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ABSTRACT

We show that those languages, where the syntactic monoid is a finite group, are Church Rosser
Congruential Languages (CRCL). We then extend this result to the class of regular languages whose
syntactic monoid lies in the variety DO.

1. Introduction

In [1] McNaughton et al considered finite, length-reducing and confluent string-rewriting systems,
which allow to find a unique irreducible shortest representing word for any given word: the
Church-Rosser congruential languages (CRCL) are defined as the set of languages, which are
the union of finitely many such equivalence classes. This is defined formally as follows:

A language L ∈ A∗ is in CRCL if there exists a rewriting system R ⊆ {l 7→ r | l, r ∈ A∗, |l| >

|r|} allowing derivations αlβ =⇒
R

αrβ with the property that if w
∗

=⇒
R

w′ and w
∗

=⇒
R

w′′ then there

is a v ∈ A∗ with w′ ∗

=⇒
R

v and w′′ ∗

=⇒
R

v and L is the finite union of sets [we]R = {w | w
∗

=⇒
R

we}

for finitely many we.
It is an open problem weather all regular languages are in CRCL.
It was shown in [2] that some shuffle languages as well as Level 1 of the Straubing-Thérien

hierarchy are in CRCL. Furthermore [2] describes a solution for the language (A2)∗ (words of
even length on alphabet A = {a, b}), which is the smallest nontrivial example for our result
since the syntactic monoid for (A2)∗ is the cyclic group Z2.

Our approach is as follows: We refine the syntactic monoid M(L) := Σ∗/ ≡L for the con-
gruence relation ≡L defined by w ≡L v iff ∀u, x ∈ Σ∗ : uwx ∈ L ↔ uvx ∈ L. The refinement
is defined by the construction of a confluent length-reducing string-rewriting system R ⊂≡L

with the property that words exceeding some length contain an infix l with l 7→ r ∈ R, which
leads to a finite ≡R⊇≡L having the property that every congruence class has a unique shortest
representing word.

For the example (A2)∗ the string-rewriting system R = {aa 7→ λ, bab 7→ b, bbb 7→ b} leads to the
syntactic monoid consisting of the 10 elements [λ], [ab], [ba], [bb], [abba], [a], [b], [aba], [abb], [bba],
where two words are equivalent, if their length, the number of a’s before the first b and the
number of a’s after the last b differ by an even number and both contain or do not contain a
b. The first 5 refine [λ] and the last 5 refine [a] = [b] (two minimal representing strings since
|a| = |b|, which was the reason which made the refinement necessary).
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2. The construction for a group

Theorem If the syntactic monoid M(L) is a group, then L ∈ CRCL. Furthermore the equiv-

alence relation ≡R⊇≡L is finite but for any length we can choose R such that all words up to

that length are irreducible.

Proof. For L = ∅ or L = {λ} this is trivial, the following is an induction over the size of the
alphabet of L. Let L be a language over the alphabet Σ = {b, a0, ..., as−1}, G = M(L) and n be
a multiple of the order of all elements e ∈ G (Note here that n can be chosen arbitrarily large).

We use sequences of consecutive powers of words of the form γi := ba
n+(i Div s)
i Mod s or in other words

γi+sj = ban+j
i to build up representing words for each element in G. For example [a0bba1a2] can

be represented as

(ban
0 )n−1(ban+1

0 )(ba2n
0 )(ba2n+1

1 )(ba3n
2 )n−1(ba3n+1

2 ) = γn−1
0 γsγsnγs(n+1)+1γ

n−1
s2n+2γs(2n+1)+2.

Since G is finite, we can find an m such that for every e ∈ G there is a representing word we

with [we] = e and bwe = γi0
0 γi1

1 ...γim
m . Furthermore since |γ0| + 1 = |γs|, we can pump i0 and

is by some multiples of n for each e in a way such that l ≤ |we| < l + n for some l chosen big
enough.

By induction over the alphabet size we have a confluent, strictly length-reducing rewriting
system Ra, which reduces each word w ∈ {a0, ..., as−1}

∗ to an irreducible word ww ∈ Irra

with [ww] = [w]. Let la := max{|w| | w ∈Irra}. Furthermore we may assume w.l.o.g. that
{γ0, ..., γm} ⊆ bIrra (Choosing the n in the induction large enough). Let

{α1, ...αp} := {w ∈ (bIrra)
+ | w primitive and |w| ≤ n or w ∈ bIrra}.

In order to deal with all long cyclic repetitions of these words, we use the rewriting-rules Rc =
{αl+n

i b 7→ αl
ib | i ≤ p}. Relevant words not being a part of such a cycle are in Lnc := {w ∈

(bIrra)
+b | ¬∃i ≤ p, x, y ∈ Σ∗ xwy ∈ α+

i }. As marker-words we use

{β1, ..., βq} := Lnc \ Σ+Lnc \ LncΣ
+ \ {wγjb | j ≤ p ¬∃i > j w = γi}.

Observe here that each of the β’s has a length of at least n + 1. Furthermore we assume an
ordering of the β’s such that if βj = γkx and βi 6= γhy for any h ≤ k then i > j. Now we define
the rewrite-rules

R′

n := {βiwβi 7→ βiw[w]βi | |w[w]| < |w| ≤ li−1, βiwβi 6∈ Σ∗βjΣ
∗ for any j > i, }

where the length restriction of li−1 for w is constructed in the proof of Claim 2 showing that a
longer w would not be reducible. To make it easier to prove the confluence, we eliminate rules,
where the left side contains the left side of another rule, which does not change the reducibility
of a word:

Rn := {(l 7→ r) ∈ R′

n | ¬∃(l′ 7→ r′) ∈ R′

n l′ is Infix of l}.

It is clear that the rewriting system R = Ra ∪ Rc ∪ Rn is strictly length-reducing and it’s
congruence refines G since left and right side of a rule are always congruent in G. It remains to
show the following two claims:

2

Example: Let G = S3, the group of permutations of {1, 2, 3} be generated by the mirrorings
[a] = (12) and [b] = (23) represented by the symbols a, b. (Choose L ⊆ {a, b}∗ to be any language
accepted by this group.) The example is not trivial because of [aba] = [bab]. Choosing n = 6
according to the construction would make the example very big but the following ’handmade’
construction of the representing words works already with n = 2: By recursion for the alphabet
{a} we obtain Ra = {a5 7→ a3} leaving Irra = {ai | i < 5} and la = 4. Using γ0 = baa, γ1 =
baaa, γ2 = baaaa, we can find the representing words
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w() = aa(baa)2(baaaa)2, w(12) = aa(baa)1(baaa)1(baaaa)2, w(23) = aaaa(baaaa)3,
w(123) = aa(baa)4(baaa)1, w(132) = aaa(baaaa)3, w(23) = aa(baa)3(baaa)2,

all having length l =18 or 19. We get αi = bai−1 for i ≤ p = 5 and obtain the rules Rc =
{(bai)20 7→ (bai)18 | i ≤ 5}. We get {β1, ..., β11} =

{γ1γ0b, γ2γ0b, γ2γ1b, γ0bb, γ0bab, γ1bb, γ1bab, γ2bb, γ2bab, babb, bbab}

and obtain the rules Rn := {βiwβi 7→ βiw[w]βi | |w[w]| < |w| ≤ 338210, βiwβi 6∈
Σ∗βjΣ

∗ for any j > i, }. The length of an irreducible word can be at most l11 = 676450 which
bounds the number of equivalence classes to < 2676450.

Claim 1: R is confluent.

Proof. We have to show that for any pair of rules l1 7→ r1, l2 7→ r2 ∈ R that if ul1v = xl2y then
there exists a w ∈ Σ∗ with ur1v

∗

=⇒
R

w and xr2y
∗

=⇒
R

w.

• If both rules are in Ra this holds by induction.

• If l1 7→ r1 ∈ Ra and l2 7→ r2 ∈ Rc∪Rn this holds since l1 ∈ {a0, ..., as−1}
∗ and l2 ∈ (bIrra)

+b
can not overlap.

• If both rules are in Rc this holds since either l1 and l2 overlap only in a small part z,
which is not changed by the rules, that means w.l.o.g. l1 = αl+n

i1
b = αl+n−1

i1
z′z and

l2 = αl+n
i2

b = zz′′αl+n−1
i2

and thus w = uαl−1
i1

z′zz′′αl−1
i2

y or otherwise αi1 is a rotation of
αi2 and thus w = ur1v = xr2y.

• If l1 7→ r1 ∈ Rc and l2 7→ r2 ∈ Rn, again there can be only a short overlapping of the left
sides inside a βi, which is not changed since the appearance of αn+l

k is not allowed in l2
and βi cannot appear in α∗

k by definition.

• If both rules are in Rn then either both rules have the same βi in which case w = uβiw[z]βiy
for ul1v = xl2y = uβizβiy since positions of repeated occurances of βi as infix in a word
must differ at least n, which garanties that w is shorter than ur1v and xr2y or otherwise
with different βi1 , βi2 with i1 < i2 there is again a short unchanged overlap since in the
case that βi2w

′βi2 ∈ Σ∗βi1Σ
∗, we would have βi2w

′βi2 ∈ Σ∗βi1Σ
∗βi1Σ

∗, since no βi2 can
occur between two βi1 ’s but then l1 would be an infix of l2, which is not possible according
to the definition of Rn.

2

Claim 2: The number of congruence classes defined by R is finite.

Proof. We show by induction on h that any corresponding to R irreducible word w, which does
not contain any βj with j > h as infix, can only have some bounded length.

The case h = 0: Assume there would be an arbitrarily long irreducible word. After reading a
prefix in Irra, we see the first b, which is the beginning of an infix αi′ . If we continue reading,
we can find k < l + n consecutive repetitions of αi′ , before we find a different αj′ , which is not
a prefix of a word in αi′Σ

∗. Now this infix αk
i′αj′ must have an infix in Lnc and thus a minimal

one in Lnc \Σ+Lnc \LncΣ
+. Therfore the only possibility not to get a β as infix is that αj′ = γj

for a j ≤ m and ¬∃i > j αi′ = γi, which can occur at most m times continuing to read the
word. This restricts the length of the word to ≤ l0 = (m + 1)(l + n)(la + 1).

Step from h−1 to h: By induction, the length of the prefix before the first occurance of of βh

and the postfix after the last occurance of βh is bounded by lh. The same holds for the distance
between two occurances of βh, but then the reduction-rules for βh ensure that it is even at most
l + n and thus this even holds for the distance between the first and the last occurance of βh,
which means we can bound the length of the word by lh := 2lh−1 + l + n + 2(la + 1).

Thus no irreducible word can be longer than lq. 2
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3. Extension to DO

The variety DO consists of the closure of group and letter-testing languages under unambiguous
concatenation.

Theorem If the syntactic monoid M(L) of a regular language L is in the variety DO, then

L ∈ CRCL.
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