of the lecture. The deadline is November 26 (the day before the next lecture).

It is permitted to form groups of up two members, but please make sure that both members
can fully explain all homeworks submitted by the group.

Please upload only one file per group. I can unpack archives in zip, tar and rar formats.
Please make sure that unpacking the archive yields a directory with your name(s).

Homework Exercise 5

This exercise continues Homework 2. If you did not submit Homework 2, you have two
options: You can use my solution available at

[http:/ /www.informatik.uni-halle.de/ brass/dbil9/h2/h2.zip|
Alternatively, if you develop your own solution, you will get the point for Homework 2.
Download the file

[http:/ /www.informatik.uni-halle.de/ brass/dbil9/homework /homeworks.txt]|
It contains the data of the example table from Homework 2 (homework points with co-
lumns FIRST_NAME, LAST_NAME, EXERCISE_NO, POINTS). The file contains one line per
table row, and the columns are separated with a vertical bar “|”, e.g. the first line is

Ann|Smith|1]10

Please change your main program from Homework 2 such that it

opens the file,

e reads all lines in the file,

e parses each line and creates an object of your homeworks class,
e stores the object in an array (store at most 100 objects).

e Then write a small query method that prints students (first and last name) with the
maximal number of points for Homework 1.

http://www.informatik.uni-halle.de/~brass/dbi19/h2/h2.zip
http://www.informatik.uni-halle.de/~brass/dbi19/homework/homeworks.txt

Databases IIB: DBMS-Implementation — Exercise Sheet 3 2

Of course, you can define auxiliary functions or even a class (e.g. for the relation). Note
that if you use a class only in one source file, you do not need separate .h and .cpp-files
for the class. Simply define the class in the source file where it is needed.

Working with Files in C++

Here is some information about accessing files:

e There are different ways to access files. The high level C++ class for file input streams
is std: :ifstream. You must include <iostream> and <fstream> for the declaration
of this class. You can find the documentation of this class e.g. here:

[http:/ /www.cplusplus.com /reference/fstream /ifstream/|
An alternative documentation source is
[http:/ /en.cppreference.com/w/cpp/io/basic_ifstream)|

(This really documents a template, of which ifstream is an instance.)

e You open the file by calling the open method of the ifstream object.
[http:/ /www.cplusplus.com /reference/fstream /ifstream /open/|

Its first parameter is the file name, e.g. homeworks.txt. The optional second para-
meter are mode bits. If the file is a binary file, i.e. the system should not replace
Windows line ends (CR-LF: "\r\n") by the UNIX version (LF: *\n’), one can open
it as follows (with an object File of class ifstream):

File.open(filename, std::ios::in|std::ios::binary);

However, this is a text file. Note that if you use an IDE; it might execute the program
in a subdirectory of your project directory (such as Debug for the debug configuration
in Visual C++). One solution would be to specify the full path name (do not forget
to escape “\” as “\\” in the string constant).

e The method open has no return value and does not throw exceptions (unless spe-
cifically requested). Actually, one can program in C++ without using exceptions at
all. One can check File.fail() or File.is_open() after the call to open in order
to check whether the file was successfully opened.

If you want to access the error message of the operating system, the numeric co-
de of the last error is stored in the global variable errno declared by including
<errno.h>. This can be translated to a string with the function strerror declared
in <string.h>, i.e. strerror(errno) should work (at least under Linux). If there
are problems, you can also look for the functions strerror_s and perror.

e One method to read a line from the file into a character array is

http://www.cplusplus.com/reference/fstream/ifstream/
http://en.cppreference.com/w/cpp/io/basic_ifstream
http://www.cplusplus.com/reference/fstream/ifstream/open/

Databases IIB: DBMS-Implementation — Exercise Sheet 3 3

getline(char *buf, std::streamsize bufsize).

The type std::streamsize is system-dependent, it can e.g. be int or a type for
64-bit integers (long long or int64_t defined in stdint.h). An int value for the
second parameter will be ok (it is automatically converted to a larger type if needed).
E.g. one declares the array “char buf [80];” and calls “File.getline(buf, 80);”.

The method reads characters from the input stream until (1) the end of file was
reached, or (2) the end of line was reached, or (3) no more characters fit into the
buffer, i.e. bufsize-1 characters were read. In each case, the string in the buffer will
be terminated with a null byte. The newline >\n’ is not stored in the buffer.

The function returns the stream object itself (which might be helpful for sequences
of getline-operations). The number of characters read in the last such operation
can be accessed with the method gcount (). If the end of file was reached during the
operation, the method eof () will return true. If the line was too long for the buffer,
fail () will return true. If one wants to continue reading, one must reset the state
bits of the stream object with the method clear(). (If bad() should be true, the
stream is corrupted, and one cannot expect that one can continue reading.)

There is also a version of getline with an additional argument for the delimiter
character (actually, there is only one version, but ’\n’ is the default value for the
delimiter). If you prefer, you can use this with the delimiter * |’ for the first fields.
The delimiter will be read from the file, but not stored in the array.

e Streams can be automatically converted to boolean values, and return the negation of
the fail () function in this case. l.e. “while(File.getline(buf, 80))” is possible,
although the function returns a reference to the stream object File. C++ permits
that the programmer defines type conversion functions for own classes. (In this case,
the conversion was actually to void *, but the language treats a null pointer as
false, and all other pointers as true.) Also the operator ! is defined for streams, thus
if (!File.getline(buf, 80)) can be used to print an error message.

e If you want to convert a string to an integer, you can e.g. use the library functions
strtol (“string to long integer”) for standard character pointers or stoi for string
objects. Other alternatives include sscanf (formatted input in C) and streams rea-
ding from strings: istringstream.

The function strtol declared in <cstdlib> has three parameters: The buffer con-
taining the string to be converted (const char*), an address of a pointer which
will be set to point to the next character after the number (char *x), and the
base of the number representation (10 for decimal numbers). If you declare a va-
riable “char *end;” you can write &end for the second parameter. By using this
pointer, one can continue reading further data in the string after the number. The
function returns the converted value as a long. It might be necessary to explicitly
write a cast to int. The function returns O if the input did not start with a digit
(possibly after skipping whitespace). Since this is a valid value, one really should
check whether *end == ’\0’ afterwards (i.e. nothing remains in the string buffer
that was not converted). It is also possible to check for overflows, see e.g.

Databases IIB: DBMS-Implementation — Exercise Sheet 3 4

[https:/ /stackoverflow.com /questions /14176123 /correct-usage-of-strtol|

The function sscanf (declared in <cstdio>) can convert several data items based
on a format string. If one wants to read a single integer, the call would be

int success = sscanf(buf, "%d", &n);

Here buf contains the input, it has type const char *, and one can pass e.g. the
name of an char[] array. The variable n must have type int, and is set to the
conversion result. The function returns the number of successfully converted format
elements, i.e. success will be 1 in the positive case and 0 if the buffer did not
contain a valid number. Note that the conversion is successfull if the buffer starts
with a number, there might be additional characters not used, e.g. "123abc" as first
argument would set n to 123 and return 1.

If you want to check whether a character c is a digit, you can use isdigit(c) defined
in <cctype>.

e At the end, you should close the file with close (). This would give you the option to
check for errors (the method returns no value, but one can call fail() afterwards).
At least for output files, it would be possible that there is still output in the internal
buffer of the stream object, and that an error occurs while this is written to the file.

However, you do not have to close the file, because the destructor of the ifstream
class automatically closes the file if it is still open. This technique to manage the
allocation of a resource with a local variable is called RAII (“resource acquisition is
initialization”).

e It is also possible to use lower level interfaces for working with files. C had file
pointers (type FILE*) defined in <cstdio>.

e There is also a direct interface to the UNIX system calls open, read, write, and
close. These functions work with file descriptors (small integers) to identify files.
Similar functions are available under Windows (there the numbers are called file
handles), but there might be differences in the details and the necessary include files
are different.

On Linux/UNIX, read and write are declared in in unistd.h:
[http://pubs.opengroup.org/onlinepubs/7908799 /xsh /unistd.h.html]

open is declared in fcntl. h:
[http://pubs.opengroup.org/onlinepubs/7908799 /xsh /fentl.h.html]

It might be necessary to include also sys/types.h, sys/stat.h and sys/uio.h.

For Visual Studio on Windows, use the include file io.h and read e.g.

[https://msdn.microsoft.com/en-us/library /z0kc8e3z(v=vs.140).aspx]|

https://stackoverflow.com/questions/14176123/correct-usage-of-strtol
http://pubs.opengroup.org/onlinepubs/7908799/xsh/unistd.h.html
http://pubs.opengroup.org/onlinepubs/7908799/xsh/fcntl.h.html
https://msdn.microsoft.com/en-us/library/z0kc8e3z(v=vs.140).aspx

