
Counting and empty alternating pushdown automata∗

Klaus Reinhardt
Universität Stuttgart, Institut für Informatik

Breitwiesenstr.22, D-7000 Stuttgart-80, Germany
e-mail: reinhard@informatik.uni-stuttgart.de

Abstract

We show that the class of context free languages CFL is not equal to ⊕1−PDA

(= ⊕CFL), the class of languages, which are recognized by a nondeterministic one-
way push-down automaton equipped with parity acceptance. Furthermore we show
that LOG(⊕CFL) = ⊕AuxPDApt contains all languages, which can be recognized
by a uniform weak unambiguous AC1-circuit introduced in [LR90a]. Therefore, it
contains all languages, which can be recognized by a CREW -PRAM. We show,
that L#AuxlogPDApt is contained in uniform TC1, which sharpens a result in [Vin91],
where inclusion in NC2 was shown. At last we show, that ACk, SACk and P

can be characterized as the logarithmic closure of certain types of languages. These
languages are either those given by linear alternating grammars or they are languages
which are recognized by alternating pushdown automata with the restriction that
their storage has to be empty if they make an alternating transition. In particular,
we consider the cases when the depth of alternation is bounded by a constant or a
polylogarithmic function.

1 Introduction

In [Val79] Valiant defined the counting class #P for polynomial timebounded Turing
machines. More generaly we define the counting class #X as the class of functions f

such that there is a nondeterministic automaton or grammar of the kind X (whatever
X is) and f tells us for an input i the number f(i) of accepting computation paths of
the automaton rsp. leftmost derivations of the grammar. In analogy to the definition
of MODkL in [BDHM91] we can define the class ModkX as the class of of languages A

with ∃f ∈ #X ∀i i ∈ A ⇔ f(i) 6≡ 0 mod k. According to [GNW90] we can write this
as {x 6≡ 0 mod k}X and define the classes NX := {x > 0}X, co−NX := {x = 0}X,
EX := {x = y}X and GX := {x > y}X. Of special interest is ⊕X := Mod2X [Dam90].
For polynomial timebounded Turing machines (X = P), logarithmic spacebounded Tur-
ing machines (X = L) or polynomial timebounded push-down automata with auxiliary
logarithmic spacebounded tape (X = AuxlogPDApt) no separation results between all
these classes are known. In Section 2 we show some separations for context free grammars
(X = CFL) rsp. One-way push-down automata without auxiliary tape (X = 1−PDA).

∗this research has been partially supported by the EBRA working group No. 3166 ASMICS and by DFG-SFB

342, Teilprojekt A4 “KLARA”.

There are various connections between formal language classes and complexity classes
[Lan89] [Rei89] [Rei90], where we need the logarithmic closure over a class S of languages
LOG(S) := {Y | ∃X ∈ S with Y ≤log X} with L ≤log L′, if there is a logarithmic
space-bounded transducer T with x ∈ L if and only if fT (x) ∈ L′. In Section 3 we
will see, that push-down automata with Y-acceptance (Y ∈ {⊕, N, co−N,E,G,Modk})
without two-way input and without log-space working tape generate languages which are
complete for the complexity class Y AuxlogPDApt with respect to ≤log-reduction. Thus
we generalize the equation NAuxlogPDApt = LOG(CFL) of Sudborough in [Sud78] to
Y AuxlogPDApt = LOG(Y 1−PDA). This result may be interpreted in the sense that in
Y AuxlogPDApt-automata the push-down part may be separated from the log-space/two-
way part. This decomposition is possible for (full) alternating push-down automata as
shown in [Rei89] and [Rei90] improving a result of [JK89]. We want to remark here that
this relation does not seem to hold in general: it appears that unambiguous automata do
not allow for decompositions of this kind.
There are also various connections to circuit complexity classes [Ruz81], [Ven88], [LR90a]
and Parallel Random Access Machines [SV84] ,[AJ93], [NR92] [Ros91]. In Sections 4
and 5 we will add two further connections to the graph describing inclusion structures
of complexity classes. The picture will give a overview on the inclusions of the various
classes.
A more complicated kind of acceptance is the alternation [CKS81]. This method is impor-
tant, because it gives an equivalent characterization of the polynomial hierarchy. Applying
alternation to push-down automata yields very high complexity classes as the polynomial
hierarchy, PSPACE or EXPTIME [Rei89], [LSL84], [LLS84]. This was the reason to in-
troduce in [LR91] the notion of empty alternation by investigating alternating automata
which are restricted to empty their storage except for a logarithmically space-bounded
tape before making an alternating transition. Hereby new characterizations of the classes
ACk, SACk and P and applying this to polynomial timebounded Turing machines a
new characterization for Wagners class ΘP

2 := LNP = PNP [log] [Wag88] was obtained. In
Section 6 we apply empty alternation to one-way push-down automata (We will write
1−EAΣaPDA). Hereby we obtain similar results like those in Section 3 (We will write
EAΣlog

a PDApt for (a− 1 times) empty alternating AuxlogPDApt). In Section 7 we apply
alternation to linear grammars and obtain similar results like those in Section 6.

2 Separating classes with different context free acceptances

It is easy to see, that using the methods in [HU79], that there is a one to one correspon-
dence between leftmost derivations of a grammar and the accepting paths of a push-down
automaton. Thus it holds Y CFL = Y 1−PDA for Y ∈ {⊕, N, co−N,E,G,Modk}.

Theorem 2 ⊕CFL 6⊆ CFL

Proof: The language {anbmcl | n ≥ m ⊕ m ≥ l ⊕ l ≥ n} is a member of ⊕CFL because
it is generated by the grammar {S → Cc | aA | B,C → Cc | aC | D,D → aDb | ab, A →
aA | E,E → bE | F, F → bFc | bc, B → Bc | G,G → aGc | aHc,H → bH | b}. But the
assumption L ∈ CFL leads to a contradiction when pumping the word anbncn.
In the same way it holds ModkCFL 6⊆ CFL for any k and ECFL 6⊆ CFL and GCFL 6⊆
CFL follow from ECFL ⊇ coCFL and GCFL ⊇ coCFL.

3 The logarithmic closure over push-down automata with dif-

ferent acceptances

Theorem 3 Y AuxlogPDApt = LOG(Y 1−PDA) holds for Y ∈ {⊕, N, co−N,E,G,Modk}

’⊇’ is clear, the idea for ’⊆’ is the following: A surface configuration contains the logarith-
mic spacebounded tape and the state, but not the stack, which means that the number
of such transitions is polynomial. The logarithmic spacebounded transducer writes every
possible transition on surface configurations of the AuxlogPDA in a list. Hereby every
item of the list contains a surface configuration written reversely, followed by the infor-
mation about what is popped or pushed, followed by the following surface configuration
in the transition. Then the transducer writes a block marker and repeats the whole list
p(|x|) times, where p is the polynomial, which bounds the time of the AuxlogPDA. Now
the 1−PDA can simulate the AuxlogPDA by using the top of the pushdown stack to find
from one transition to an appropriate following transition in the next block by comparing
the surface configurations (if it guesses the wrong position, it rejects). There will be a
one to one correspondence between the accepting paths.

4 Evaluating circuits with a ⊕push-down automaton

Theorem 4 WeakUnambAC1 ⊆ ⊕AuxlogPDApt

Proof: WeakUnambAC1 is defined in [LR90a] in the meaning, that an AND-(OR-)gate
with unbounded fan-in may have an undefined value, if more than one input signal has
the value 0 (1). This means, we need not care about these situations and so we can regard
these gates as replaced by ⊕ gates, which have the same behavior in the remaining cases.
We also regard the OR-gates as replaced by AND- and NOT-gates. An AuxlogPDApt

walks through the circuit in a way such that at the moment, when it enters a gate the
first time, the number of accepting paths in the sub-computation tree following this point
is odd, iff the value of the gate is 1. We get this by induction on the following behavior:
Reaching an ⊕-gate, the automaton nondeterministically branches to one of the inputs.
Reaching a NOT-gate, the automaton nondeterministically branches to go to its input
or accept (add 1 modulo 2). Reaching an input signal, the automaton rejects, if it is
0, otherwise the automaton pops a gate and continues there or if the pushdown store is
empty accepts. Reaching an AND-gate, the automaton pushes one of its inputs and goes
to the other one (this multiplies modulo 2). Since the depth is logarithmic, the runtime
is polynomial on every path

5 Counting accepting paths with a threshold circuit

Definition L#X := {A | A is log-space Turing-reducible to bin(f) for some f ∈ #X}
with bin(f) := {(x, i) | the i-th bit of f(x) is 1}.

Theorem 5 L#AuxlogPDApt ⊆ TC1

Proof: According to [Vin91] [LR90a] [LR90b] [NR91] #AuxlogPDApt = #SAC, the num-
ber of accepting subcircuits. To get this number for an OR-gate (with unbounded fan-in)
we have to sum up the numbers of all inputs. To get this number for an AND-gate (with

bounded fan-in) we have to multiply the numbers of the (w.l.o.g. 2) inputs. According to
[HHK91] both can be done by a threshold circuit with constant depth, hence a threshold
circuit with logarithmic depth can calculate the number for the complete SAC1-circuit
and simulate the logarithmic spacebounded transducer on the result.

NC2

��
��
�

TC1

��
��
�

CRCW 1 = AC1
PP

PP
P 5

L#AuxlogPDApt

aa
aa

aa
aa

aa
aa

Det

!!
!!
!

⊕AuxlogPDApt

```
```

```
``

@
@

SAC1 = LOG(CFL)
@
@

L#L

   
 4

WeakUnambAC1

CREW 1 = UnambAC1
@

@
@
@

�
�
�
�

UnambAuxlogPDApt

PP
PP

PP
PP

PP
P

��
��

��
��

⊕L
HH

HH
HH

HH

NL = LOG(LIN)

   
   

   

LOG(UnambCFL)
XXX

XXX
X

@
@

�
�

UnambL

CROW 1 = LOG(DCFL)
hhhh

hhhh
hh

((((
((((

((

LOG(UnambLIN)
hhhh

h
��

L
XXXX

NC1

6 Empty alternating push-down automata

In [LR91], we have shown EAΣlog

logkn
PDApt = EAΣlog

logkn
(= AΣlog

logkn
= ACk) for each k.

That is, the additional push-down store does not increase the computational power for
empty alternating automata with a logarithmic spacebounded tape and logkn alternations,
as long as we keep a polynomial time bound. In this section we will see, that the other di-
rection holds true in the sense, that empty alternating push-down automata without two-
way input and without log-space working tape generate languages which are complete for
EAΣlog

a(n)PDA. Thus we again generalize the equation AΣlog
1 PDApt = LOG(A1Σ1PDA)

of Sudborough in [Sud78].
The definitions of alternating push-down automata differ concerning the role of λ-transi-
tions. Fortunately this does not matter when considering empty alternation.

Definition A 1-way-empty-alternating-push-down automaton is an 8-tuple

A = (Ze, Zu, Σ, Γ, δ, z0, $, E)

with the set of states Z = Ze ∪ Zu consisting of existential states Ze and universal
states Zu, the input alphabet Σ, the push-down alphabet Γ, the transition relation δ ⊆
(Z × Σ × Γ) × (Z × Γ∗), the start state z0, the bottom symbol $, the final states E,
the rejecting states R, the configuration set CA = Z × Σ∗ × Γ∗, the start configuration



σA(x) = 〈z0, x, $〉 and the configuration transition relation 〈z, x1x, gk〉 |
A

〈z′, x, g′k〉 if
and only if z, z′ ∈ Z, k, g′ ∈ Γ∗, g ∈ Γ, g′ ∈ Γ∗ and 〈z, x1, g, z′, g′〉 ∈ δ. If z ∈ Za, then a
configuration 〈z, x, k〉 ∈ CA is called a universal configuration. If z ∈ Ze, then it is called
an existential configuration. If z ∈ E and x = λ, then it is called accepting.

Since an unaugmented push-down automaton has just a finite memory, it is not possible
to count and bind the depth of alternation by an infinitely growing function. Thus we
could only treat the cases of either unbounded or constant alternation depth. To cope
with that problem, we apply a depth bound not within the automaton, but instead within
the language:

Definition Let A be a one-way empty alternating push-down automaton. The EAΣa(n)-
language of A is the set of all words x accepted by A, which have a finite accepting subtree
of configurations within the computation tree of A on x such that

i) The root is the existential start configuration σA(x),
ii) for every existential configuration c in the tree, there is a d with c |

A
d in the tree,

iii) for every universal configuration c in the tree, all d’s with c |
A

d are in the tree,
iv) the leaves of the tree are accepting,
v) alternations from an existential to an universal configuration or vice versa are only

allowed, if the push-down-store is empty (the push-down store is regarded as empty, if
only the bottom symbol $ is on the push-down store.1), and

vi) there are at most a(n) − 1 alternations on every path on the tree.
Thus, the EAΣω-language of S is L(A) and for a(n) ≤ b(n) the EAΣa(n)-language is a
subset of the EAΣb(n)-language of A.
The set of all EAΣa(n)-languages of one-way empty alternating push-down automata
is denoted by 1−EAΣa(n)PDA. 1−SEAΣa(n)PDA is the set of languages which can
be recognized by 1-way-empty-semi-unbounded-alternating- push-down automata, which
are only allowed to make finitely many steps in universal states before alternating into an
existential state.

Using the result of [BCD+88], it is easy to see, that we then have

Theorem 6.1 LOG(1−EAΣkPDA) = LOG(CFL) for each k.

Theorem 6.2 1. ACk = EAΣlog

logkn
PDApt = LOG(1−EAΣlogknPDA)

2. SACk = SEAΣlog

logkn
PDApt = LOG(1−SEAΣlogknPDA)

3. P = LOG(1−EAΣωPDA) = LOG(1−SEAΣωPDA)

Proof: Since 1−(S)EAΣa(n)PDA is contained in (S)EAΣlog
a(n)PDApt, and the later is closed

under log-reducibility, and because (S)ACk = (S)EAΣlog

logkn
PDApt, it suffices to exhibit

some (S)ACk-complete set, which is generated as (S)EAΣlogkn-language by an one-way
empty alternating push-down automaton. This is done in Lemma 6.1 and Lemma 6.2
below.

Lemma 6.1 ACk ⊆ LOG(1−EAΣlogknPDA)

1
A is not allowed to push further $ symbols.



Proof: We define the following formal language CFEk, which is in case of k = ω just a
variation of the context-free-emptiness problem.

CFEk := {w | w =< S >R #&vu ,where v is a concatenation of all <

A > %# < B1 >R # < B2 >R #...# < Bi >R #& for a production A →
B1B2..., Bi ∈ P and u is a concatenation of all < T > & for terminals T ∈ Σ
for an encoding <> of Σ ∪ V and a grammar G = (Σ, V, P, S) with a word in
L(G) with a derivation tree not deeper than O(logk(|w|) using the productions
in the order of v.}

CFEk is complete for ACk:
The idea behind the ACk-hardness of CFEk is to transform conjunctions B = B1 ∧B2 ∧
. . .∧Bn into context-free rules B ⇒ B1B2 . . . Bn and disjunctions A = A1 ∨A2 ∨ . . .∨An

into (the set of) rules A ⇒ A1|A2| . . . |An.
Let L be accepted by an ACk circuit family. Using the unifying machine of this family, we
can construct a log-space computable function f which maps an input x to an unbounded
fan-in circuit of logk depth, which evaluates to 1, iff x ∈ L. A logarithmic transducer T

can convert such a circuit to a context-free grammar in the following way: We assume
w.l.o.g., that the output gate is OR and that there are only connections from OR gates to
AND gates and vice versa. If A is the output of an OR-gate and B1, ...Bi are the inputs
of an AND-gate with its output in this OR-gate, then the production A ⇒ B1...Bi has
to be in the grammar. The productions have to be in a monotone order, which means,
that an encoding of a production with A on the left side has to be after the encoding of a
production with A on the right side; this can simply be done by repeating the productions
logkn times. All inputs having the value 1 are the terminals and the output of the circuit
is the start-symbol of the grammar. A gate of the circuit has value 1 iff a word consisting
of terminals can be derived from the corresponding variable, so T reduces L to CFEk.
An alternating 1-way push-down automaton M recognizing CFEω works as follows: M

chooses existentially a production and tests the reverse order encoding of the variable with
the push-down store in existential states and thus emptying the push-down store. Then
M chooses the variable on the right side of a production in an universal state without
using the push-down store. M starts with < S > on the push-down store. Clearly the
EAΣlogk-language of M is CFEk.
The following is the formal definition:

M = ({z0, z1, z2, za}, {zu}, Σ ∪ {#, %, &}, Σ ∪ {$}, δ, z0, $, {za})

with
δ := { (z0, x, g, z0, xg) | x ∈ Σ, g ∈ Σ ∪ {$}, (z0, #, g, z1, g),

(z1, y, g, z1, g) | y ∈ Σ ∪ {#, %, &}, (z1, &, g, z2, g),
(z2, g, g, z2, λ), (z2, &, $, za, $), (z2, %, $, zu, $),
(zu, x

′, $, zu, $), (zu, #, $, z0, $), (zu, #, $, zu, $),
(zu, &, $, za, $), (za, y, $, za, $)}

Lemma 6.2 SACk ⊆ LOG(1−SEAΣlogknPDA)

Proof: Restricting the grammars to be in Chomsky normal form settles the semi-un-
bounded case: the bounded fan-in of AND-gates corresponds to the restriction to 2
variables on the right hand side of the productions of the simulated grammar.



We define CFECk analogously to CFEk with the difference, that the grammar must be
in Chomsky normal form. CFECk can be recognized by an automaton like in Lemma
6.1, which makes only one step in an universal state by deciding which variable on the
right side of a production is used. CFECk is complete for SACk. The bounded fan-in
of AND-gates corresponds with the restriction to 2 variables on the right side of the
productions. The formal definition is:

M = ({z0, z1, z2, z3, za}, {zu}, Σ ∪ {#, %, &}, Σ ∪ {$}, δ, z0, $, {za})

with
δ := { (z0, x, g, z0, xg) | x ∈ Σ, g ∈ Σ ∪ {$}, (z0, #, g, z1, g),

(z1, y, g, z1, g) | y ∈ Σ ∪ {#, %, &}, (z1, &, g, z2, g),
(z2, g, g, z2, λ), (z2, &, $, za, $), (z2, %, $, zu, $),
(zu, #, $, z0, $), (zu, #, $, z3, $),
(z3, x, $, z3, $), (z3, #, $, z0, $), (za, y, $, za, $)}.

7 Alternating linear Grammars

We now consider alternating grammars. There are several possibilities to do this for
alternating context free grammars. So for alternating context free grammars in [Mor89] it
holds LOG(λ−freeACFL) = PSPACE according to [CT90], but for alternating (also λ-
free) alternating context free grammars in [Rei89] it holds LOG(CFLΣω) = EXPTIME.
In any case there are close relations to alternating push-down automata and complexity
classes. But it seems difficult to introduce the concept of empty alternation within the
framework of grammars. Instead of trying to do so, we will consider in this subsection
alternating linear (context free) grammars, since linear grammars seem somehow to work
without auxiliary storage, which implies in this case the coincidence of alternation and
empty alternation. (Compare this with the NSPACE(log(n))-completeness of linear
languages, and with the fact that for logarithmic space alternation and empty alternation
coincide).
We now turn to alternating linear grammars:

Definition According to [Rei89] and [Rei90] we regard an alternating grammar G as
an 8-tuple

G = (V, Ve, Va, Σ, Pe, Pa, S, F ) with S, F ∈ Ve ∩ Va,

for k > 0 we define:

SenFΣ0(G) := SenFΠ0(G) := {S}

SenFΣ1(G) := {α ∈ (Va ∪ Σ)∗ | S
∗

=⇒
Pe

α}

SenFΠ1(G) := {α ∈ (Ve ∪ Σ)∗ | ∀β ∈ {S, F}(β
∗

=⇒
Pa

α → β = S)}

SenFΣk+1(G) := {α ∈ (Va ∪ Σ)∗ | ∃β ∈ (Ve ∪ Σ)∗ ∩ SenFΠk(G) with β
∗

=⇒
Pe

α}

SenFΠk+1(G) := {α ∈ (Ve ∪ Σ)∗ | ∀β ∈ (Va ∪ Σ)∗(β
∗

=⇒
Pa

α → β ∈ SenFΣk(G)}.

Since a linear grammar G can have sentential forms with more than one variable in
SenFΠ1(G), SenFΣ2(G), ..., we define the ω-set as a union of all odd sets:

SenFΣω(G) :=
⋃

k odd

SenFΣk(G).



Alternating linear languages can be defined as:

LΣk(G) := SenFΣk(G) ∩ Σ∗

LINΣlogkn :=
{L | there is an alternating linear grammar G with LΣ2O(logkn)+1(G) := L}

LINΣω := {L | there is an alternating linear grammar G with LΣω(G) := L}

The corresponding grammar for SACk is an alternating linear grammar with no recursion
in the universal productions. Then we have:

Theorem 7.1 LOG(LINΣω) = P , LOG(LINΣk) = NL for k ≥ 1.

The first part coincides with LOG(linearACFL) = P according to [CT90], the proof is
equivalent to the proof of the next theorem.
In the case of bounded alternation we get further characterizations of ACk and SACk.

Theorem 7.2 LOG(LINΣlogkn) = ACk

Proof:
’⊆’: In analogy to the proof of in [LR91], there are only linear many sentential forms.
’⊇’: We define the following complete language CFEMk := {wR&w | w ∈ CFEk}.
CFEMk is complete for ACk, in the same way as CFEk. We can construct an alternating
linear grammar G for CFEMk, which simulates the work of the empty alternating push-
down automaton in Lemma 6.1, where a path from the start-configuration to an accepting
configuration corresponds to a reduction of a word to the start-symbol. The comparison
of two (unary) encodings, which was done with the push-down store is now made by a
simultaneous reduction of two parts in the two halfs of the word. Hereby the simulation
always changes to the other half, when the next encoding has to be found. The formal
definition for G is:

({S, F, T,M}, {S, F, T, C,C ′}, {S, F,M,A,A′, B,B′}, Σ ∪ {&, #, %, &}, Pe, Pa, S, F )

with

Pe := { S → T | M, and Pa := { M → &, A → &, A′ → &,

M → xMx | x ∈ Σ ∪ {#, %, &}, A′ → #C,

T → C | C ′ | Tx | xT | x ∈ Σ ∪ {#, %, &} C → zC | z ∈ Σ ∪ {#},
A → Ax | x ∈ Σ ∪ {#, %, &}, A → #C ′,

B → A& | yBy | y ∈ Σ, C ′ → C ′z | z ∈ Σ ∪ {#}}
C → %B,

A′ → xA′ | x ∈ Σ ∪ {#, %, &},
B′ → &A′ | yB′y | y ∈ Σ,

C ′ → %B′}

Finally, let us mention some relations to automata. The machine model corresponding
to the linear languages is the one-turn push-down automaton, which starts its compu-
tations in a ’push’-mode, where no symbols may be popped from the stack and then
enters a final ’pop’-mode, in which no more symbols may be pushed onto the stack. Un-
fortunately, a closer look at the constructions in [Rei89] reveals the Σp

k-completeness of



1−AΣk+1PDA1−TURN i.e., it shows a ’strong’ behavior. To come to an adequate machine
characterization of alternation, Chen and Toda defined in [CT90] a state-free alternating
pushdown automata, which is forced to pop a symbol in every step after entering the
’pop’-mode. On the other hand, the 1-turn restriction is very severe when considering
empty alternating push-down automata, as their accepted languages seem to coincide
with the Boolean closure of linear languages, which is contained in NLOG.

Acknowledgement Thanks to Carsten Damm, Volker Diekert, Klaus-Jörn Lange and
Peter Rossmanith for many interesting discussions and helpful remarks.

References

[AJ93] C. Àlvarez and B. Jenner. A very hard log-space counting class. Theoret. Comput.

Sci., 107:3–30, 1993.

[BCD+88] A. Borodin, S. A. Cook, P. Dymond, W. L. Ruzzo, and M. Tompa. Two applications
of complementation via inductive counting. In Proc. of 3d Structure, 1988.

[BDHM91] G. Buntrock, C. Damm, U. Hertrampf, and C. Meinel. Structure and importance of
logspace-MOD-classes. In C. Choffrut and M. Jantzen, editors, Proc. of 8th STACS,
number 480 in LNCS, Hamburg, Germany, February 1991. Springer.

[CKS81] A. K. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal of the ACM,
28:114–133, 1981.

[CT90] Z.-Z. Chen and S. Toda. Grammatical characterizations of P and PSPACE. Trans-

actions of the IEICE, E 73(9), September 1990.

[Dam90] C. Damm. Problems complete for ⊕L. In J. Dassow and J. Kelemen, editors, Proc.

of 6th IMYCS, number 464 in LNCS, pages 214–224. Springer, 1990.

[GNW90] T. Gundermann, N.A. Nasser, and G. Wechsung. A survey on counting classes. In
Proc. of 5th Structure, pages 140–153, 1990.

[HHK91] T. Hofmeister, W. Hohberg, and S. Köhling. Some notes on threshold circuits, and
multiplication in depth 4. In L. Budach, editor, Proc. of 8th FCT, number 529 in
LNCS, pages 230–239, Gosen, Germany, September 1991. Springer.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and

Computation. Addison-Wesley, 1979.

[JK89] B. Jenner and B. Kirsig. Alternierung und Logarithmischer Platz. Dissertation,
Universität Hamburg, 1989.

[Lan89] K.-J. Lange. Complexity theory and formal languages. In Proc. of 5th IMYCS,
number 381 in LNCS, pages 19–36. Springer, 1989.

[LLS84] R. E. Ladner, R. J. Lipton, and L. J. Stockmeyer. Alternating pushdown and stack
automata. SIAM Journal on Computing, 13:135–155, February 1984.

[LR90a] K.-J. Lange and P. Rossmanith. Characterizing unambiguous augmented pushdown
automata by circuits. In B. Rovan, editor, Proc. of 15th MFCS, number 452 in
LNCS, pages 399–406, Banská Bystrica, Czechoslovakia, August 1990. Springer.



[LR90b] K.-J. Lange and P. Rossmanith. Two Results on Unambiguous Circuits. SFB-Bericht
342/3/90 A, I9006, Institut für Informatik, Technische Universität München, 1990.

[LR91] K.-J. Lange and K. Reinhardt. Empty alternation. Manuscript, 1991.

[LSL84] R. Ladner, L. Stockmeyer, and R. Lipton. Alternation bounded auxiliary pushdown
automata. Information and Control, 62:93–108, 1984.

[Mor89] E. Moriya. A grammatical characterization of alternating push-down automata.
Theoret. Comput. Sci., 67:75–85, 1989.

[NR91] I. Niepel and P. Rossmanith. Uniform circuits and exclusive read PRAMs. In
S. Biswas and K. V. Nori, editors, Proceedings of the 11th Conference on Foundations

of Software Technology and Theory of Computer Science, number 560 in LNCS,
pages 307–318, New Delhi, India, December 1991. Springer.

[NR92] R. Niedermeier and P. Rossmanith. Unambiguous simulations of auxiliary pushdown
automata and circuits. In I. Simon, editor, Proceedings of the 1st Symposium on

Latin American Theoretical Informatics, number 583 in LNCS, pages 387–400, São
Paulo, Brazil, April 1992. Springer.

[Rei89] K. Reinhardt. Hierarchien mit alternierenden Kellerautomaten, alternierenden

Grammatiken und finiten Transducern. Diplomarbeit, Universität Stuttgart, Bre-
itwiesenstr. 22, D-70565 Stuttgart, September 1989.

[Rei90] K. Reinhardt. Hierarchies over the context-free languages. In J. Dassow and J. Kele-
men, editors, Proc. of 6th IMYCS, number 464 in LNCS, pages 214–224. Springer,
1990.

[Ros91] P. Rossmanith. The owner concept for PRAMs. In C. Choffrut and M. Jantzen, edi-
tors, Proc. of 8th STACS, number 480 in LNCS, pages 172–183, Hamburg, Germany,
February 1991. Springer.

[Ruz81] W. L. Ruzzo. On uniform circuit complexity. Journal of Computer and System

Sciences, 22:365–383, 1981.

[Sud78] I. H. Sudborough. On the tape complexity of deterministic context-free languages.
Journal of the ACM, 25:405–414, 1978.

[SV84] L. Stockmeyer and U. Vishkin. Simulation of parallel random access machines by
circuits. SIAM Journal on Computing, 13(2):409–422, May 1984.

[Val79] L. G. Valiant. The complexity of computing the permanent. Theoretical Computer

Science, 8:189–201, 1979.

[Ven88] H. Venkateswaran. Circuit definitions of nondeterministic complexity classes. In
K.V. Nori and S. Kumar, editors, Proceedings of the 8th Conference on Foundations

of Software Technology and Theory of Computer Science, number 338 in LNCS,
pages 175–192, Pune, India, December 1988. Springer.

[Vin91] V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic
circuits. In Proc. of 6th Structure, pages 270–285, 1991.

[Wag88] K. Wagner. Bounded query computation. In Proc. of 3rd Structure, pages 260–277,
1988.


