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Abstract. As a generalization of paths, the notion of paths of band-
width w is introduced. We show that, for constant w ≥ 1, the corre-
sponding search problem for such a path of length k in a given graph is
NP-complete and fixed-parameter tractable (FPT) in the parameter k,
like this is known for the special case w = 1, the LONGEST PATH prob-
lem. We state the FPT algorithm in terms of a guess and check protocol
which uses witnesses of size polynomial in the parameter.

1 Introduction

A path within a graph is one of the most elementary notions of graph the-
ory and its applications. The LONGEST PATH is the computational problem
which asks for a given graph G and an integer k whether there is a path of
length k in G which is simple, i.e. all vertices are different from each other.
The LONGEST PATH is NP-complete [GJ79]. Moreover, the LONGEST PATH
problem is fixed-parameter tractable (FPT) in the parameter k. This was shown
by Monien [Mo85] and improved with respect to running time by Alon, Yuster,
Zwick [AYZ95], using randomization techniques.

In this paper we generalize the notion of a path: a path of bandwidth w, or
for short w-path, in a graph G is a sequence (v1, . . . , vn) of vertices such that
for all vi, vj with 1 ≤ j − i ≤ w the pair (vi, vj) is an edge in G, see Fig. 1 for an
example of a 2-path. 1-paths are paths in the usual sense. It will be easy to show
that for every w ≥ 1 the corresponding computational problem BANDWIDTH-
w-PATH, which asks for a given graph G and an integer k whether there exists
a simple w-path of length k in G, is NP-complete.

The BANDWIDTH-w-PATH problem for every w is fixed-parameter tractable
in the parameter k, this will be shown according to the characterization of FPT
∩ NP by Cai, Chen, Downey & Fellows [CCDF95] via an “FPT guess and check
protocol” using witnesses of size only dependent on the parameter. The run-
time obtained for our guess and check protocol, for the case w = 1, which is
the LONGEST PATH problem, and seen as a deterministic exhaustive search
algorithm, is worse than the algorithms of Monien [Mo85] and Alon, Yuster,
Zwick [AYZ95]. On the other hand, our algorithm is more easily stated and can
immediately be applied to the BANDWIDTH-w-PATH problem. Moreover, the
algorithms of [Mo85,AYZ95] do not seem to give better FPT guess and check
protocols.
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Fig. 1. Two drawings of the same 2-path of length 5, vertex-disjoint and deterministic

2 Paths of constant bandwidth

Let G be a digraph and let w, k ≥ 1. A path of bandwidth w and length k in G
is a sequence of k + w vertices (v1, ..., vk+w) such that the pair (vi, vi+j) is an
edge of G for every i with 1 ≤ i ≤ k and every j with 1 ≤ j ≤ w. A path of
bandwidth w and length k will also be called w-path of length k or, even shorter,
(w, k)-path. A 1-path of length k is a path of length k in the usual sense. (For a
path of length k some authors count the number of vertices while others count
the number of edges – which is one less. In this paper we count the number of
edges.) In Figures 2 and 3 some 2-paths and 3-paths are shown. Note that a
(w, 1)-path is a (w + 1)-clique: every two nodes are connected by an edge. A
(w, k)-path can actually be seen as a sequence of k (w + 1)-cliques with two
subsequent cliques “glued” together by their common w elements.

A (w, k)-path (v1, ..., vk+w) is vertex-disjoint if all vi are different from each
other, it is simple if all k w-tuples (v1, ..., vw), (v2, ..., vw+1), . . . , (vk, ..., vk+w)
are different from each other. A vertex-disjoint (w, k)-path is simple, but not
vice versa for w ≥ 2, see Figure 3. A vertex-disjoint (w, k)-path, as a graph on
its own, is the graph with k + w vertices having bandwidth w and a maximal
set of edges, that is why we choose the name “bandwidth” for the number w
(see [PT99,GJ79] for the definition of bandwidth of a graph).
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Fig. 2. A 3-path of length 5, vertex-disjoint and deterministic
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Fig. 3. A 2-path of length 10, deterministic and simple but not vertex-disjoint

Though the notion of w-paths within a graph G is a rather natural gener-
alization of paths the authors could not find references for it in the literature.
The closest concept found is the w-ray from Proskurowski & Telle [PT99], cor-
responding to a vertex-disjoint w-path (as a graph on its own).

A (w, k)-path (v1, ..., vk+w) is deterministic in G if for every 1 ≤ i ≤ k
vi+w is the only vertex in the graph G having the property that all edges
(vi, vi+w), . . . , (vi+w−1, vi+w) are edges of the graph. For example, a determin-
istic 1-path has the property that every vertex of it – besides the last one – has
exactly one outgoing edge in G.

For w < k, a (w, k)-path (v1, ..., vk+w) is a cycle of bandwidth w and length k,
for short w-cycle of length k or (w, k)-cycle, if (vk+1, . . . , vk+w) = (v1, . . . , vw).
The cycle is vertex-disjoint if v1, ..., vk are different from each other, it is sim-

ple if (v1, ..., vk+w−1) is a simple w-path, see Fig. 4 for an example. For undirected
graphs the definitions can be transfered literally. For a fixed w let BANDWIDTH-
w-PATH be the set of pairs 〈G, k〉 such that the digraph G contains a simple
(w, k)-path. BANDWIDTH-1-PATH = LONGEST-PATH. Let BANDWIDTH-
PATH be the double-parameterized problem consisting of the triples 〈G, w, k〉
such that the digraph G contains a simple (w, k)-path.

Fig. 4. A 2-cycle of length 8, deterministic and vertex-disjoint



Some variations of these problems: Let the prefixes UNDIRECTED- and
DISJOINT- in front of these problem names indicate that the input graph is
undirected, or, independently, that the path to be found has to be not only simple
but vertex-disjoint, respectively. Let CYCLE instead of PATH in a problem name
denote that the path to be found has to be a cycle. Call these further 7 problems
the variations of the BANDWIDTH-w-PATH problem, resp. BANDWIDTH-
PATH.

Proposition 1. For every w ≥ 1 the problem BANDWIDTH-w-PATH is NP-

complete, likewise its variations.

Proof. Obviously all problems are in NP. In order to show NP-completeness of
BANDWIDTH-w-PATH we reduce LONGEST PATH to it. Let some directed
graph G = (V, E) be given. Let the vertices V ′ of the graph φ(G) = (V ′, E′)
consist of 3w copies vi with 1 ≤ i ≤ 3w for each v ∈ V and w copies (u, v)i with
1 ≤ i ≤ w for each (u, v) ∈ E and let the edges be E′ = {(ui, uj) | i < j, u ∈ V }∪
{(ui+w, (u, v)j), ((u, v)i, vj+w) | 1 ≤ j ≤ i ≤ w, (u, v) ∈ E} ∪ {((u, v)i, (u, v)j) |
i < j, (u, v) ∈ E}.

It holds: G has a simple path of length k iff φ(G) has a simple w-path of
length (2k + 3)w iff φ(G) has a vertex-disjoint w-path of length (2k + 3)w.
Observe that a w-path (...uw+1, ..., u2w, (u, v)1) in φ(G) can only be continued
by ((u, v)2, ...(u, v)w, vw+1, ...v2w, ...) which forces a simple w-path to be vertex-
disjoint and to correspond with a path in G. Starting with (v1, ...vw, ...) or ending
with (...v2w+1, ...v3w) allows to have the same length as starting in vertices cor-
responding to possibly unused edges in G. q.e.d.

DISJOINT-BANDWIDTH-PATH is NP-complete because LONGEST PATH
is a subproblem and the length of a path is still at most linear. On the other hand,
a simple path may have a length of

(

n

w

)

and we conjecture PSPACE-completeness
for BANDWIDTH-PATH.

We mention that for fixed w the problem of searching for a deterministic

simple w-path of a given length k can be done in PTIME by a straightforward
marking algorithm.

3 Fixed-Parameter Tractability

The following notion is from Downey & Fellows [DF92] though it can already be
found – without giving it a name – in Monien [Mo85][p. 240, the two paragraphs
before and after Th. 1, resp.].

Definition 1 (fixed-parameter tractability [Mo85,DF92]). A computa-

tional problem consisting of pairs 〈x, k〉 is fixed-parameter tractable in the pa-
rameter k if there is a deciding algorithm for it having run-time f(k) · |x|c for

some recursive function f and some constant c.

We use the following characterization of FPT ∩ NP by Cai, Chen, Downey
& Fellows [CCDF95]:



Theorem 1 (Cai et al. [CCDF95]). A language L ∈ NP consisting of pairs

〈x, k〉 is fixed-parameter tractable in the parameter k iff there exists a recursive

function s(k) and a PTIME computable language C such that 〈x, k〉 ∈ L ⇐⇒
∃y ≤ s(k) : 〈x, k, y〉 ∈ C.

We call the function s the witness size function, and the language C the
witness checker, and we say that these two together form an FPT guess and

check protocol for L.

Theorem 2. For every w ≥ 1 the problem BANDWIDTH-w-PATH is fixed

parameter tractable in the parameter k, likewise its variations. More specifically,

there exists an FPT guess and check protocol for it with a witness size function

s(k) =
(

k

2

)

·log k and a witness checker having running time O(w ·k2 ·|E|w ·|V |w).

Proof. We first consider the case w = 1, i.e. the LONGEST PATH problem.
Afterwards we will see that the algorithm is generalizable to the BANDWIDTH-
w-PATH problem for w > 1. We state an FPT guess and check protocol for
LONGEST PATH with the witness size function s(k) =

(

k

2

)

· log k and a witness
checker with runtime O(k2 · |E| · |V |).

Let a digraph G with n vertices be given. We want to find out whether the
graph contains a simple path p = (v1, . . . , vk+1) of length k. We will work with
witnesses. The intention of a witness is to tell the algorithm in the moment
when it is trying to build an initial segment (v1, . . . , vi) of the simple path of
length k which are the future vertices vi+1, . . . , vk+1 of the simple path – so that
the algorithm does not pick one of these future vertices as a part of the initial
segment. Unfortunately, we cannot use the tuple (v1, . . . , vk+1) as a witness,
because that way we would have nk+1 potential witnesses, so we would need at
least (k+1) log(n) bits to encode them, a number growing in n. But for the FPT
guess and check protocol we need some witness size function s(k) only dependent
on k.

We choose the following kind of witnesses. A witness for such a simple path
of length k consists of k(k + 1)/2 =

(

k+1

2

)

numbers ai,j ∈ {0, 1, . . . , k}, for
2 ≤ i ≤ k + 1 and j ∈ {1, . . . , k− i+2}. The witness can be visualized as a half-
matrix a, see Figure 5. Let ai for 2 ≤ i ≤ k + 1 be the tuple (ai,1, . . . , ai,k−i+2).
We can restrict the witnesses to have these properties: ai contains only numbers
≤ i − 1 and at least one 0. There is some redundancy, for example ak+1,1 will
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Fig. 5. Witness table for a simple path of length 4



always be 0. Nevertheless, the order of magnitude of the witness size function
s(k) does not seem to be improvable by these “little savings”.

For every witness a the main algorithm C does the following: In each of the
k steps i = 2, 3, . . . , k+1 it uses ai to compute for every vertex v a value fa,i(v),
defined further below, which is either a vertex or has the value nil (standing
for “not existing”), and stores this function for use in the following steps. The
following pseudo code shows the main structure of the algorithm.

Main algorithm C

Input: graph G, number k ≤ |G|, and a witness a

for every vertex v set fa,1(v) := v;

for i = 2, . . . , k + 1 do

for every vertex v in G do

compute fa,i(v) and store it;

if i = k + 1 and fa,i(v) 6= nil ACCEPT and STOP;

REJECT and STOP;

The computation of the value fa,i(v) – which is either nil or a vertex – is
described in the pseudo code below. Assume w.l.o.g. that for each vertex there
is a list of incoming edges (ending with the nil list element) in which the edges
appear according to the order on the vertices. As a useful abbreviation let fd

a,i(v)

for a vertex v and d with 1 ≤ d ≤ i + 1 be defined via f1
a,i(v) := v, f2

a,i(v) :=

fa,i(v), and fd+1

a,i (v) := fd
a,i−1(fa,i(v)) with this value being nil in case fa,i(v) or

fd
a,i−1(fa,i(v)) equals nil. Intuitively, fd

a,i(v) follows – starting in v – for growing
d = 1, . . . , i+1 the “backward path” given by the fa,i−d-functions, see Figure 6.
The upper index d numbers the vertices of this path, and the witness elements
ai,j ≥ 0 will refer to this numbering. The information provided by ai,j ≥ 0 means
that the ai,j-th vertex in the “backward path” starting with a vertex u is the
“reason” to dismiss the j-th attempt to assign a possible predecessor u of v to
fa,i(v). (The set F in the following pseudo code collects such “reasons”.)

By easy induction on i, the following invariant will be guaranteed for every
witness a, every i with 2 ≤ i ≤ k + 1, and every vertex v:

(Inv1) If fa,i(v) 6= nil then the “backward path” (f i
a,i(v), . . . , f2

a,i(v), f1
a,i(v))

is a simple path of length i − 1.



Computing fa,i(v)

Input: i, a, and v. Already computed: fa,1, . . . , fa,i−1.

set F := {v};

set j := 1;

if there are no incoming edges for v set fa,i(v) := nil and STOP;

set e = (u, v) to be the first edge incoming to v;

while e 6= nil do

if fa,i−1(u) 6= nil and

none of the vertices f1
a,i−1(u), f2

a,i−1(u), . . . , f i
a,i−1(u) is in F do

set c := ai,j ;

if c = 0

set fa,i(v) := u and STOP;

otherwise

set F := F ∪ {fc
a,i−1(u)};

set j := j + 1;

set e = (u, v) := next edge going into v;

set fa,i(v) := nil and STOP;

Verification of the main algorithm C: If the algorithm accepts, then it has found
for this witness a a vertex v such that fa,k+1(v) 6= nil. By invariant (Inv1), case
i = k + 1, the backward path starting in v is a simple path of length k.

(v)
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3
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(v)1
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Fig. 6. A “backward path”, starting in v



On the other hand assume that there is a simple path of length k in G. Let
s = (s1, . . . , sk+1) be the lexicographically smallest among them (largest weight
on sk+1, unlike, for example, with decimal numbers). With the knowledge of this
path and its vertices we will construct a witness b such that the main algorithm
will accept for witness b.

Constructing b

Input: s1, . . . , sk+1.

for every vertex v set fb1,1(v) = v;

for i = 2 to k + 1 do

set e = (u, si) := first edge going into si;

set F = {si};

set j := 1;

repeat

while fbi−1,i−1(u) = nil

or some of the vertices f1
bi−1,i−1

(u), . . . , f i
bi−1,i−1

(u) is in F

set e = (u, si) := next edge going into si;

if there is a c ∈ {1, . . . , i} such that fc
bi−1,i−1

(u) ∈ {si+2, . . . , sk+1}

set bi,j := c for the smallest such c;

set F := F ∪ {fc
bi−1,i−1

(u)};

set j := j + 1;

until there is no such c;

bi,j := 0

compute fbi,i(v) for all vertices v;

The crucial invariant kept by this construction is the following:

(Inv2) For every i with 2 ≤ i ≤ k + 1 it holds: fb,i(si) = si−1.

The invariant holds via induction on i: the construction of bi prevents fb,i(si)
from choosing one of the vertices si+1, . . . , sk+1 which will be needed in the future
but which would be – without the witness – unknown at step i. Because there
are at most k − i + 1 such vertices the repeat loop will always terminate and,
moreover, the part bi of the witness has sufficient size. For every 2 ≤ i ≤ k +1 it
is guaranteed that the computation of fb,i(si) will terminate, i.e. will be not-nil,
because at least (si−1, si) is a suitable edge, and this will be the first suitable edge
which fb,i(si) will find, i.e. fb,i(si) = si−1, because otherwise s = (s1, . . . , sk+1)
would not be lexicographically minimal. Invariant (Inv2) implies for i = k+1 that



the backward path (fk+1

b,k+1
(sk+1), . . . , f

2
b,k+1

(sk+1), f
1
b,k+1

(sk+1)) at sk+1 equals
s = (s1, . . . , sk+1), i.e. the main algorithm C will accept the input graph for
this witness b via a non-nil value of fb,k+1 at vertex sk+1. This finishes the
correctness proof for the FPT guess and check protocol.

The running time of all fai
(v) for a fixed i is O(k · |E|) as it is dominated

by checking the backward path of length ≤ k for each edge incoming to v (we
ignore some log(k) factors for the comparison algorithms). Therefore, the main
algorithm C has runtime O(k2 · |V | · |E|). Representing all witnesses can be done
with

(

k

2

)

· log k bits, i.e. the witness size function can be chosen this way (note
that the diagonal of the half matrix does not need to be stored – it can be
assumed to consist of 0’s). This finishes the proof that an FPT guess and check
protocol exists for LONGEST PATH.

Cases w > 1. We first do a graph transformation. From the given graph
G construct the following graph G′: Consider all w-tuples (v1, . . . , vw) of ver-
tices of G. Make such a tuple a vertex of G′ if the tuple represents a directed
w-clique in G, i.e. (vi, vj) is an edge in G for 1 ≤ i < j ≤ w. The edges
in G′ are defined to consist of the pairs of such w-cliques of the special form
((v1, . . . , vw), (v2, . . . , vw, vw+1)) such that also (v1, vw+1) is an edge in G. We
have the property: G contains a simple w-path of length k iff G′ contains a 1-path
of length k. The witness checker consists therefore of this graph transformation
and subsequently the checking algorithm C for w = 1 running on G′. In total the
checking takes O(w · |V |w · |E|w) time, the first w stems from a slightly higher
comparison time for tuples. The witnesses size function does not change.

Variants: For the vertex disjoint case with w > 1 it is not enough to do
the graph transformation, one has to go inside the checking algorithm C and
maintain the vertex lists appropriately. q.e.d.

4 Conclusions and Open Questions

We introduced for every w ≥ 1 the NP-complete problem BANDWIDTH-w-
PATH and showed that it is fixed-parameter tractable in the length parameter
k by presenting an FPT guess and check protocol for it, according to the char-
acterization of Cai et al. [CCDF95].

As an open problem we suggest to study whether the witness size func-
tion, especially for the case LONGEST PATH, can be improved from the quasi-
quadratic function

(

k

2

)

log k to some quasi-linear function, for example by the
methods of Monien [Mo85] or Alon, Yuster & Zwick [AYZ95].
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