
Implementation Alternatives for Bottom-Up Evaluation 1

Implementation Alternatives

for Bottom-Up Evaluation

Stefan Brass
University of Halle, Germany

Stefan Brass ICLP, 2010



Implementation Alternatives for Bottom-Up Evaluation 2

Deductive Databases (1)

• Deductive databases are integrated database/pro-

gramming systems based on a declarative, logic

programming style language (“Datalog”).

• SQL is a declarative, logic-based language, but sup-

ports only database queries (and updates etc.).

• Any serious database application needs also pro-

gramming. Currently, SQL must be combined with

a conventional programming language for this task.

The need for programming has grown because of stored procedures,
object-relational extensions and web applications.

Stefan Brass ICLP, 2010



Implementation Alternatives for Bottom-Up Evaluation 3

Deductive Databases (2)

• So far, the performance of most prototypes is not

very good, and this is an obstacle for a more wi-

despread use in practice.

• Query/program execution in DDBs is done by

� first transforming the given logic program so that

only facts relevant to the query can be derived,

� then (more or less) directly applying the TP -

operator in order to compute the entire minimal

model of the transformed program with database

techniques (bottom-up evaluation).

Stefan Brass ICLP, 2010



Implementation Alternatives for Bottom-Up Evaluation 4

Our Approach

• I previously made a nice proposal for the transfor-

mation part (SLDMagic).

• Now I need a good bottom-up evaluation machine.

• My goal is to do this by translation from Datalog

to C++.

• A student developed a prototype, but it turned out

that there are several implementation alternatives

(the prototype contains only the most basic one).

• I did performance measurements for these techni-

ques with manual translations of several examples.

Stefan Brass ICLP, 2010



Implementation Alternatives for Bottom-Up Evaluation 5

The Framework

• Every predicate/relation supports a cursor/iterator

interface, i.e. there is a class p_cursor with methods

� void open(): Open scan over relation.

� bool fetch() Get first/next tuple (fact).

� T attr_i(): Get value of i-th attribute/column.

� void close(): Close the scan.
Sometimes, also push() and pop() are needed to store the state
of the cursor.

• If a relation has special access structures (e.g. B-

tree index), there are additional cursor classes for

specific binding patterns (then open has args).

Stefan Brass ICLP, 2010



Implementation Alternatives for Bottom-Up Evaluation 6

Method 1: Materialization

• Program evaluation is done rule by rule.

In a sequence that is computed by topologically sorting the “depends
on” relation. Of course, recursive rules are applied iteratively, using
deltas of relations (seminaive evaluation).

• Each rule is completely evaluated (on all matching

facts for the body literals), before execution swit-

ches to the next rule.

For recursive rules, only the facts that exist at that time can be used.

• Every derivable fact is stored until the end of pro-

gram execution.

Or at least until the last rule is applied that might use the fact.

Stefan Brass ICLP, 2010



Implementation Alternatives for Bottom-Up Evaluation 7

Method 2: Pull

• Facts are computed only on demand (when fetch

is called, this causes fetch-calls for body literals).

• Facts are not explicitly represented in memory.

The attr_i-methods permit to access their attributes/arguments, but
these values are typically spread in memory (in the fact or rule that
introduced the value — no copying is done).
Facts exist only until fetch advances to the next fact for that rule.

• Recomputation may be necessary.

• No recursion (→ combination with other method).

• Standard method in databases to avoid storing lar-

ge intermediate results.

Stefan Brass ICLP, 2010



Implementation Alternatives for Bottom-Up Evaluation 8

Method 3: Push

• Derived facts are immediately used to derive more

facts with other rules. Backtracking is needed if a

fact can possibly be used in different places.

• Only a single fact of each derived predicate evalua-

ted with this method is stored in memory.

Unless duplicate elimination is needed (e.g. for cyclic recursions).

• This method works only with rules containing only

one body literal with a predicate defined by rules.

But: (1) SLDMagic produces such rules. (2) A combination with other
methods is possible, e.g. materialization can be used for some predi-
cates (which then no longer count for the limitation).

Stefan Brass ICLP, 2010



Implementation Alternatives for Bottom-Up Evaluation 9

Experimental Results (Test 1)

p3(X, Z) ← p2(X, Y) ∧ q(Y, Z).

p2(X, Z) ← p1(X, Y) ∧ q(Y, Z).

p1(X, Z) ← p0(X, Y) ∧ q(Y, Z).

p0(X, Z) ← r(X, Y).

q := {(i, i + 1) | 1 ≤ i ≤ 5000}
r := {(i, i) | 1 ≤ i ≤ 5000}

Method PC Server Sun

1: Materialization 515ms 380ms 430ms
2: Pull 937ms 320ms 930ms
3: Push 562ms 250ms 950ms
3b: Push (local) 515ms 250ms 490ms

Stefan Brass ICLP, 2010



Implementation Alternatives for Bottom-Up Evaluation 10

Experimental Results (Test 2)

p3(X, Z) ← q(X, Y) ∧ p2(Y, Z).

p2(X, Z) ← q(X, Y) ∧ p1(Y, Z).

p1(X, Z) ← q(X, Y) ∧ p0(Y, Z).

p0(X, Z) ← r(X, Y).

q := {(i, i + 1) | 1 ≤ i ≤ 5000}
r := {(i, i) | 1 ≤ i ≤ 5000}

Method PC Server Sun

1: Materialization 781ms 830ms 1950ms
2: Pull >1h
3b: Push (local) 531ms 290ms 340ms

Stefan Brass ICLP, 2010



Implementation Alternatives for Bottom-Up Evaluation 11

Conclusion

• There are several different ways how to implement

bottom-up evaluation (more than the three above).

• The best method depends on the input program,

as well as the hardware and the compiler.

• Different methods can be combined.

• Next goals: Implement the transformation for these

three and possibly other methods, develop heuri-

stics for choosing a method, experiment with dif-

ferent data structures for storing relations.

• http://www.informatik.uni-halle.de/~brass/botup/

Stefan Brass ICLP, 2010


