
Correction to [Rei02]

Klaus Reinhardt

Wilhelm-Schickhard Institut für Informatik, Universität Tübingen
Sand 13, D-72076 Tübingen, Germany

e-mail: reinhard@informatik.uni-tuebingen.de
April 20, 2009

Abstract. The construction in Section 13.2 in [Rei02] page 232 contains
a mistake: It was not considered that the word could be too short for the
variable b in the formula in the middle of the page. The section should
be as follows:

13.2 Monadic second order logic

We use a method similar to the cyclically counting method in [Mat99]. In the
following, we define formulas ϕA

n describing the language

 Ln = 0∗10F (n)−110∗

with the following non-elementary function F :

F (1) = 1, F (n+ 1) = F (n)2F (n)

This means a word w ∈ {0, 1}∗ is in Ln iff ϕA
n (w) is true, where A is a predicate

such that for a position x in the word A(x) is true iff wx = 1. Obviously, any
automaton recognizing the language 0∗10F (n)−110∗ needs at least F (n) states.
(Otherwise, a state would appear twice between the two 1’s and allow pumping
the number of 0’s between the two 1’s.)

To do this we first define a formula ψA
n describing the language

 L′n = 0∗10F (n)−110∗ ∪ 0∗1{0m|m < F (n)}

and then define
ϕA

n = ψA
n ∧ ∃x∃y x 6= y ∧A(x) ∧A(y).

The formula ψA
n is constructed recursively over n. Let us start the inductive

definition with

ψA
1 = ∃x(A(x) ∧ ∀y(y = x+ 1→ A(y)) ∧ ∀y(y = x ∨ y = x+ 1 ∨ ¬A(y)))

describing the language 0∗110∗ ∪ 0∗1. The formula says that there is a position
x having a value of 1, if there exists a right neighbour, it must also have 1 and
all other positions have 0.

For the recursion, we use ψA
n to determine if two positions a and b have dis-

tance F (n) or are identical in case there are less than F (n) positions following.

This distance is now the length of a counter. This length is then used to control
the first and last counter with InitializeC and FinalizeC respectively, and to con-
trol the correct sequence of counters with StartIncrement and Carry by locally
checking all corresponding positions in neighbor counters. Recursively, we define

ψA
n+1 = ∃x∃y(x ≤ y ∧A(x) ∧A(y) ∧ ∀z (z = x ∨ z = y ∨ ¬A(z))∧

∃B∃C ∀z(z < x ∨ x < y < z)→ (¬B(z) ∧ ¬C(z))∧
∀a∀b((∃A(ψA

n ∧ a ≤ b ∧A(a) ∧A(b) ∧ ∀z (z = a ∨ z = b ∨ ¬A(z)))
→ (InitializeC ∧ Block ∧ StartInc ∧ Carry ∧ FinalizeC)))

Note that the syntax allows us to reuse the variable A, which occurs under the
scope of the existential quantifier, again outside of the quantifier. This makes
it possible to define ϕA

n using only a finite number of variable-symbols. Here,
C contains blocks with consecutive counter representations, and B marks the
beginning of each block. The recursive use of the predicate A makes sure that a
and b have exactly the distance of a block length or are identical and in the last
(possibly incomplete) block. This means a complete counter sequence is used to
admeasure the length of only one counter for the next n.

InitializeC := (a = x)→ (B(a)∧¬C(a)∧∀c((a < c < b ∨ a = b < c)→ (¬C(c)∧¬B(c)))

makes sure that the first block contains only zeros and that B marks exactly the
beginning of the block (that is the position of the least significant bit).

Block := (x ≤ a < b ≤ y ∨ x = y ≤ a < b)→ (B(a)↔ B(b))

takes care that B is continued which means it has a 1 exactly at the beginning
of the each block within the area where the counters have to work.

StartInc := (B(a) ∧ a 6= b)→ (¬(C(a)↔ C(b)))

makes sure that the first (least significant) bit of the counter in each block
changes each time.

Carry := ((C(a) ∧ ¬C(b))↔ (¬C(a+ 1)↔ C(b+ 1))) ∨B(a+ 1) ∨ a = b

makes sure that a 1 changes to a 0 exactly if, in the corresponding bit in the
following block, the next bit (if it was not the last in the block) must change.

FinalizeC := B(y)∧
(x 6= y ∧ a 6= b)→ ((b = y)↔ (B(a) ∧ ∀c(a ≤ c < b→ C(c))))∧
(a 6= b ∧B(a) ∧ ∀c(a ≤ c < b→ C(c)))→ (b = y)

makes sure that the last block is the one containing only 1’s in the counter and
this final counter requires the y to be there.

Theorem 1. 13.1 The formula ϕA
n defined above has size O(n) and defines

the language {0∗10F (n)−110∗} for which a finite automaton needs at least F (n)
states.

Example:
The language 0∗10204710∗ is described by ϕA

4 . Here, the existentially quantified
C contains all binary representations of numbers from 0 to 255 having length 8.
To check the correctness of C and the block-marks in B, the formula recursively
uses ϕA

3 describing 0∗10710∗. In this description by ϕA
3 , the corresponding C

contains all binary representations of numbers from 0 to 3 having length 2. This
recursively uses ϕA

2 describing 0∗1010∗; the corresponding C contains just 0 and
1 finally using ϕA

1 .

A: 0...0100000000000000000000000... 000000000000000010...
C: 000000001000000001000000... 011111111111111100...
B: 100000001000000010000000... 100000001000000010...
A: 0...01000000010...
C: 0010011100...
B: 1010101010...
A: 0...01010...
C: 0100...
B: 1110...

Acknowledgment: I thank Dietrich Kuske for pointing out the mistake.

References

[Mat99] O. Matz. Dot-Depth and Monadic Quantifier Alternation over Pictures. Tech-
nical report, Aachener Informatik Berichte 99-08, RWTH Aachen, 1999.

[Rei02] K. Reinhardt. The complexity of translating logic to finite automata. In Erich
Grädel, Wolfgang Thomas, and Thomas Wilke, editors, Automata, Languages,
and Infinite Games, volume 2500 of Lecture Notes in Computer Science, pages
231–239. Springer, 2002.

