
Dr. Stefan Brass July 26, 2001
School of Information Sciences
University of Pittsburgh

INFSCI 2711 “Database Analysis and Design”

— Example II for Final Exam: Solutions —

General Remarks

• The average was 23.7 points out of 36. The maximum reached was 31.5 points.
Every student got 7 bonus points, which moves the average to 30.7.

• Many students said that the time was not sufficient, that they had no idea how the
questions would look like, and that query optimization was treated too shortly before
the exam in class.

• In retrospecitive, I also regret the system which gives no credit for partially correct
answers. If I do “multiple choice” again, I will make sure that only one answer in
every exercise has to be checked.

• Of course, I will try to make the exam for this class better (easier).

• Students also said that they learnt a lot going over this exam again in class. So the
questions were actually interesting.

Exercise 1 (SQL Errors) 6 Points

Suppose we want to find customers who have rented at least two times a “Star Wars”
cassette. Let us assume that there are different such cassettes, but all contain the substring
“Star Wars” in their title.

a) SELECT C.NAME

FROM CUSTOMER C, RENTED X, RENTED Y, VIDEO V

WHERE C.CUST_NO = X.CUST_NO AND C.CUST_NO = Y.CUST_NO

AND X.VID_NO = V.VID_NO AND Y.VID_NO = V.VID_NO

AND V.TITLE LIKE ’%Star Wars%’

2x Wrong, Reason: This gives all customers who have rented at least one Star
Wars Video.

X.VID_NO=V.VID_NO and Y.VID_NO=V.VID_NO imply that X.VID_NO=Y.VID_NO, so
both “RENTED” events refer to the same Video-cassette. Also, there is nothing which
would prevent X and Y to point to the same row in the table RENTED. In such cases,



INFSCI 2711 “Database Analysis and Design” — Solution for Final Exam II 2

you would need an inequation like X.START_DATE <> Y.START_DATE. However, here
this would not solve the problem, since you also need two tuple variables over VIDEO.
A corrected version is:

SELECT C.NAME

FROM CUSTOMER C, RENTED X, RENTED Y, VIDEO V, VIDEO W

WHERE C.CUST_NO = X.CUST_NO AND C.CUST_NO = Y.CUST_NO

AND X.VID_NO = V.VID_NO AND Y.VID_NO = W.VID_NO

AND V.TITLE LIKE ’%Star Wars%’ AND W.TITLE LIKE ’%Star Wars%’

AND (X.START_DATE <> Y.START_DATE OR X.VID_NO <> Y.VID_NO)

b) SELECT C.NAME

FROM CUSTOMER C

WHERE 2 <= (SELECT COUNT(*) FROM VIDEO V

WHERE V.TITLE LIKE ’%Star Wars%’)

2x Wrong, Reason: This gives all customers if the database contains at least two
“Star Wars” video cassettes.

The subquery is uncorrelated to the main query. Of course, we want to count in the
subquery the number of Star Wars videos rented by the current customer in the outer
query. But the subquery does not refer to C at all. A corrected version is:

SELECT C.NAME

FROM CUSTOMER C

WHERE 2 <= (SELECT COUNT(*)

FROM RENTED R, VIDEO V

WHERE R.CUST_NO = C.CUST_NO

AND V.VID_NO = R.VID_NO

AND V.TITLE LIKE ’%Star Wars%’)

c) SELECT C.NAME

FROM CUSTOMER C, RENTED R, VIDEO V

WHERE C.CUST_NO = R.CUST_NO AND R.VID_NO = V.VID_NO

AND V.TITLE LIKE ’%Star Wars%’

GROUP BY C.CUST_NO, C.NAME

HAVING COUNT(*) >= 2

2x Correct

Listing also CUST_NO in the GROUP BY treats different customers with the same name
as different (so if both have rented a “Star Wars” cassette once, their name is not
printed. However, if this can really happen. the customer number should also be
listed under SELECT.



INFSCI 2711 “Database Analysis and Design” — Solution for Final Exam II 3

Suppose that now we want to find the cassette which was rented most often. The answer
does not have to be unique: If two cassettes were rented 150 times, and no cassette was
rented more than 150 times, both of these cassettes should be printed.

Which of these solutions are correct, and which are incorrect?

d) SELECT V.VID_NO, V.TITLE

FROM VIDEO V

WHERE V.RENT_COUNT = MAX

2x Wrong, Reason: Syntax error: The aggregation function MAX must have an argu-
ment. Also, aggregation functions are not allowed under WHERE

(except inside subqueries).

e) SELECT V.VID_NO, V.TITLE

FROM VIDEO V

WHERE RENT_COUNT = (SELECT MAX(X.RENT_COUNT) FROM VIDEO X)

2x Correct

f) SELECT V.VID_NO, V.TITLE

FROM VIDEO V

WHERE NOT EXISTS(SELECT * FROM VIDEO X

WHERE X.RENT_COUNT > V.RENT_COUNT)

2x Correct

This has confused many students (double negation is always complicated). V is the
cassette which was rented maximally often if there is no cassette X which was rented
more often. Suppose that V was rented 100 times. Then the subquery is

SELECT * FROM VIDEO X

WHERE X.RENT_COUNT > 100

And indeed, if this subquery returns a row, then V was not rented maximally often.
Each cassette returned by this query was rented more often than V. If however, the
result is empty, no cassette was rented more often than V, and V should be printed as
result of the main query.



INFSCI 2711 “Database Analysis and Design” — Solution for Final Exam II 4

Exercise 2 (Disks and Buffering) 6 Points

a) The time needed to access a given sector on a disk consists of three components.
Which of these components improve when the disk platters spin faster (e.g. 10000 rpm
instead of 5800 rpm)? As always, more than one answer may be correct.

2 Seek time

2x Latency time

2x Transfer time (from disk surface to disk cache/memory)
Starts when the disk head is over the beginning of the sector/block
and ends when the disk head is at the end of the block.

The main improvement is in the latency time, the improvement in the transfer time
is only a side effect. The seek time does not improve, because the arm is moved by
another motor. However, often disks with higher rotation speeds are simply better
(more expensive), and also have a shorter seek time, but this does not follow from the
higher rotation speed.

b) If you read blocks which are consecutively stored on the disk, how much data can you
read per second?

2x 1–20 MByte

Some textbooks say 5 MB/sec, but technology continually advances, so I figured that
this range would be safe. However, one student showed me a press notice from Seagate
(Dated October 26, 1998) that the 10000rpm Cheetah family drives set a new record
for sustained throughput: 28 MBytes/sec. Also the latest models of the Barracuda
family have sustained data transfer rates of 25.7 MBytes/sec. I apologize for being a
bit outdated. Please notice that the transfer rates of the SCSI bus do not mean that
a single disk can produce data at that speed. Usually there is more than one disk on
the same bus.

c) Suppose your buffer cache has space for 200 database blocks of 2 KByte each. Let us
assume that it contains some useful information, e.g. the root blocks of some indexes.
Now you do a full table scan on a table which is 1 MByte long (and has no special
declarations). Will this overwrite the entire contents of the buffer cache in Oracle?

2x No. Only some blocks of the buffer cache are used in the full table scan.

We talked in class about sequential flooding of the buffer. With the normal LRU
method, after this full table scan, the last blocks of this one table will be in the buffer.
This is certainly not useful. Oracle avoids the problem by putting buffer frames used



INFSCI 2711 “Database Analysis and Design” — Solution for Final Exam II 5

for a full table scan at the front of the LRU queue, so they will be immediately reused.
Thus, the full table scan uses the same buffers again and again, and does to touch the
other buffer frames in the LRU queue.

d) Suppose you increase the DB_BLOCK_SIZE from 2 KByte to 8 KByte. Will an average
block access then need 4 times as much time?

2x No, the average access to one 8 KByte block is faster than 4 indepen-
dent accesses to 2 KByte blocks.

Only one seek is needed here, whereas for reading four independent blocks, four seeks
are required.

e) Suppose you do RAID Level 4 (striping with block-wise parity information). You
use 5 disks (4 for the data, 1 for the parity blocks). You have mainly single-block
read accesses, which distribute well over the 4 disks, so you can process nearly 200
read requests per second (assuming a single disk can process 50 requests per second).
Now one of your 4 data disks fails. How many read requests per second can you now
process?

2 None. I must first replace the disk.

2 Around 50.

2 Around 100.

2 Around 150.

2 Unchanged: 200.

I apologize for this question. It turned out that not enough information is given to
determine the number of block accesses possible after the disk failure. Only the first
choice is certainly false: The purpose of the parity blocks is to be able to reconstruct
the information if one of the data disks fails. Otherwise, the performance depends on
which blocks are accessed:

• If blocks are randomly distributed, and not related to each other, the perfor-
mance will be around 100: One block from each disk is requested, we first read
the blocks from the three functional disks, and then we read the parity block
and the blocks from the three remaining disks which build one parity group
with the requested block from the damaged disk. From this information, we can
reconstruct the requested block from the failed disk.

• If, however, we actually read a file stored in sequential blocks, than we auto-
matically get one parity group at a time and can reconstruct the block from the
failed block at no extra cost. However, in this case we read sequential blocks
from the disks, and can deliver much more than 200 blocks per second.



INFSCI 2711 “Database Analysis and Design” — Solution for Final Exam II 6

f) Suppose the CUSTOMER table is quite large, and is accessed very often via the index
on its key. Table and index would fit on one disk, but you have another empty disk.
What would give you better performance?

2x Put table and index on different disks.

Exercise 3 (Access Paths) 6 Points

a) Suppose you accidentally deleted an index. Will your application programs which
previously used this index still run (maybe slower)?

2x They will run, but probably slower.

The information in an index is redundant and physical data independence means that
you do not have to change your application programs if the physical schema changes.

b) Consider the table RENTED(CUST_NO, VID_NO, START_DATE, RETURNED_DATE).
Suppose you have created a B-tree index with the command

CREATE INDEX I_RENTED_START_RETURNED ON

RENTED(START_DATE, RETURNED_DATE)

Which of the following conditions can be evaluated using the index? Please check all
correct answers.

2x START_DATE BETWEEN ’15-OCT-99’ AND ’20-OCT-99’

2 RETURNED_DATE >= ’20-OCT-99’

2 RETURNED_DATE - START_DATE > 4

2x START_DATE = ’15-OCT-99’ AND RETURNED_DATE > ’16-OCT-99’

2 START_DATE = ’15-OCT-99’ OR RETURNED_DATE > ’16-OCT-99’

START_DATE is the main ordering criterion for the index entries, RETURNED_DATE be-
comes only important if two entries have the same START_DATE. Therefore, you can
use this index like an index on START_DATE alone, but you cannot use it like an index
on RETURNED_DATE alone. The condition RETURNED_DATE - START_DATE > 4 cannot
be supported by an index at all, at least not in Oracle. Only conditions which refer to
a single attribute and compare it (with =, <, >, <=, >=, BETWEEN, and sometimes LIKE)
with a constant can be supported by an index on that attribute. An index can also be
used for joins, but there one table is accessed first, and then you know the attribute



INFSCI 2711 “Database Analysis and Design” — Solution for Final Exam II 7

value for the current table from that relation, so it can be treated like a constant.
Conditions which compare two attributes from the same relation cannot be supported
by an index. If you need this, you would have to add the difference RETURNED_DATE

- START_DATE as a new, redundant column to the table. It would make sense that a
system allows also to index expressions on the attributes of a single tuple, but Oracle
does not have this feature. The final selection (with OR) is wrong, since a full table
scan is anyway needed for the right condition, so it would make to sense to use an
index for the left condition. This would only give more block accesses.

c) Suppose you store RENTED in an index cluster, clustered by CUST_NO. Will this impose
any limit on the table?

2x If the number of RENTED rows for a single customer becomes larger
than was assumed in the SIZE calculation, performance might suffer.

d) Can it have any use to declare a composed index on all columns of a table? E.g. an
index on VIDEO(VID_NO, TITLE, RENT_COUNT)? Please check all correct statements.

2x If the key consists of all columns (not in the VIDEO example), we still
need an index to enforce it (as for any other key).

2x This avoids the TABLE ACCESS (BY INDEX ROWID) whenever the
index is usable.

Note that SQL allows duplicate rows in tables. This is slightly more general than
mathematical relations (which are sets of tuples/rows), and it is recommended to
declare at least one index on every table to avoid this phenomenon (unless you really
want duplicate rows and you know what you are doing). If there is no other key,
you should choose all columns together as one composed key. Regarding the second
answer: The index entries will in this case contain values for all attributes (plus the
ROWID). So there is no need here to access the table.

e) Consider the table

RENTED(CUST_NO, VID_NO, START_DATE, RETURNED_DATE)

There will be many queries refering to currently borrowed cassettes. We want to keep
information about all renting events in the past 12 months in the table RENTED. Video
cassettes are usually borrowed only for a few days. One option would be to partition
the table into

RENTED_ARCHIVE(CUST_NO, VID_NO, START_DATE, RETURNED_DATE)

RENTED_OPEN(CUST_NO, VID_NO, START_DATE)



INFSCI 2711 “Database Analysis and Design” — Solution for Final Exam II 8

Here RENTED_OPEN will contain information only about the currently borrowed cas-
settes. When a cassette is returned, the entry in RENTED_OPEN is deleted and an entry
is written into RENTED_ARCHIVE. What do you think of this solution? Please check all
true statements.

2 We will save significant storage space by not including the column
RETURNED_DATE in RENTED_OPEN. In this way, we do not have to store
the null value explicitly.

2x RENTED_OPEN will be much smaller than RENTED, so a full table scan
of RENTED_OPEN might be feasable, whereas a full table scan of RENTED
might be prohibitively expensive.

2x Indexes on RENTED_OPEN will be more effective than indexes on the
entire table RENTED because they are smaller.

2x If an index on RENTED_OPEN returns multiple ROWIDs, and we need
to look up the corresponding rows, the chances that two ROWIDs are
in the same block and that this block is still in the cache are higher
than for indexes on the entire table RENTED.

2 CREATE VIEW RENTED_OPEN AS

SELECT * FROM RENTED WHERE RETUNED_DATE IS NULL

has the same advantages for performance (efficient query evaluation).

We do not save storage space, because Oracle anyway does not store null values at the
end of a row explicitly. RENTED_OPEN will indeed be much smaller than RENTED, since it
contains only the events from the last few days as opposed to the last year. Therefore
indexes will be smaller. Some students argued that if the table is too small, an index
is not useful anymore. This was not what I meant. It is possible that a RENTED_OPEN

is smaller than RENTED, but still not small. However, I have to agree that the index
height grows only logarithmically with the table size, so that the difference is probably
not big. My idea for the next question was that ROWIDs refer to fewer blocks, so the
likelihood is greater that two ROWIDs refer to the same block. However, if no rows
are deleted from RENTED, then new rows are inserted only at the end, so the rows for
still borrowed cassettes are also stored close to each other (except if someone doesn’t
bring a cassette back for a longer time, then this row will be the only still open row in
its block). Views only make query formulation simpler. Query evaluation gets even a
bit more complicated.

f) Suppose you access a table by ROWID:

SELECT * FROM R WHERE ROWID = ’AAAAkPAA/AAAAADAAL’

How many block accesses does this query need? A single row will be not more than
200 Bytes long (shorter than a block). Rows in this table can be updated, and can



INFSCI 2711 “Database Analysis and Design” — Solution for Final Exam II 9

grow (but still remain less than 200 Bytes). You cannot assume anything about
PCTFREE.

2x Normally one, at most 2 (0 if in cache)

Exercise 4 (Heap Files) 1+4+1=6 Points

a) Suppose it is an option to export the data of a table, recreate the table, and import
all the data again. Please check all true statements:

2x Afterwards there will be no migrated rows (at least until new updates
are done).

2x It is possible that the rows will be stored afterwards in fewer blocks,
because no holes will remain from deleted rows.

2x The ROWIDs of the rows might change during this step.

b) What would be a good INITIAL size and PCTFREE for the table RENTED? It is declared
as follows:

CREATE TABLE RENTED(CUST_NO NUMBER(6) REFRENCES CUSTOMER,

VID_NO NUMBER(4) REFERENCES VIDEO,

START_DATE DATE,

RETURNED_DATE DATE NULL,

PRIMARY KEY(CUST_NO, VID_NO, START_DATE))

The CUST_NO values really contain 6 digits (they start with 100001), and the VID_NO

values contain 4 digits (starting with 1001). DATE values need 7 data bytes. Note that
when rows are inserted, RETURNED_DATE will be null. In Oracle, if the last column
is null, no length byte is needed for this column. The table should be designed for
100 000 rows. It will initially be empty and grow through insertions (whenever a
customer takes a video out of the shop) and updates (RETURNED_DATE is set when
he/she brings the video back). DB_BLOCK_SIZE is 2048 Byte. Please show the main
calculations.

Row length when RETURNED_DATE is null (without row directory entry): 20

3 Bytes for Row Header, 1 Byte for Length of CUST_NO, 4 = 6/2 + 1 Bytes for data of
CUST_NO, 1+3 Bytes for VID_NO, 1+7 Bytes for START_DATE.

Row length when RETURNED_DATE is later set (without row directory entry): 28



INFSCI 2711 “Database Analysis and Design” — Solution for Final Exam II 10

Now one Byte for the length of RETURNED_DATE and 7 Byte for its data are added.
The length of a date column is always 7, but Oracle doesn’t use the type information
here.

PCTFREE 29

We assume that a block first will be filled with rows of 20 Byte each, leaving the
space reserve. Then the rows will be expanded by 8 Bytes each, filling up the space
reserve. If n rows are stored in the block, the total usable space is n ∗ 28, and the
space reserve is n ∗ 8. So PCTFREE can be computed as (n ∗ 8)/(n ∗ 28) = 8/28 = 0.29.
Note however, that 29% is based on the worst case, that the block is first completely
filled with the short rows which then grow. If rows start growing before the block is
filled, we don’t need such a big space reserve. But some books say that we should
avoid migrated rows at all costs, so assuming the worst case is probably right.

INITIAL 3178K

Note that the space reserve takes care of the 8 bytes growth, so we compute the
needed number of blocks with a row length of 20 Bytes. In addition, 2 Bytes
per row are needed for the row directory entry. The available space in each block
is 2048 Bytes minus 90 Bytes for the block header and 568 Bytes for the space
reserve ((2048 − 90) ∗ 0.29). This gives 1390 Bytes per block. So we can store
1390/(20+2) = 63 rows per block. For 100000 rows, we need 100000/63 = 1588 blocks,
plus one block for the segment header. The initial size must be specified in Bytes
(KB/MB), not in blocks. So we finally get 1589 ∗ 2 = 3178 KByte.

c) Suppose there are only insertions into a table (e.g. RENTED). No rows are ever deleted.
In addition, all rows have the same length (which is not very big, less than 10% of
the block size). Does the value for PCTUSED matter?

2x Under these circumstances, it does not matter. PCTUSED is only impor-
tant for insertions when rows have different lengths and for deletions.

However, DB_BLOCK_SIZE * (100-PCTUSED-PCTFREE)/100 must still leave space for
at least one row, in order to get blocks off the free list. If e.g. PCTFREE is 29, and
a row is 28 Bytes long, which is about 1.5% of the block size (without the header),
PCTUSED may not be greater than 69. It may be much smaller and this has no effect
on the placement of rows in blocks under the above circumstances.



INFSCI 2711 “Database Analysis and Design” — Solution for Final Exam II 11

Exercise 5 (Data Dictionary) 6 Points

a) Write an SQL query which lists tables with more than 2% of chained or migrated rows.
(The data dictionary counts migrated rows as chained rows, it makes no distinction
between the two.)

SELECT TABLE_NAME

FROM TABS

WHERE CHAIN_CNT/NUM_ROWS > 0.02

Note that SQL has no percent notation. Quite a lot of students wrote 2% on the right
hand side which is a syntax error.

b) Write an SQL query which lists for each table all columns on which a single-column
index exists. The output should have the columns TABLE_NAME, COLUMN_NAME, and
INDEX_NAME, and be sorted by TABLE_NAME. Only single-column indexes should be
contained in the output.

SELECT TABLE_NAME, COLUMNH_NAME, INDEX_NAME

FROM USER_IND_COLUMNS

WHERE INDEX_NAME IN (SELECT C.INDEX_NAME

FROM USER_IND_COLUMNS C

GROUP BY C.INDEX_NAME

HAVING COUNT(*) = 1)

An alternative solution is e.g.

SELECT X.TABLE_NAME, X.COLUMNH_NAME, X.INDEX_NAME

FROM USER_IND_COLUMNS X

WHERE NOT EXISTS(SELECT *

FROM USER_IND_COLUMNS Y

WHERE Y.INDEX_NAME = X.INDEX_NAME

AND Y.COLUMN_NAME <> X.COLUMN_NAME)

c) Write an SQL query which lists tables such that the indexes on the table need together
more disk space than the table itself.

SELECT T.SEGMENT_NAME

FROM USER_SEGMENTS T

WHERE SEGMENT_TYPE = ’TABLE’

AND T.BLOCKS < (SELECT SUM(S.BLOCKS)

FROM IND I, USER_SEGMENTS S

WHERE I.TABLE_NAME = T.SEGMENT_NAME

AND I.INDEX_NAME = S.SEGMENT_NAME

AND S.SEGMENT_TYPE = ’INDEX’)



INFSCI 2711 “Database Analysis and Design” — Solution for Final Exam II 12

Unfortunately, the exercise was not very precise whether the number of allocated
blocks or the number of actually used blocks was meant. The data dictionary does
not contain the number of actually used blocks for indexes (although the number of
leaf blocks is a good approximation), so I have used the number of allocated blocks.

Exercise 6 (Query Optimization) 1+1+1+3=6 Points

a) Consider the following query:

SELECT *

FROM CUSTOMER

WHERE CUST_NO > 200000

AND NAME = ’Smith’

AND ADDRESS LIKE ’%Pittsburgh%’

Which of the following access paths would the rule-based optimizer choose. Here,
only one answer is correct (the one ranked highest among the possible ones):

2 Full Table Scan

2 Unique Index on CUSTOMER(CUST_NO)

2x Index on CUSTOMER(NAME)

2 Index on CUSTOMER(ADDRESS)

Note that the index on CUSTOMER(ADDRESS) cannot be used, since the pattern starts
with a % (i.e. we don’t know a prefix of the address).

b) Consider this query:

SELECT C.NAME, V.TITLE

FROM CUSTOMER C, RENTED R, VIDEO V

WHERE C.CUST_NO = R.CUST_NO

AND R.VID_NO = V.VID_NO

AND R.START_DATE = ’20-OCT-99’

Suppose that the following access paths exist:

• Unique index on CUSTOMER(CUST_NO)

• Unique index on RENTED(CUST_NO, VID_NO, START_DATE)

• Unique index on VIDEO(VID_NO)

• Index on RENTED(START_DATE)



INFSCI 2711 “Database Analysis and Design” — Solution for Final Exam II 13

• RENTED and VIDEO are stored together in an index cluster, clustered by VID_NO.

Consider the QEP constructed by the rule-based optimizer which starts by accessing
RENTED. Which table would the rule-based optimizer join first with RENTED?

2 CUSTOMER

2x VIDEO

The cluster leads to a higher-ranked access path for VIDEO.

c) Consider this query:

SELECT R.VID_NO

FROM RENTED R

WHERE R.CUST_NO = 123456

AND R.START_DATE > ’20-OCT-99’

Suppose that only the index enforcing the key constraint exists, i.e. a unique index
on CUST_NO, VID_NO, START_DATE. How would a good QEP look like?

2 Only a Full Table Scan is possible.
2 Index scan evaluating R.CUST_NO = 123456 and then a table access

by ROWID.

2x This query can be answered entirely out of the index. However, only
R.CUST_NO = 123456 would be used for accessing index entries. The
table RENTED itself will not be accessed.

d) Consider the following query:

SELECT R.VID_NO, START_DATE

FROM CUSTOMER C, RENTED R

WHERE C.PHONE = ’624-9404’

AND R.CUST_NO = C.CUST_NO

AND RETURNED_DATE IS NULL

The following indexes exist:

• Unique index I_CUSTOMER_KEY on CUSTOMER(CUST_NO)

• Index I_CUSTOMER_PHONE on CUSTOMER(PHONE)

• Unique index I_RENTED_KEY on RENTED(CUST_NO, VID_NO, START_DATE)

Please draw the Oracle QEP which the rule-based optimizer constructs starting with
access to CUSTOMER. You can use the tree notation with interconnected boxes or use



INFSCI 2711 “Database Analysis and Design” — Solution for Final Exam II 14

one line for every operation with indentation to clarify the structure. You do not have
to assign numbers to every node.

1

NESTED LOOPS

�
��
�
��

2 TABLE ACCESS
(BY INDEX ROWID)

CUSTOMER

H
HH

H
HH

4 TABLE ACCESS
(BY INDEX ROWID)

RENTED

3 INDEX
(RANGE SCAN)

I_CUSTOMER_PHONE

5 INDEX
(RANGE SCAN)
I_RENTED_KEY


