
6. Query Evaluation 6-1

Part 6: Query Evaluation
References:
• Elmasri/Navathe: Fundamentals of Database Systems, 3rd Ed.,

Chap. 18: “Query Processing and Optimization”

• Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Ed., Chap. 12: “Query
Processing”

• Ramakrishnan/Gehrke: Database Management Systems, 2nd Ed., Mc-Graw Hill, 2000,
Chap. 11: “External Sorting”, Chap. 12: “Evaluation of Relational Operators”,

• Kemper/Eickler: Datenbanksysteme (in German), Chap. 8, Oldenbourg, 1997.

• Härder/Rahm: Datenbanksysteme — Konzepte und Techniken der Implementierung (in
German), Springer, 1999.

• Garcia-Molina/Ullman/Widom: Database System Implementation. Prentice Hall, 1999,
ISBN 0130402648, 672 pages.

• Oracle 8i Concepts, Release 2 (8.1.6), Oracle Corporation, 1999, Part No. A76965-01.
Chapter 21: “The Optimizer”.

• Oracle 8i Designing and Tuning for Performance, Release 2 (8.1.6), Oracle Corporation,
1999, Part No. A76992-01.

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

• Brass: Skript zur Vorlesung Informationssysteme II (in German), Univ. Hildesheim, 1997.
http://www-db.informatik.uni-hannover.de/~sb/isII/

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-2

Objectives

After completing this chapter, you should be able to:

• explain what a query evaluation plan (QEP) is.

• explain pipelined evaluation and why sorting needs

temporary (disk) space.

• explain different algorithms for implementing joins.
Especially nested loop join and merge join.

• read and explain Oracle QEPs.
If a query performs poorly, you need to be able to understand why.

• develop different query evaluation plans for a given

query and assess their merits.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-3

Overview

1. Query Evaluation Plans, Pipelined Evaluation

2. Sorting

3. Algorithms for Joins

4. Operators in Oracle’s Execution Plans

5. Appendix: Details, Program Code, Tricks

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-4

Introduction (1)

• A query evaluation plan (or “execution plan”) QEP

is a program for an abstract machine (interpreter)

inside the DBMS.
Another name is “access plan” (the DBMS has to decide how to
access the rows, e.g. whether to use an index).

• QEPs are internal representations of the query pro-

duced by the query optimizer.
By executing the QEP, the query result is computed. Whereas SQL
is declarative, QEPs describe a concrete way for evaluating teh query.

• In most systems, QEPs are similar to relational al-

gebra expressions (very system dependent).

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-5

Introduction (2)

• In this chapter, we use a standard example database

from Oracle about employees and departments:

EMP(EMPNO, ENAME, JOB, SAL, MGR→EMP, DEPTNO→DEPT)

DEPT(DEPTNO, DNAME, LOC)

• Consider the following SQL query:

SELECT ENAME, DNAME

FROM EMP, DEPT

WHERE EMP.DEPTNO = DEPT.DEPTNO

AND JOB = ’MANAGER’

• In relational algebra, this is:

πENAME, DNAME(σJOB=’MANAGER’(EMP) DEPT)

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-6

Introduction (3)

• Complex relational algebra expressions are best dis-

played as “operator trees”:

πENAME, DNAME

σJOB=’MANAGER’

EMP

DEPT

This shows the flow of data. One can view relations/tuples as being
pushed from the base relations in the leaf nodes through the relational
algebra operators towards the root, where the final result is computed.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-7

Examples of Oracle QEPs (1)

1
MERGE JOIN

[EMP.DEPTNO = DEPT.DEPTNO]

2
SORT

(JOIN)

4
SORT

(JOIN)

3 TABLE ACCESS
(FULL)

DEPT

5 TABLE ACCESS
(FULL) EMP

[JOB = ’MANAGER’]

(Oracle does not show the small annotations in [. . .].)

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-8

Examples of Oracle QEPs (2)

1
NESTED LOOPS

[→ EMP.DEPTNO →]

2 TABLE ACCESS
(FULL) EMP

[JOB = ’MANAGER’]

3 TABLE ACCESS
(BY ROWID)

DEPT

CREATE UNIQUE INDEX I_DEPT
ON DEPT(DEPTNO)

4 INDEX
(UNIQUE SCAN)

I_DEPT
[DEPT.DEPTNO = EMP.DEPTNO]

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-9

QEPs vs. Relational Algebra

• Some typical differences to relational algebra are:

� There are different implementations of the same

relational algebra operator.
E.g. “MERGE JOIN” is a special way to evaluate a join.

� An implementation has to work with lists of tu-

ples instead of relations (sets of tuples).
E.g. sorting and duplicate elimination are done explicitly.

� Indexes and ROWIDs appear explicitly.

� Some operations are combined.
E.g. the full table scan operator can also do a selection, and the
projection does not appear explictly.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-10

Viewing Oracle QEPs (1)

• First, create a table “PLAN_TABLE” in which Oracle

will store information about the QEP.

The table must exist under the account of each user who wants to
view QEPs. It has prescribed columns, see slide 6-6-12 for details.

• The simplest way to do this is to execute the script

$ORACLE_HOME/rdbms/admin/utlxplan.sql

• Then enter the following command in SQL*Plus:

SET AUTOTRACE ON EXPLAIN

Then Oracle will show information about the QEPs for all following
queries (not all details, only the structure). If one logs out from
SQL*Plus, the AUTOTRACE is forgotten, but the PLAN_TABLE still exists.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-11

Viewing Oracle QEPs (2)

• The output you get from AUTOTRACE is not in graph-

ical form as shown above, but in textual form:

Execution Plan

0 SELECT STATEMENT Optimizer=CHOOSE
1 0 MERGE JOIN
2 1 SORT (JOIN)
3 2 TABLE ACCESS (FULL) OF ’DEPT’
4 1 SORT (JOIN)
5 4 TABLE ACCESS (FULL) OF ’EMP’

The first number identifies the tree node (shown above in the upper
left corner), the second number is the parent node.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-12

Details: Plan Table (1)

EXPLAIN PLAN command:

• An alternative to “SET AUTOTRACE ON” is to use

EXPLAIN PLAN FOR 〈SQL QUERY〉
Then Oracle prints only “Explained”. It does not execute the query
and does not automatically show the QEP. But information about
the QEP is stored in the PLAN_TABLE (can be retrieved with SQL).
The rows should normally be deleted before the next EXPLAIN PLAN.

• The PLAN_TABLE can contain rows for several QEPs,

then one should use e.g.

EXPLAIN PLAN SET STATEMENT_ID = ’MyFirstQuery’

FOR SELECT ... FROM ... WHERE ...

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-13

Details: Plan Table (2)

• The PLAN_TABLE contains one row for each node in

the QEP(s) stored in it.

More precisely, not the QEP is stored in it, but only some information
about the general QEP structure. Oracle does not show all details of
the QEP (e.g. selection conditions).

• Columns of the PLAN_TABLE:

� STATEMENT_ID: Used to distinguish the rows be-

longing to execution plans for different queries.

Normally the PLAN_TABLE contains only one plan and STATEMENT_ID

is null. But see SET STATEMENT_ID above.

� TIMESTAMP: Time when EXPLAIN PLAN was issued.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-14

Details: Plan Table (3)

• Columns of the PLAN_TABLE, continued:

� The following three columns describe the tree

structure of the QEP: Which node gets input

from which other node?

� ID: Number which identifies this node in the tree.

� PARENT_ID: ID of the parent node.

The parent node gets input from this node.

� POSITION: Order of child nodes from left to right.

� REMARKS: Normally null (can be set with UPDATE).

� OPTIMIZER: Current mode of the optimizer.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-15

Details: Plan Table (4)

• Columns of the PLAN_TABLE, continued:

� The following columns describe operations.

� OPERATION: E.g. “TABLE ACCESS”, “MERGE JOIN”.

� OPTIONS: E.g. “FULL” for operation “TABLE ACCESS”.

� OBJECT_OWNER, OBJECT_NAME: Identifies the table or

index used in the operation.

Null for operations which get input only from their children.

� OBJECT_INSTANCE: Position of table in the FROM-list.

E.g. useful if there are two tuple variables over one table.

� OBJECT_TYPE: “UNIQUE”/“NON-UNIQUE” for indexes.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-16

Processing of QEPs (1)

• A QEP is a tree with operations attached to nodes.

• Every node computes a relation which is passed as

input to its parent node (up in the tree).

• The relation computed by the root node is returned

to the user as the answer to the given SQL query.

• The leaf nodes access tables or indexes to compute

their relation.

• Operations in other nodes process or combine re-

lations which they get from their child nodes.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-17

Processing of QEPs (2)

• Such a tree representation is known for arithmetic

expressions. For example: (x− y) + 5 ∗ z
+

−

x y

∗

5 z

• Arithmetic expressions are usually compiled by us-

ing registers as temporary storage:

R1 := x + y;
R2 := 5 * z;
R1 := R1 + R2; // R1 contains now result

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-18

Processing of QEPs (3)

• It would be possible to

� compute every operation at once completely,

� store the result in a temporary relation, and

� let the parent operation read this relation.

• This corresponds to the compilation of arithmetic

expressions with registers as temporary storage for

intermediate results:

R1 := σJOB=’MANAGER’(EMP);
R2 := R1 DEPT;

R3 := πENAME, DNAME(R2);
print R3;

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-19

Processing of QEPs (4)

• However, in this way a lot of memory is needed for

the intermediate results.

• Sometimes intermediate results are so large that

they have to be written to disk and then read again.

• But one can eliminate nearly all temporary storage

since most operations work “tuple by tuple”.

Sorting is an exception (see next section).

• In the example, when the join has computed some

tuple, one can immediately compute the projection

result for that tuple (instead of first storing it).

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-20

Processing of QEPs (5)

• Most operations compute tuples only on demand

(when the parent node needs them), and only one

tuple at a time.
E.g. the join node requests a tuple from the selection node. In order
to satisfy the request, it requests a tuple from the relation EMP and
checks the condition JOB=’MANAGER’. If the condition is satisfied, it
returns the tuple and is done. If not, it requests another tuple from
the relation EMP.

• Thus, tuples flow immediately from the child to

the parent, even before the child has computed the

complete result.

• This is called “Pipelined/Lazy Execution”.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-21

Pipelined Eval.: Interface (1)

Interface of QEP Nodes (Example):

• The interface is very similar to an SQL cursor.

One opens the relation that is the result of this operation, fetches
every tuple in a loop, and closes it. (Other names:“scan”, “iterator”).

• In object-oriented terms, there is an abstract class

QEP_Node, with subclasses for every kind of operator.

E.g. QEP_Node_Selection or QEP_Node_Merge_Join.

• Constructor: This creates a new QEP node. The

parameters depend on the type of operation.

E.g. a the constructor for QEP_Node_Selection needs the child QEP
node and the selection condition.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-22

Pipeline Eval.: Interface (2)

• open: Open input.

This method may have parameters (depending on the type of opera-
tion). E.g. the search values for an index scan.
In this way, Information can also flow down in the tree.

• next: Advance input to next tuple.

Returns false if end of input.

• attr(i): Value of i-th attribute of current tuple.

This returns a pointer to the attribute value. In this way we avoid
constructing an entire new tuple for the result.

• close: Close input. It may then be opened again.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-23

Pipelined Eval.: Interface (3)

Less common operations:

• save/restore: Remember the current position in

the stream of result tuples / switch back to it.

Needed for merge join if duplicate values on both sides (× for subset).

• back: Switch back to previous result tuple.

This operation is inverse to next. Needed for zig-zag nested loop join.

• num_attrs: Number of attributes in the result.

• size/cost: Estimates for number of tuples in the

result and the runtime needed for computing them.

This is useful for query optimization.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-24

Example: Selection (1)

• Suppose we want to implement a simple selection

of the form σAttr = V al(Input).
In a real system we must be able to pass any condition on tuples (with
¬, ∨, ∧ and <, >, like, is null, . . .).

• QEP_Node_Selection(Input, AttrNo, Val):

The constructor stores the three parameters in in-

stance variables (attributes) of this object.

• open():
Input->open(); // Simply pass to child node

• close():
Input->close();

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-25

Example: Selection (2)

• next():
bool End_of_Input;
End_of_Input = Input->next();
while(!End_of_Input

&& Input->attr(AttrNo) != Val)
End_of_Input = Input->next();

return(End_of_Input);

• attr(i):
return(Input->attr(i));

• num_attrs():
return(Input->num_attrs());

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-26

Overview

1. Query Evaluation Plans, Pipelined Evaluation

2. Sorting

3. Algorithms for Joins

4. Operators in Oracle’s Execution Plans

5. Appendix: Details, Program Code, Tricks

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-27

Temporary Storage (1)

• Not all operations can compute their results “on

demand”.

• E.g. a sort operation needs to see all input tuples

before it can return the first result tuple.

Otherwise it is possible that a tuple which is earlier in the sort order
is still to come.

• Thus, a sort operation needs temporary space for

storing all input tuples.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-28

Temporary Storage (2)

• Of course, the sort operation has the same external

interface as all other QEP nodes.

open, next, close, . . .

• However:

� During the open, it will already read and sort all

its input tuples (i.e. the real work is done here).

� Then later requests for the next result tuple will

be answered from the intermediate storage.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-29

Temporary Storage (3)

• Sometimes it would also be good to materialize

other intermediate results which have to be read

more than once (e.g. in a nested loop join).

Some systems have a special operator for doing this (“Bucket”). But
Oracle seems to use intermediate space only for sorting.

• In Oracle, the maximal size of temporary storage

that a single sort operation can request in memory

is set by the initialization parameter SORT_AREA_SIZE.

• If the space needed for sorting is larger, Oracle will

use temporary segments on disk.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-30

Temporary Storage (4)

• The current value of this parameter is shown with:

SELECT VALUE
FROM V$PARAMETER
WHERE NAME = ’sort_area_size’;

On our UNIX systems, the default is 65536 Bytes.

• The parameter can be changed with

ALTER SESSION SET SORT_AREA_SIZE = 131072;

The memory is taken from the Program Global Area (PGA), i.e. inside
the dedicated server process, not from the SGA. However, in the
multithreaded server configuration, it is taken from the SGA.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-31

Temporary Storage (5)

• After the sort is done, the sorted rows must be

temporarily stored until they are fetched.

• SORT_AREA_RETAINED_SIZE controls how much mem-

ory can be used for this purpose.

By default, this parameter is the same as SORT_AREA_SIZE. But if mem-
ory is scarce, it should be used for running sorts rather than afterwards
when the rows only wait to be fetched.

• There are more initialization parameters controlling

the sorting.

SELECT NAME, VALUE, DESCRIPTION FROM V$PARAMETER

WHERE NAME LIKE ’%sort%’

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-32

Temporary Storage (6)

• Temporary segments can be allocated in any ta-

blespace, but it is better to use a special “tempo-

rary tablespace”.
The storage parameters for the temporary segments are inherited
from the tablespace in which they are allocated. INITIAL should be a
multiple of the SORT_AREA_SIZE plus one block for the segment header.

• The tablespace used for temporary segments can

be defined separately for each user.
See CREATE USER statement. It can be changed with ALTER USER.

• Information about temporary segments is available

in V$SORT_SEGMENT and V$SORT_USAGE.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-33

Performance Statistics (1)

• How many sorts in the current session were done

in memory? How many on disk? And how many

rows were sorted?

SELECT X.VALUE, Y.NAME
FROM V$SESSTAT X, V$STATNAME Y, V$SESSION Z
WHERE X.STATISTIC# = Y.STATISTIC#
AND Y.NAME LIKE ’%sort%’
AND X.SID = Z.SID AND Z.USERNAME = USER

There is also a table V$SYSSTAT which contains accumulated counts
since the DBMS was last started. These statistics are also contained
in the report produced by utlbstat.sql/utlestat.sql (see above).

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-34

Performance Statistics (2)

• After SET AUTOTRACE ON, SQL*Plus prints not only

the QEP for every query, but also performance

statistics (including information about sorts).

SET AUTOTRACE ON STATISTICS prints only the statistics.

• The role PLUSTRACE gives access to some dynamic

performance views. It must be granted to all users

who should be able to use this feature.

It contains access to sys.v_$sesstat, sys.v_$statname, sys.v_$session.
To declare this role, the DBA (user SYS) must execute the script
plustrce.sql. It is located in $ORACLE_HOME/sqlplus/admin.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-35

Sort Algorithm (1)

• Sorting is needed quite often, and it is a relatively

expensive operation.

• Thus, many thoughts were put into developing an

efficient sort algorithm, and new improvements are

still proposed in the literature.

• Sorting with external memory is usually based on

the merge sort algorithm, which you should know

from your data structures course.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-36

Sort Algorithm (2)

• Mergesort is based on the notion of “runs”, which

are already sorted sequences of elements.

• E.g. when you want to sort n elements, you start

with n runs of length 1.

• Then you always merge two such sorted sequences

(“runs”) of length l to one sorted sequence of

length 2 ∗ l.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-37

Sort Algorithm (3)

• The merging can be done in linear time: You look

at the first element of both runs, take the smaller

one and put it into the output. Repeat this until

both runs are empty.

• Since the size of the runs doubles every time, you

need a logarithmic number of iterations until you

have only one run which contains all elements. →
Complexity O(n ∗ log(n)).

You can implement it with four files: Two for the input runs and
two for the output runs. Output runs are written to the two files in
alternating fashion so that they contain the same number of runs.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-38

Example (Basic Mergesort)

• Input (16 runs of length 1):

12 5 9 20 16 18 3 7 17 10 2 25 13 15 6 8

• After first step (8 runs of length 2):

5 12 9 20 16 18 3 7 10 17 2 25 13 15 6 8

• Second and third step:

5 9 12 20 3 7 16 18 2 10 17 25 6 8 13 15

3 5 7 9 12 16 18 20 2 6 8 10 13 15 17 25

• After fourth step (1 runs of length 16: final result):

2 3 5 6 7 8 9 10 12 13 15 16 17 18 20 25

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-39

Example (Merging of Runs)

• One first compares the first elements of both runs:

5 9 12 20 3 7 16 18

• 3 is smaller, so it is written to the output and the

current position in the second file is moved forward:

5 9 12 20 3 7 16 18 → 3

• Now 5 is smaller, and written to the output:

5 9 12 20 3 7 16 18 → 3 5

And so on (exercise). When the end of file is reached on one side,
the rest of the other side is written to the output.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-40

Sort Algorithm Optimizations

• There are many optimizations to Mergesort, e.g.:

� One tries to produce large initial runs by sort-

ing chunks of the given elements in the available

main memory. The longer the initial runs, the

less iterations are needed later.
Once a block of such an initial run was written to disk, one can
reuse the memory page for more input elements. New elements
which happen to be greater than the greatest element already
written to the output can still become part of the current run.

� If one has k buffer frames available during the

merge phase, one merges k − 1 runs instead of

only 2 runs.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-41

Overview

1. Query Evaluation Plans, Pipelined Evaluation

2. Sorting

3. Algorithms for Joins

4. Operators in Oracle’s Execution Plans

5. Appendix: Details, Program Code, Tricks

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-42

Nested Loop Join (1)

• The nested loop join

� looks at all combinations of tuples from both

relations,

� evaluates the join condition, and

� returns those combinations for which the condi-

tion is true.

• R
Ai=Bj

S is evaluated similarly to σAi=Bj(R×S) but

without materializing the intermediate result of ×.

Our pipelined evaluation anyway wouldn’t materialize the result, but
we nevertheless save many function calls.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-43

Nested Loop Join (2)

• Without the pipelined evaluation, the algorithm for

R
Ai=Bj

S looks as follows:

(1) foreach tuple t = (d1, . . . , dn) in R do
(2) foreach tuple u = (e1, . . . , em) in S do
(3) if di = ej then
(4) output t ◦ u = (d1, . . . , dn,
(5) e1, . . . , em);
(6) fi;
(7) od;
(8) od;

• Thus the name “nested loop”.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-44

Nested Loop Join (3)

• If both relations have approximately n tuples each,

n2 tuple combinations are checked.

• Thus, the nested loop join needs quadratic time,

i.e. its complexity is O(n2).

• The merge join (see below) is asymptotically faster:

It has complexity O(n ∗ log(n)).

• However, the nested loop join works for arbitrary

join conditions, not only equality conditions.

The merge join and other specialized join methods work only with
equality conditions like A = B.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-45

Merge Join (1)

• The merge join works very similar to merge sort.

• Both input relations must be sorted on the join

attribute.

• Then the algorithm does a parallel pass on both

relations:

� It advances always the scan with the smaller

value in the join attribute.

That value cannot have a join partner on the other side, since all
following values there will be even bigger than the current one.

� In this way it finds all matches (equal values).

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-46

Merge Join (2)
R
Ai=Bj

S:

(1) open(R); open(S);
(2) read t = (d1, . . . , dn) from R;
(3) read u = (e1, . . . , em) from S;
(4) while not eof(R) and not eof(S) do
(5) if di < ej then
(6) read t = (d1, . . . , dn) from R;
(7) else if di > ej then
(8) read u = (e1, . . . , em) from S;
(9) else /* di = ej */

(10) output t ◦ u = (d1, . . . , dn, e1, . . . , em);
(11) read u = (e1, . . . , em) from S;

This program code assumes that Ai is a key in R. Therefore, after a match
is found, the other side S is advanced for a possible further match.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-47

Example (Merge Join)

Selection on EMP

EMPNO ENAME DEPTNO

7782 CLARK 2
7839 KING 2
7934 MILLER 2
7369 SMITH 3
7876 JONES 3
7788 SCOTT 3
7566 ADAMS 6
7499 ALLEN 7
7654 MARTIN 7

DEPT

DEPTNO DNAME

1 ACCOUNTING
2 RESEARCH
3 SALES
4 OPERATIONS
7 SHIPPING

ADAMS violates the foreign key, but makes the example more interesting.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-48

Merge Join (4)

• The time needed for the join itself is linear in the

size of the two relations.
We assume again that the join attribute on one side is a key of that
relation, so there are no duplicate values on that side. If duplicate
values were allowed on both sides, the extreme case (a single value
repeated n times) would always lead to quadratic complexity: This
would simply be a kartesian product.

• If we have to sort them, the total complexity is

O(n ∗ log(n)).
In comparison, the runtime (CPU time) of the nested loop join is
always quadratic in the sizes of the input relations. The number
of block accesses is only quadratic if neither one fits into memory.
However, the merge join works only for equality conditions.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-49

Index Join

• Suppose we have to compute R
A=B

S and that

there is an index on S(B).

• Then we can loop over all tuples in R and locate

the corresponding tuples from S via the index.

• Since every access to S via the index potentially

needs one or more block accesses, this is only useful

if R contains only relatively few tuples (less tuples

than S has blocks).
Otherwise the merge sort is better.
The index is also useful if S is small and will be completely buffered,
but then there probably should be no index.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-50

Hash Join (1)

• The idea of the hash join is to partition both rela-

tions into small pieces by applying a hash function

to the join attribute.

• Possible matches can only occur between tuples

with the same hash value. Only such tuple combi-

nations must be tried, not all tuple combinations.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-51

Hash Join (2)

• The partitioning is done such that the smaller parts

fit into main memory.

• If needed, the partitioning step is iterated.

• Then a hash table is built in memory for each such

partition and an index join is done with the corre-

sponding partition of the other table.

• The result is the union of the joins of the pairs of

partitions with the same hash value.

Stefan Brass: Datenbanken IIB Universität Halle, 2015

6. Query Evaluation 6-52

Hash Join (3)

Example: hash(row) =

 1 if DEPTNO odd
2 otherwise

Selection on EMP

EMPNO ENAME DEPTNO

7369 SMITH 3
7499 ALLEN 7
7654 MARTIN 7
7788 SCOTT 3

7782 CLARK 2
7839 KING 2
7566 ADAMS 6
7934 MILLER 2

DEPT

DEPTNO DNAME

1 ACCOUNTING
3 SALES
7 SHIPPING

2 RESEARCH
4 OPERATIONS

Stefan Brass: Datenbanken IIB Universität Halle, 2015

