
Prof. Dr. Stefan Brass October 31, 2019
Institut für Informatik
MLU Halle-Wittenberg

Databases IIB: DBMS-Implementation

— Exercise Sheet 2 —

Part a) and c) will be discussed in class, you only have to submit Part d). Please upload
your solution into the StudIP file folder called “Hausaufgabe 2” in the StudIP entry
of the lecture (with course ID 06fb9210013971fbdbb78ff1746b744e). The deadline is
November 5 (the day before the next lecture).

It is permitted to form groups of up two members, but please make sure that both members
can fully explain all homeworks submitted by the group. The intention is certainly not
that each member solves only half of the exercises.

Please upload only one file per group. I can unpack archives in zip, tar and rar formats.
Please make sure that unpacking the archive yields a directory with your name(s).

Not all submitted homeworks will be corrected, but all homework exercises will be discus-
sed in class. If you should have questions about your homework, please ask! A precondition
for getting credit for this course is that you submit solutions to two thirds of the home-
works. Obviously wrong or very incomplete submissions do not count.

In-Class Exercises

a) What would you answer to the following questions in an oral exam?

• Please explain the concept of physical data independence. Name some reasons
why it might be necessary that the physical design of a database is modified.

• Please explain the concept of transactions. What are the main properties the
DBMS must ensure, and what are typical techniques for doing this?

• What are the modules/components/layers in a typical DBMS architecture? What
are the steps in which an SQL query is processed?

• What are the advantages that the meta-data (e.g. the database schema) is stored
as data in the system catalog (data dictionary)?

• What are typical tasks of a database administrator (DBA)?

• Name and explain at least one table/view of the Oracle data dictionary.

• Where can you get more information about tables/views of the Oracle data
dictionary? Suppose you are looking for data dictionary tables containing infor-
mation about privileges (access rights). How would you find the right table?

• What is the difference between user_*, all_*, dba_*, and V$* tables/views in
the oracle data dictionary?

https://studip.uni-halle.de/dispatch.php/course/overview?cid=06fb9210013971fbdbb78ff1746b744e


Databases IIB: DBMS-Implementation — Exercise Sheet 2 2

• How are tables/views inside an Oracle database identified (the table name alone
is not sufficient if one looks at all tables stored inside an Oracle database)?

• How can I refer to a table of a different user in an SQL query in Oracle?

• What is a “synonym” in Oracle? What is the purpose of “public synonyms”?

• What are some differences between the languages C++ and Java? (If you did
not learn Java before, you can replace some other programming language or
concentrate on the specific features of the C++ language.) Discuss some positive
and negative aspects of both languages if one wants to implement a DBMS.

b) Please read some information about “Adminer”, a web-interface to different database
systems.

[https://www.adminer.org/]

The web address of our lab database and account information will be sent to the
participants via EMail. At the moment, the user account has not yet DBA rights (it
is a normal Oracle user account). You will get DBA rights later.

Adminer has the menu item “SQL Kommando” on the left side near the top. If you
click on this link, you get a text area where you can enter SQL commands. Click on
“Ausführen” to execute the command.

In addition to the personal account, I created one test account to which all participants
have access. In this way, you can experiment with access rights. Please do not change
tables in this account. Send me an EMail if something does not work.

Note that the menu for databases in Adminer actually shows tablespaces. Adminer
was originally made for other systems such as MySQL and somehow they mapped
Oracle concepts to the existing menus.

I already installed the EMP-DEPT database in the test account and gave read access
to PUBLIC. I also created the example tables from the course “Databases I”. Your own
account is empty, but Adminer permits you to “Import” SQL-Scripts such as

[http://users.informatik.uni-halle.de/˜brass/dbi19/sql/empdept.sql]

Note that you must uncheck “Bei Fehler anhalten” (“Stopp on Error”), because the
script contains DROP TABLE commands at the beginning for all tables that it later
creates. This permits to execute the script repeatedly, e.g. when one has deleted some
data. But on the first run it will give error messages.

You can get a list of all tables with

SELECT * FROM CAT;

Try this. Then do the following exercise.

https://www.adminer.org/
http://users.informatik.uni-halle.de/~brass/dbi19/sql/empdept.sql


Databases IIB: DBMS-Implementation — Exercise Sheet 2 3

c) This is not an official homework, but it will help you to repeat contents of the lecture.

Please write an SQL query that shows all foreign keys of tables owned by the test
account. More precisely, the query should list foreign key columns (table, position in
foreign key, column name) and the referenced key columns (table and column name).

Homework Exercises

d) Consider homework results as in the following table:

HOMEWORKS

FIRST_NAME LAST_NAME EXERCISE_NO POINTS

Ann Smith 1 10

Ann Smith 2 8

Michael Jones 1 9

Michael Jones 2 9

Richard Turner 1 5

Please define a C++ class for objects that correspond to a single row in the table, i.e. it
has an attribute for each of the four columns. The requirements are as follows:

• The column values are set in the constructor.

• The attributes should be private, so that they cannot be changed from outside
the class.

• There should be four methods (without parameters) for read access to the attri-
butes (get-methods). You can choose the names of class and methods yourself.

• You should not use the string class, but classic “C-like” strings (char-arrays).
An important requirement is that the constructor copies the strings. It gets a
const char * for the string-valued attributes, but that might point to an input
buffer which is overwritten for the next line read from a file (we do reading from
a file next week). Therefore, it does not suffice to store only the pointer in the
object! You can assume that the names are not longer than 20 characters. If the
constructor should be called with strings longer than this limit, it can simply cut
off the remaining part (you may print a warning to cout when this happens, error
handling will be discussed later). In no case array boundaries may be violated!
If you prefer to allocate memory dynamically (with new), you can allocate as
much as necessary, and copy also strings of length > 20. Do not forget to free
dynamically allocated memory again (with delete) in the destructor!

• Write the class definition into a header file (.h), and the implementation of the
constructor into the corresponding .cpp-file. You can choose yourself where you
want to specify the implementation of the get-methods.

• Write a small main-Program to test your class. It should construct two objects
and print the result of some calls to the get-Methods. The main-Program should
be contained in the third source file.


