
Empty Alternation ?

Klaus-Jörn Lange Klaus Reinhardt

Institut für Informatik, TU München Institut für Informatik, Universität Stuttgart
Arcisstr.21, D-80290 München Breitwiesenstr.22, D-70565 Stuttgart

e-mail: lange@informatik.tu-muenchen.de e-mail: reinhard@informatik.uni-stuttgart.de

Abstract. We introduce the notion of empty alternation by investigating
alternating automata which are restricted to empty their storage except
for a logarithmically space-bounded tape before making an alternating
transition. In particular, we consider the cases when the depth of alterna-
tion is bounded by a constant or a polylogarithmic function. In this way
we get new characterizations of the classes AC

k, SAC
k and P using a

push-down store and new characterizations of the class ΘP
2 using Turing

tapes.

1 Introduction

Alternation as introduced by Chandra, Kozen, and Stockmeyer in [CKS81] proved
to be a very fruitful and versatile parallel concept in complexity theory. It has
been combined with both automata and grammar models. The language fami-
lies described by alternating devices typically coincide with sequential time or
space classes. Furthermore, several well-known hierarchies defined by iterated
relativizations of sequential time and space have been characterized by constant
depth-bounded alternation, that is by bounding the number of transitions be-
tween existential and universal configurations within each computation path by
a constant. Let us review these relations for logarithmically space-bounded Turing
machines, polynomially time-bounded Turing machines, and for the intermediate
model of polynomially time-bounded auxiliary push-down automata:

Logarithmic Space: There are two types of relativizations of nondeterministic
logarithmic space, that of Ladner and Lynch (see [LL76]) and that of Ruzzo,
Simon, and Tompa (see [RST84]), which is more restricted by prohibiting
nondeterministic oracle queries: while writing on its query tape the oracle
machine has to work deterministically. While the Ladner-Lynch relativization
leads to the Polynomial Hierarchy of Meyer and Stockmeyer , Ruzzo-Simon-
Tompa relativization characterizes the “late” Logarithmic Space Hierarchies
(see [Lan86]). Thus, in the case of logarithmically space-bounded computa-
tions, alternation is related to the weaker kind of relativization.

Polynomial Time: The two types of relativization — Ladner-Lynch vs. Ruzzo-
Simon-Tompa — coincide in the case of nondeterministic polynomially time-
bounded computations and lead to the Polynomial Hierarchy of Meyer and

? This research was supported by DFG-SFB 342, Teilprojekt A4 “KLARA”.

Stockmeyer. In [JKL89] the Deterministic Polynomial Hierarchy was intro-
duced by iterating restricted relativizations of deterministic polynomial time
equipped with an nondeterministic polynomial time oracle. This hierarchy
does not seem to coincide with the Polynomial Hierarchy but rather shows
some similarities to the Logarithmic Space Hierarchies - in particular, its
collapse. If we look at alternating polynomial time, bounding the depth of
alternation by a constant leads to the Polynomial Hierarchy. We see that in
the case of polynomially time-bounded computations, alternation is related
to the stronger kind of relativization and the corresponding hierarchy.

Polynomial Time of Auxiliary Push-Down Automata: Finally, let us consider po-
lynomially time-bounded two-way push-down automata which are augmented
by a logarithmically space-bounded working tape (see [Coo71], [Sud78]).
Bounding the depth of alternation of this device by a constant again leads
to the Polynomial Hierarchy, but (as in the Ladner-Lynch case) shifted by
one level ([JK89], [Bun87]). It is possible to define both a Ladner-Lynch-like
and a Ruzzo-Simon-Tompa-like relativization of this device. In the latter case
not only nondeterminism but also access to the push-down store has to be
prohibited during the generation of oracle queries. Here again, the Ladner-
Lynch approach leads to the Polynomial Hierarchy, while the corresponding
Ruzzo-Simon-Tompa hierarchy behaves like the Logarithmic Space Hierar-
chies, in particular it collapses on its first level down to LOG(CFL), the
class of problems reducible to context-free languages.

Thus, we see that in all three cases we have two types of relativizations and
corresponding hierarchies, a stronger relativization which leads to the Polyno-
mial Hierarchy and a weaker relativization which collapses on a low level of the
corresponding hierarchies.2 Unless the considered type of storage is just a log-
arithmically space-bounded working tape, alternation is related to the stronger
hierarchy.
In this paper we introduce a new kind of restricted alternation, which we call
Empty Alternation. It is characterized by the property that in moments of al-
ternation all tapes or stacks have to be empty except for one working tape of
logarithmic size. While “full” alternation usually corresponds to the stronger rel-
ativization and the corresponding hierarchy, empty alternation will correspond
to the weaker one. Thus, the fact that full alternation and Empty Alternation
coincide if there is no additional storage but a logspace tape explains the corre-
spondence of logspace alternation to the Ruzzo-Simon-Tompa relativization.

This paper is organized as follows. In section 2 we will give a short overview
on complexity classes obtained by bounding depths of alternations by constants

2 Generally, the former allows opposite relativizations of certain relations, while the
latter often is “positive” in the sense, that the existence of certain relativizations
would settle the unrelativized case. For example, there are oracle sets A and B such
that LOG

A = NLOG
A and LOG

B 6= NLOG
B if we use the relativization of Ladner

and Lynch. Considering the relativization of Ruzzo, Simon, and Tompa, however,
the existence of any oracle set C separating LOG

C from NLOG
〈C〉 would imply

LOG 6= NLOG !

or polylogarithmic functions. In section 3 the notion of Empty Alternation is
introduced and related to full alternation, yielding new characterizations of well-
known classes like ACk, SACk, or ΘP

2 := LNP = PNP [log] = PNP
‖ .

2 Alternation

We assume the reader to be familiar with the basic notions and results of com-
plexity theory as they are contained in [HoUl79] or [BDG88] and [BDG90]. In
particular, LOG, NLOG, P, NP, and PSPACE denote the sets recognizable in
(nondeterministic) logarithmic space, (nondeterministic) polynomial time, and
polynomial space. Let LOG(X) denote the class of all languages logspace many-
one reducible to a class X. By NAuxPDA–TIME(pol) and DAuxPDA–TIME(pol)
we denote the classes of languages recognizable by nondeterministic and deter-
ministic auxiliary push-down automata (see [Coo71]) in polynomial time. In ad-
dition, we use the STA-notation: STA(f, g, h) denotes the set of all languages rec-
ognizable by alternating Turing machines, which are f(n) space-bounded, g(n)
time-bounded, and make no more than h(n) − 1 alternations. Thus, h(n) = 1
covers nondeterministic languages and by convention h(n) = 0 denotes the de-
terministic case. By ACk (respectively SACk) we denote the class of languages
recognized by circuit families of polynomial size, O(logk n) depth, and of un-
bounded (respectively semi-unbounded) fan-in (see [Ven87]).
In the following we will consider alternating logspace machines, push-down au-
tomata (both with and without polynomial time bound), and polynomially time-
or space-bounded Turing machines with two-way input and bounded depth of al-
ternation which are always equipped with a logarithmically space-bounded work-
ing tape. This, of course, does not change the computational power in the case of
polynomially time- or space-bounded Turing machines. But it will be useful when
introducing empty alternation. Thus, for X ∈ {LOG, PDA–TIME(pol),PDA, P,

PSPACE} and a function g, where we allow the cases that g is a constant or

that g is unbounded which will be indicated by the symbol ω, let AΣ
s(n)
g X (re-

spectively AΠ
s(n)
g X) denote the set of all languages recognized by alternating

X-machines augmented with an s(n) space-bounded working tape, which make
g(n) − 1 alternations starting in an existential (respectively universal) state.
Characterizations of these classes with s(n) = log n are collected in Table 1.
Here, the result STA(pol,−, pol) = PSPACE in Column 5 is due to the result
STA(f,−, g) ⊆ DSPACE(f(f +g)) for f(n) ≥ log(n) of Borodin (cited according
to [CKS81]). Most of the results may be found in [LSL84], [CKS81], [JK89],
[Sud78], [Imm88], and [Sze88]. The remaining cases for push-down automata are
settled by the following theorems, which we will state without proof. First, the
Auxiliary PDA Theorem from [LSL84] can be extended to:

Theorem1. For s(n) ≥ log(n) and a(n) ≥ 0 computable within space s(n) it
holds: ⋃

c

AΣa(n)SPACE (2cs(n)) ⊆ AΣ
s(n)
1+a(n)PDA

Step of without with pushdown store with polynomial tape
alter- push-down polynomial without polynomial without
nation store time bound time bound time bound time bound

determ. L
LOG(DCFL)

[Sud78]
P PSPACE

AΠ1 [Bo et al 88]
P

[Coo71]
co−NP

AΣ1 NL
LOG(CFL)

[Sud78]
NP

AΠ2
[Imm88]
[Sze88]

co−NP

[JK89] [LSL84]
Πp

2

AΣ2 NP [JK89]
PSPACE
[LSL84]

Σp
2

...
...

...

AΠk
Πp

k−1

[JK89]
Πp

k

AΣk
Σp

k−1

[JK89]
Σp

k

[Imm88]
[Sze88]

...
...

...

AΣlog(n) AC1 Σp

log(n)

〈Corollary 4〉
Σp

log(n)

...
...

...
...

AΣlogk(n) ACk
Σp

logk(n)

〈Corollary 4〉
〈Corollary 2〉 Σp

logk(n)
[CKS81]

...
...

...
...

AΣω P [CKS81]
PSPACE
[JK89]

EXPTIME
[LSL84]

PSPACE
[CKS81]

EXPTIME
[CKS81]

Table1. Complexity classes of automata with space-bounded tape

As a consequence with AΣlog
a(n)PDA ⊆

⋃
c

NSPACE (a(n)2c log(n)) [LSL84] we get:

Corollary 2. AΣlog

logkPDA = PSPACE

Second, we give the extension of a result in [JK89] to the case of non-constant
depth of alternation:

Theorem3. For s(n) ≥ log(n) and a(n) ≥ 1 computable within space s(n) it
holds: ⋃

c

AΣ
s(n)
a(n)TIME(2cs(n)) =

⋃
c

AΣ
s(n)
1+a(n)PDA–TIME(2cs(n))

Corollary 4. AΣlog

logkPOL = AΣlog

logkPDA–TIME (pol)

3 Empty Alternation

If we add bounded alternation to logarithmically space-bounded Turing machines,
the result is comparatively small: we just get NLOG. The situation changes com-
pletely, if we slightly increase the power of the underlying machine model. For
example, consider the rather small class DAuxPDA–TIME(pol), which is con-
tained in both SC2 and NC2, and hence in P and in POLYLOGSPACE. For
DAuxPDA–TIME(pol) the addition of depth-bounded alternation yields already
the Polynomial Hierarchy ([JK89],[Bun87]). If we take a closer look to this phe-
nomenon, we see that the underlying machine has now the possibility of pushing
polynomially many bits in an existential or universal way onto the push-down
store. These bits are then popped, i.e. read one-way, and evaluated again with the
help of bounded alternation. This phenomenon and its explanation led us to the
concept of empty alternation: we augment machines with several storage types
and then add alternation under the restriction that in moments of alternation
(during transitions between existential and universal configurations) all auxiliary
memories are empty and all transferred information is contained in the state and
on a logarithmically space-bounded working tape.

In the following, for X ∈ {LOG, PDA–TIME (pol), PDA, P, PSPACE} and a
function g, where we again admit the cases that g is a constant or that g is
unbounded, let EAΣlog

g X denote the set of all languages recognized by logspace
Turing machines augmented with storage of type X, which make g(n)− 1 empty
alternations. The main results of this chapter are collected in Table 2, which is
the “empty” analogue of Table 1.

3.1 Empty Alternation and Push-down Automata

In this section we study the concept of empty alternation for machines equipped
only with an additional logspace tape (i.e. for ’unaugmented’ machines), with one
push-down store while maintaining a polynomial time bound, and with one push-
down store without any restriction of the running time. Obviously, for unaug-
mented machines empty alternation coincides with (full) alternation, which yields
EAΣlog

g LOG = AΣlog
g LOG for g ∈ O(1) ∪ {logk n, ω}. Thus, EAΣlog

ω LOG = P .
The following result shows that this relation holds even for machines augmented
with an unrestricted push-down store.

Theorem5. EAΣlog
ω PDA ⊆ P

Proof. According to [Coo71] it can be decided in polynomial time for two config-
urations K1, K2 with empty pushdown store, whether K1 | ∗

M
K2 without alter-

nation. If M without loss of generality only stops with empty pushdown store,
then for input x it can be calculated recursively for all such configurations in
the calculation of M(x), whether there is a partial accepting subtree under that
configuration. Because this has to be calculated once for each of the polynomially
many configurations, this can be done in polynomial time.

Step of without with pushdown store with polynomial tape
alter- push-down polynomial without polynomial without
nation store time bound time bound time bound time bound

determ. L
LOG(DCFL)

[Sud78]
P PSPACE

AΠ1 [Bo et al 88]
P

[Coo71]
co−NP

AΣ1 NL
LOG(CFL)

[Sud78]
NP

EAΠ2 [Imm88]

EAΣ2 [Sze88]

...

EAΠk

EAΣk 〈Theorem 8〉

...

EAΣlog(n) AC
1 〈Theorem 9〉

...
...

EAΣlogk(n) AC
k 〈Theorem 9〉 Θp

2

...
...

EAΣω [CKS81] P 〈Corollary 7〉 〈Corollary 6〉 〈Theorem 10〉 〈Theorem 11〉

Table2. Complexity classes of automata with logarithmically space-bounded tape and
empty alternation

Contrast this with AΣlog
ω PDA =EXPTIME in [LSL84]. By Cook’s characteriza-

tion of P by auxiliary push-down automata in [Coo71] Theorem 5 yields

Corollary 6. EAΣlog
g PDA = P , for g ∈ {O(1), logk, ω}.

Another consequence of Theorem 5 follows from
P = EAΣlog

ω LOG ⊆ EAΣlog
ω PDA–TIME(pol):

Corollary 7. EAΣlog
ω PDA–TIME(pol) = P

On the other hand using the result of [Bo et al 88], it is easy to see that we have
a collapse to LOG(CFL) for constant bounded empty alternation:

Theorem8. EAΣlog
k PDA–TIME(pol) = LOG(CFL), for each k.

In an obvious way it is possible to introduce semi-unbounded empty alternation
(compare with [Ven87]) which yields classes named SEAΣlog

g X. Now, the nature
of polylogarithmically bounded empty alternation of polynomially time-bounded
push-down automata is characterized by

Theorem9. EAΣlog

logk n
PDA–TIME(pol) = ACk

and SEAΣlog

logk n
PDA–TIME(pol) = SACk, for k ≥ 1.

Proof. The inclusions from right to left are obvious. An empty alternating push-
down automaton with h · log(n) space-bounded tape can be simulated by an ACk

(respectively SACk) circuit which calculates with O(|x|2h+2) sub-circuits for ev-
ery pair of surface-configurations 〈K1, K2〉 with empty push-down store whether
K2 is reachable from K1 (K1 | ∗

M
K2) without any alternation. Since this can

be done in LOG(CFL) or LOG(co−CFL) it can also be done by a SAC1-circuit
because of [Bo et al 88]. Then the circuit recursively calculates in each level j of
the logk levels for every surface-configuration Ki the bit ci,j , which is 1, if Ki has
an accepting tree of depth j. For an accepting (rejecting) configuration, this is 1
(0), for an existential configuration it is

ci,j =
∨

l

(cl,j−1 ∧ 〈Ki, Kl〉) and it is ci,j =
∧

l

(cl,j−1 ∨ 〈Ki, Kl〉)

for an universal configuration. In case of a semi-unbounded push-down automaton
there are only finitely many l’s in a conjunction, so the whole construction results
in a SACk circuit.

This result indicates the comparatively small computational power of Empty
Alternation when dealing with polynomially time-bounded auxiliary push-down
automata: the addition of a push-down store does not increase the power of a
logspace machine as long as the depth of alternation is at least logarithmically
growing.
But the other direction holds too in the sense that empty alternating push-down
automata without two-way input and without logspace working tape generate
languages complete for EAΣlog

a(n)PDA–TIME(pol) (respectively SEAΣlog
a(n)PDA–

TIME(pol)), which is shown in [Rei92]. This generalizes the equations

NAuxPDA–TIME(pol) = LOG(CFL) and
DAuxPDA–TIME(pol) = LOG(DCFL)

of Sudborough [Sud78]; it may be interpreted in the sense that in EAΣlog
a(n)PDA–

TIME(pol)-automata a one-way push-down part may be separated from a two-
way logspace part. This decomposition is also possible for fully alternating push-
down automata as shown in [Rei89] and [Rei90].
Similar results can be obtained with alternating grammars. For the alternating
context free grammars in [Mor89] we have LOG(ACFL

left
λ−free) = PSPACE ac-

cording to [CT90], but for the alternating (even λ-free) alternating context free
grammars in [Rei89] LOG(CFLΣω) =EXPTIME holds. A surprising result of
[Rei92] is that alternating linear grammars generate the complete languages cor-
responding to empty alternation: LOG(LINΣω) = P , LOG(LINΣlogk n) = ACk

and LOG(LINΣk) = NL for k ≥ 1.

3.2 Empty Alternation and Turing Tapes

If we consider machines with two or more auxiliary push-down stores, it is easy
to see that from the aspect of complexity these are equivalent to Turing tapes.
That is why we will consider empty alternation of polynomial time and of poly-
nomial space in this subsection. In the case of polynomial time we will get a
characterization of the class Θp

2 := LNP . This class was named and characterized
by Wagner, who gave several representations of the classes Θp

k+1 := LΣp

k .

In the following P A[log] refers to classes defined by polynomial time-bounded
oracle machines, which are allowed to ask at most O(log(n)) queries and PA

‖

refers to classes defined by polynomial time-bounded oracle machines, which are
allowed to ask a polynomial number of queries in parallel. With the help of
Wagner’s characterizations LNP = PNP [log] = PNP

‖ in [Wag90], we show one of
our main results:

Theorem10. EAΣlog
2 P = EAΣlog

ω P = Θp
2

Proof. EAΣlog
ω P ⊆ PNP

‖ :

Let K(x) be the set of those configurations of an EAΣlog
ω P -machine M on input x,

where the not logarithmic space-bounded tape is empty. Thus |K(x)| is bounded
by a polynomial. We consider the language

L1 := {(x, K1, K2) | K1, K2 ∈ K(x) and K1 | ∗
M

K2 without any alternation }.

Obviously, we have L1 ∈ NP . With one parallel round of queries to L1 we can
compute the complete reachability relation

R(x) := {(K1, K2) | K1, K2 ∈ K(x) and K1 | ∗
M

K2 without any alternation }.

Then the partial accepting subtrees for all the configurations in K(x) can be
computed like in the proof of Theorem 5. We assume w.l.o.g. that the tape,
which is not logarithmic space-bounded is empty, if the machine accepts or stops.
The simulation accepts, if the start configuration belongs to a partial accepting
subtree.

PNP [log] ⊆ EAΣlog
2 P :

Let L ∈ PNP [log] by an oracle machine M with oracle SAT . An EAΣlog
2 P -machine

A simulates M twice:
In the first simulation A starts in an existential state and simulates the determin-
istic steps of M . If M asks the i-th oracle question ’vi ∈ SAT?’, then A guesses
the answer and stores it as the i-th bit on the logarithmic space-bounded tape.
If the answer ’Yes’ is guessed, then A simulates the NP -machine B for SAT on
vi and rejects, if B rejects. If the answer ’No’ is guessed, the verification is post-
poned to the second phase of alternation. Then A continues the simulation of
M . If M accepts, then A alternates into an universal state and starts the second
phase of the simulation by simulating again the deterministic steps of M . If M

asks the i-th oracle question ’vi ∈ SAT?’, then A looks up the answer from the

logarithmic space-bounded tape. If the answer is ’No’, then A simulates univer-
sally the co−NP -machine C for UNSAT on vi and rejects, if C rejects. Then A

continues the simulation of M . If M accepts, then A accepts.

As we see, a hierarchy defined by bounded empty alternation of polynomially
time-bounded machines would collapse on its second level down to ΘP

2 . (Even
totally unbounded empty alternation collapses to alternation depth two!) But
this then is precisely the Deterministic Polynomial “Hierarchy” of [JKL89]. This
again shows the close relationship of empty alternation to weak relativizations
and hierarchies compared to the closeness of full alternation to more powerful
ones.
Finally, we shortly consider the case of polynomial space. By a result of Borodin

(cited in [CKS81]) we have AΣPSPACE
pol = PSPACE . While AΣPSPACE

ω =
EXPTIME, empty alternation does not lead beyond PSPACE :

Theorem11. EAΣlog
ω PSPACE = PSPACE

Proof. It can be decided with polynomial space for two configurations K1, K2,
whether K1 | ∗

M
K2 without alternation. If M without loss of generality only

stops with all auxiliary tapes empty, then for input x it can be calculated re-
cursively for all such configurations in the calculation of M(x), whether there
is a partial accepting subtree under that configuration. Because this has to be
calculated once for each of the polynomially many configurations, this can be
done in polynomial space.

Discussion and Open Questions

We introduced the concept of Empty Alternation as a restriction of the usual
‘full’ alternation and exhibited close connections to questions of how to relativize
complexity classes and about the collapses of hierarchies. As a result new rep-
resentations of many well-known complexity classes have been obtained. Since
alternation is a very powerful mechanism, it seems reasonable not only to re-
strict the concept itself, but also the device it is applied to. In this way, relations
between formal languages and complexity could be generalized. This leaves open
to investigate these relations with respect to other models of formal language
theory. First candidates should here be all types of stack automata, since the
relations between their deterministic, nondeterministic, (fully) alternating, and
auxiliary versions show a very similar pattern to that of push-down automata.
Another interesting question would be to determine both an alternation type and
an automaton model which together characterize the NCk classes not as time
classes, but directly by the depth of alternation.

Acknowledgment We thank Volker Diekert, Werner Ebinger, Birgit Jenner, Anca
Muscholl and Peter Rossmanith for many helpful remarks, Prof. Dr. W. Knödel,
who made this joint work possible and an anonymous referee, who helped us to
simplify the proof of Theorem 10.

References

[BDG88] J. Balcázar and J. Diáz and J. Gabárro: Structural Complexity Theory I;
Springer 1988.

[BDG90] J. Balcázar and J. Diáz and J. Gabárro: Structural Complexity Theory II;
Springer 1990.

[Bo et al 88] A.Borodin. S.A. Cook, P.W.Dymond, W.L. Ruzzo, M.Tompa; Two appli-
cations of complementation via inductive counting, 3rd Structure in Complexity
Theory.

[Bun87] G. Buntrock: On the Robustness of the Polynomial Time Hierarchy, Technische
Universität Berlin, Technischer Bericht, Nr.: 87-11,1987.

[CKS81] A.K. Chandra, D.C. Kozen, L.J. Stockmeyer; Alternation, Journ. of the ACM
28,1 (1981), 114-133.

[Coo71] S.A. Cook: Characterizations of push-down machines in terms of time bounded
computers, Journ. of the ACM 18,1 (1971), 4-18.

[CT90] Z.-Z. Chen, S. Toda: Grammatical Characterizations of P and PSPACE, trans-
actions of the IEICE, Sep. 1990.

[HoUl79] J.E. Hopcroft, J.D. Ullmam: Introduction to Automata Theory, Languages
and Computation, Addison-Wesley, 1979.

[Imm88] N. Immerman: Nondeterministic space is closed under complementation,
SIAM Journ. Comput. 15, 5 (1988), 935-938.

[JK89] B. Jenner, B. Kirsig: Characterizing the polynomial hierarchy by alternating
auxiliary push-down automata. Theoretical Informatics and Applications, 1989,
87-99.

[JKL89] B. Jenner, B. Kirsig, K.-J. Lange: The Logarithmic Alternation Hierarchy
Collapses, Information and Computation 80 (1989), 269-288.

[LL76] R. Ladner and N. Lynch: Relativization of questions about log space computabil-
ity, Math. Systems Theory 10 (1976),19-32.

[LSL84] R.E. Ladner,L.J.Stockmeyer,R.J. Lipton: Alternation bounded auxiliary
pushdown automata, Information and Control 62 (1984), 93-108.

[Lan86] K.-J. Lange: Two Characterizations of the Logarithmic Alternation Hierarchy,
Proc. of 12th MFCS 233, LNCS, Springer 1986, 518–526.

[Mor89] E. Moriya: A grammatical characterization of alternating push-down au-
tomata, TCS 67 (1989), 75-85.

[Rei89] K. Reinhardt: Hierarchien mit alternierenden Kellerautomaten, alternierenden
Grammatiken und finiten Transducern, Diplomarbeit, Universität Stuttgart, 1989.

[Rei90] K. Reinhardt: Hierarchies over the context-free Languages, Proc. of 6th IMYCS,
LNCS, 464, Springer 1990, 214-224.

[Rei92] K. Reinhardt. Counting and empty alternating pushdown automata, Proc. of
7th IMYCS, pages 198–207, Smolenice Castle, Tschechoslowakei, 1992.

[RST84] W. Ruzzo and J. Simon and M. Tompa: Space – Bounded hierarchies and
probabilistic computations, JCSS 28 (1984), 216-230.

[Sze88] R. Szelepcsenyi: The Method of forced enumeration for nondeterministic au-
tomata, Acta Informatica 26 (1988), 96-100.

[Sud78] I.H. Sudborough: On the tape complexity of deterministic context-free lan-
guages, Journ. of the ACM 25, 3 (1978), 405-414.

[Wag90] K. Wagner. Bounded query classes. SIAM Journ. Comput. 19(1990), 833–846.
[Ven87] H. Venkateswaran: Properties that characterize LOGCFL. In Proceedings of

the Nineteenth Annual ACM Symposium on Theory of Computing, 141-150, New
York,May 1987.

This article was processed using the LATEX macro package with the LLNCS document
class.

