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Abstract

We present deterministic sorting and routing algorithms for grids and tori with
additional diagonal connections. For large loads (h > 12), where each processor
has at most h data packets in the beginning and in the end, the sorting problem
can be solved in optimal hn/6 + o(n) and hn/12 4+ o(n) steps for grids and tori
with diagonals, respectively. For smaller loads, we present a new concentration
technique that yields very fast algorithms for A < 12. For a load of 1, the
previously most studied case, sorting only takes 1.2n + o(n) steps and routing
only 1.1n + o(n) steps. For tori, we can present optimal algorithms for all loads
h > 1. The above algorithms all use a constant size memory for all processors
and never copy or split packets, a property that the corresponding lower bounds
make use of.

If packets may be copied, 1-1 sorting can be done in only 2n/3 + o(n) on a
torus with diagonals.

Generally gaining a speedup of 3 by only doubling the number of communi-
cation links compared to a grid without diagonals, our work suggests building

grids and tori with diagonals.

Keywords: parallel architectures, mesh connected processor arrays, diagonal

connections, parallel algorithms, sorting, routing



1 Introduction

Mesh-connected processor arrays have been in the focus of research on paral-
lel computation for many years. Among others, one of the reasons for their
popularity lies in their scalability, an important property that many other ar-
chitectures lack [1, 2, 24, 30]. Routing and sorting are important algorithmic
problems studied for mesh architectures because they are the building blocks for
many algorithms. For conventional grids of processors with four-neighborhood,
there was a strong research focus until optimal results for deterministic sorting
and routing were finally obtained [5, 10]. In this paper, we study grids with
eight-neighborhood, that is, grids with diagonals, presenting optimal results for
sorting and routing.

The standard grid architecture with its four-neighborhood has been extended
in several ways. Thus it is quite popular to study higher-dimensional grids or
grids with additional wrap-around connections, so-called tori. Another possibility
to enlarge the neighborhood of grid processors is to equip them with additional
diagonal connections. In spite of the fact that meshes with diagonals are well-
known and have been used for some applications like matrix multiplication and
LU decomposition [14, 27], very little is known about how to exploit the addi-
tional communication links for faster sorting and routing. Equipping grids with
additional wrap-around connections often leads to sorting and routing algorithms
which are twice as fast as without wrap-arounds [5, 10]. Equipping grids with
diagonals first means doubling the number of data channels. We show that with
diagonal connections there exist sorting and routing algorithms that are more
than twice as fast as algorithms for grids without diagonals. Our algorithms for
grids and tori with diagonals are deterministic and optimal—they match the bi-
section bound asymptotically. Duplication of packets is not used and the lower
bounds make use of this property.

In the following, we deal with h—h problems where each processor initially and



Table 1: Comparison of selected results for grids with and without diagonals. We omit
sublinear terms. The algorithm of Kaklamanis and Krizanc is randomized. All other
algorithms are deterministic. Except for A = 1 the results for sorting and routing are
the same.

New results

Problem with diagonals  Without diagonals
1-1 routing 1.1n 2n Leighton et al. [18]
1-1 sorting 1.2n 2n Kaklamanis and Krizanc [3],
Kaufmann et al. [5]
4-4 sorting 1.6n 4n Kunde [9]
8-8 sorting 1.86m 4n Kunde [10], Kaufmann et al. [5]
12-12 sorting 2n 6n Kunde [10], Kaufmann et al. [5]

finally contains h packets. We regard the load h = O(1) as a small constant—we
don’t consider the case when h is a function of the grid size. For two-dimensional
n X n meshes without diagonals 1-1 problems have been studied for more than
twenty years. Several 1-1 sorting algorithms exist for buffer size 1, i.e., each
processor can store only one packet at each time. The fastest algorithms need
3n+o(n) steps [19, 23, 28]. For buffer size 2, the 1-1 sorting problem can be solved
deterministically in 2.5n + o(n) transport steps [9]. Kaklamanis and Krizanc [3]
presented a randomized algorithm (with constant buffer size) that sorts in only
2n + o(n) steps with high probability. Using derandomization techniques, this
algorithm can even be made deterministic [5]. For 1-1 routing, Leighton, Make-
don, and Tollis [18] presented an optimal deterministic algorithm (with constant
buffer size) that exactly matches the distance bound of 2n — 2 steps. Rajasekaran
and Overholt [22] further reduced the buffer size. We present algorithms for grids
with diagonals that need 1.2n + o(n) steps for 1-1 sorting and 1.1n + o(n) steps
for 1-1 routing. For grids with diagonals, we summarize some of the new results
in Table 1 and compare them with the so far known best results on grids with-
out diagonals. In the table we omit all sublinear terms because they are of no
importance for the asymptotic complexity.

Rajasekaran [21] and also Kaufmann and Sibeyn [6] invented randomized



Table 2: Comparison of selected results for tori with and without diagonals. We omit
sublinear terms. All algorithms are deterministic. Except for h = 1 the results for sort-
ing and routing are the same. For 1-1 sorting where replication of data is allowed, we
provide a more efficient algorithm than for our standard model that disallows copying
of elements.

New results

Problem with diagonals Without diagonals
1-1 routing 0.66n n Kaufmann et al. [5]
1-1 sorting 0.67n >n distance bound
with copying
1-1 sorting n 1.25n Kaufmann et al. [5]
4-4 sorting n 2n Kunde [9]
8-8 sorting n 2n Kunde [10], Kaufmann et al. [5]
12-12 sorting n 3n Kunde [10], Kaufmann et al. [5]

algorithms for h—h problems on an n X n mesh that need hn/2 + o(n) steps if
h > 8. It is possible to solve the h—h routing and sorting problems within the same
number of steps deterministically [5, 10]. These results are optimal, since they
match the simple bisection bound of hn/2 steps valid for this type of architecture.
On meshes with diagonals, we reach hn/6 + O(n??) steps for deterministic h—h
sorting and routing, provided that A > 12. This gives an acceleration factor of 3
and also matches the bisection bound.

For wrap-around meshes (or tori) without diagonals, Kaufmann and Sibeyn [6]
presented a randomized h—h sorting algorithm with hn/4 + o(n) steps for h > 8.
There exist equally fast deterministic algorithms [5, 10]. Both algorithms match
asymptotically the respective bisection bound of hn/4. If we add diagonals to
tori, we can sort and route in only hn/12 + O(n??) steps if A > 12. This means
we again get a speedup of 3. Though the diameter of a torus with diagonals is n,/2
and the bisection bound is hAn/12, our best algorithm for the A—h problem with
h < 12 still needs n+o(n) steps. However the algorithm still remains optimal for
h < 12 since it asymptotically matches a lower bound of Krizanc and Narayanan.

They showed that even the 1-1 sorting problem takes at least n — o(n) steps on a



torus with diagonals if data packets cannot be copied and the buffer size is 9 [7].
Thus we have optimal h—h sorting algorithms for tori for all A. Recently, Sibeyn
independently discovered an optimal sorting algorithm for tori with diagonals for
large h [26]. We also show that the requirement of no data replication is necessary
for the lower bound of Krizanc and Narayanan: We show that copying of packets
enables sorting in 2n/3 + o(n) time while still using only a buffer of size 9. We
summarize some of the new results in Table 2 and compare them with the known
results for tori without diagonals. Again, we omit all sublinear terms.

The results of this paper demonstrate that grids with diagonals are a promis-
ing architecture because the gain of reduced running times is obviously bigger
than the extra costs of additional links. Note that doubling row and column
links would have the same cost as additional diagonal links, but the bisection
bound for such an architecture is hn/4. By way of contrast, we beat this bound
and obtain hn/6 algorithms with diagonal links. Our work and its predecessor [12]
have inspired related work [7, 26].

We use a sorting method that is mainly based on all-to-all mappings [10].
This method was the breakthrough to deterministic algorithms that match the
bisection bound. Roughly speaking, this scheme consists of two kinds of opera-
tions: local sorting in blocks of processors (cheap) and global communication in a
regular communication pattern (expensive). The sorting algorithm performs the
global communication, called all-to-all mapping, twice. In the third section, we
present this method in more detail and show that the central task in obtaining
an efficient algorithm for sorting is to devise an efficient algorithm for all-to-all
mapping.

In Section 4, we present an optimal algorithm for all-to-all mapping for tori
with diagonals. Compared to grids without wrap-around connections, the advan-
tage of tori is that there are no border processors, so the situation is identical for
all processors. Having obtained an optimal algorithm for all-to-all mapping for

tori in Section 5, we proceed with an embedding of tori into grids, culminating in
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the presentation of an optimal algorithm for all-to-all mapping for grids without
wrap-arounds. In particular, this implies one of our main results, namely that
h—h sorting with h > 6 can be done in asymptotically hn/6 steps. Finally, in
Section 6 we apply this result to obtain fast algorithms for values h < 12 (see
Tables 1 and 2 for a small selection), thereby using concentration techniques,

most notably, concentrating all-to-all mappings.

2 Preliminaries

In this section, we present basic definitions and notations.

A processor grid with diagonals is a network of n? processors arranged in
an n X n array. Processor (r,c¢) in row r and column ¢ on the grid is directly
connected by a bi-directional communication link to processor (', ¢’) if max{|r —
r'|,|c — ¢'|} = 1. We speak of a diagonal connection if [r — 7| = |c = | =1. A
torus is a grid with wrap-around connections. Since tori have no borders, each
processor is the center of an eight-neighborhood.

For a full h—h routing problem, each processor contains exactly h packets
initially. Each packet has a destination address, and each processor is destination
of exactly h packets. The routing problem is to transport each packet to its
destination address. For the more general sorting problem, the destination of
each packet is not fixed, but determined by its rank according to some linear
order. We assume that each packet in a processor P lies in a (memory) place
(P, j), where 0 < j < h. For a given j the set of places { (P, j) | P is a processor
} is called the jth layer. There are exactly h disjoint layers, numbered from 0
to h — 1. The places are indexed by an index function g that is a one-to-one
mapping from the places onto {0,...,hn* — 1}. Then the sorting problem with
respect to ¢ is to transport the 7th smallest element to the place indexed with
71— 1.

For a full h—h routing problem, one can supply each packet with an index of



its destination processor. In this manner, the full A-h routing problem becomes
an h—h sorting problem.

A tool of central importance in what follows is the so-called all-to-all map-
ping [10]. Assume that for some suitable m we partition the n x n-mesh into
m? quadratic n/m x n/m submeshes, called blocks. Then an all-to-all mapping
is the problem to transport for each block 1/m? of its elements to each other
block of the mesh.

The model of computation is the conventional one, where only nearest neigh-
bors exchange data [15, 17]. In general, we disallow replication (that is, copying)
of packets in our algorithms. A communication link can in one step transport at
most one packet in each direction. Processors may store more than h packets, but
the number has to be bounded by a constant that is independent of the number
of processors. For complexity considerations, we count only communication steps
and ignore operations within a processor.

Each processor has eight links. We assume that diagonal links leading out of
the grid at its border are connected together. These additional connections along

the border are called outer links (cf. Figure 2.1).

3 Sorting and routing with all-to-all mappings

In this section, we briefly describe how to sort the elements on a grid with the
help of an all-to-all mapping that distributes data uniformly all over the mesh.
We then discuss how we can use the same method even for partial h—h routing
problems. You can find a more detailed description in the paper that introduced
all-to-all mappings [10]. There is a similarity between sorting with all-to-all
mappings and Leighton’s Columnsort [16]. The general results have been stated
in previous work. The sorting method works on arbitrary networks. The problem
is how to implement an efficient and fast all-to-all mapping. Our aim here is to

repeat the general results and give an idea as to why they are correct.
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Figure 2.1: Grids with diagonals and outer links. For grids with 8-neighborhood we
assume that each processor has 8 bidirectional communication links. At the border we
connect neighboring processors with additional links that would not be used otherwise
doubling effectively the transport capacity between them (left side). Other wires are
not really used by our algorithms, but it yields conceptually simpler algorithms when
assuming that the remaining outgoing and incoming links of a processor are connected
in loop-back mode (right side).



Figure 3.1: The standard all-to-all mapping on a mesh with 16 blocks.

For sorting, we divide the nxn-mesh into m? quadratic n/m xn/m-submeshes,
called blocks. We further divide each block into m? subblocks and call such a sub-
block a brick. This means each block contains m? bricks. We number the blocks
from 0 to m? — 1 such that block ¢ and block i+ 1 are neighbors. We must choose
the indexing g in such a way that all places in block 7 have smaller indices than
all places in block 7 + 1. We call such an indexing block-wise continuous. To see
the correctness of the following sorting method we use the 0-1 principle [?, 17].

First we distribute all data over the mesh in order to get approximately the
same number of ones into each block. We start by sorting each block individually
as follows: The ith brick gets elements ¢, i + m?, i + 2m?2, and so on. In this
way, the number of ones in each brick differs at most by 1. Next, we send
from every block exactly one brick to every block on the mesh as illustrated
in Figure 3.1. Now each block contains almost the same number of ones (the
difference is at most m?). We reach such a global distribution of data by an
all-to-all mapping [10]. In a second step, we sort each block in such a way
that the first brick contains the smallest elements and the last brick the largest
ones. S0, at most, one brick contains zeros and ones. Let us call it the dirty

brick. Since each block contains almost the same number of ones, the position of



the dirty brick is also almost the same in each block: The positions of the dirty
bricks differ at most by one, say, the position is either the kth or (k + 1)st brick,
provided that a brick contains at least m? elements.

Now an all-to-all mapping maps the first brick of each block to the first block,
the second brick of each block to the second block, and so on. Afterwards, all
dirty bricks are in the kth or (k + 1)st block, so the whole mesh is nearly sorted.
To finish, we sort all adjacent pairs of blocks.

How long does it take to sort by the above method? We perform two all-to-all
mappings and sort three times locally in blocks. For distance reasons the all-to-
all mapping takes (n) steps. The local operations take O(n/m) steps, since a
block is n/m processors wide. The smaller the blocks are, the faster the algorithm
will be. As mentioned above, the method only works if each brick contains at
least m? elements. There are m* bricks in the mesh that contains altogether hn?

elements, so each brick contains hn®/m* elements. The above condition implies

This inequality leaves a lot of freedom. We choose m = /n and assume that m is
an integer. In total, the complexity of performing an all-to-all mapping asymp-
totically governs the time bound of our method. The above sorting algorithm
directly applies to full h-h routing problems. For partial h—h routing problems
with a total loading of 75 percent (that is, 0.75hn? packets instead of a full load
of hn? packets), for example, the sorting algorithm would route the packets to
wrong destinations. This is caused by the nonexisting 0.25An? dummy packets
for which it is not clear in which place they have to be transported.

This problem can be overcome in the following way: Instead of sorting the
blocks in the beginning of the second step, we send packets with block address j
to those bricks which are going to the block with index j. That is, we use the
bricks as a basic transport unit. It may happen that too many packets want to

go to their transport bricks. One can show, however, that after the first all-to-all
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mapping in each block, the number of packets destined for an arbitrary block j
is at most hn®/m* +e;, where 3;e; < m?. In this case, at most e; packets must
move to bricks destined to either block 5 — 1 or to block 5 + 1. It can be shown
that this routing within the blocks takes only O(m?) additional steps which is
negligible.

4 An Optimal Algorithm for All-to-all Mapping
on the Torus

Since the efficiency of performing an all-to-all mapping predominates the overall
complexity of sorting with all-to-all mappings, the main task in the following is
to present an efficient algorithm for all-to-all mapping. In this section, we give
an efficient algorithm for tori, where we assume a load of A > 12.

We assume that the torus consists of (2k+ 1) x (2k+ 1) blocks and each block
consists of (2k + 1)? bricks. We have to send one brick from each block to each
other block. So, we have to fix a system of movements for each pair of blocks
to transport the contents of the brick. There are (2k + 1)* such pairs. To make
the algorithm simple, we want to make such a system of movements between
two blocks dependent only on their relative positions. In this way, we need to
describe only the routes from one fixed block to the other (2k + 1)% — 1 blocks.
Additionally:

e One link between two processors can transfer exactly one packet in one

step. We assume that it can transfer slightly more, i.e., 1 +1/(2k 4+ 1).

e Bricks need not be transported as a whole. Parts of bricks may reach their

destination at different times and on different ways (and indeed they will).!

Under these assumptions, all routes look as shown in Figure 4.1. The arrows

!Note that it is also possible to send all bricks on the same way, splitting them
into at most 12 parts. This more practical method is demonstrated at the WWW
page http://www-fs.informatik.uni-tuebingen.de/ reinhard/triang.html. However, to
prove its correctness is more difficult.

10



A
s

% AN
N

N

AW
N

N

hY

DL
40
W\ 7

hY

Pl
Ap Ay
7
Lo
7

X
N

4

V
«

pars

« |4

»4)

A

A Ap e Ay

| %4
;

L4

A 3

¢¥¢

7¢
Id

4
/

A

X

VAl
=~ NN
NN
N

A
NNV
A

A 3

LY

XY
N

v
NN
WY WY

H

N
IrE7TE87E7E1EASASAIAN

AN AW

-
L4

a7
/
rareE’

A Y

LY

\4\4\4\441414141
NNV T
RNANANE A
7777

A Y
L4
-
Id

Figure 4.1: Routes from the center block to all other blocks.

show how data flows from the center block to all the other blocks. The algorithm
operates in k£ phases. In each phase, some data is transported one block farther
in the direction of the arrows. In the first phase, of course, only the inner eight
arrows are used and in each subsequent phase, data reaches farther towards the
outer blocks at the borders. In the kth phase, data is transferred along all arrows.

Data is transferred in such manner that in the end each block will have re-
ceived a fraction of 1/(2k+1)? of the center block’s data. Before going into detail,
i.e., describing how much data is transferred over each arrow in each phase—we
exploit some more symmetry. Figure 4.1 shows 8 triangles. These 8 triangles are
quite similar; one can map one onto the other by rotation or shearing or both.
The corresponding arrows of different triangles always transport the same amount
of data in each step. Therefore it suffices to describe only the data movements
in one triangle to describe the whole algorithm.

However we distribute the capacity in one phase of the data movement in one
triangle to the two different possible directions in the triangle, the capacity along
one direction being used in two triangles will again sum up to be the same. This
means as long as we use exactly the capacity ¢ for the sum of all movements
in one triangle, this rotation-shearing symmetry, together with the fact that the

data distributing movements coming from the other (2k + 1)? — 1 blocks run
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exactly in parallel, will guarantee that for every connection of blocks the sum of
all capacities used by the different systems of movement is again c.

Each triangle consists of k rows where the block in the first row is adjacent to
the center and the kth row is at the border. The data movements are constructed
in a way such that in the jth phase the ith row receives an amount of

12k 4+ 1)((k+2)7 + (k= 9)d)
YT U+ +2) 2k +1)2

packets from the 7 — 1st row for 7 < j. For j = 1 and % = 1 this means m;; =

1+ 1/(2k + 1), which is exactly the amount shifted from the center block into
each triangle in the first phase. Hereby we transport data in such a way that each
block within a row gets exactly the same amount of data, that is m;;/i. This also
means that each block in the 7 — 1st row for 1 < ¢ < j must spend m;;/(i — 1).
This is accomplished by moving in the jth phase (¢ —1)m;;/(i(¢ — 1)) from the Ith
block in the ¢ — 1st row to the [th block in the ith row and lm;;/(i(i — 1)) from
the [th block in the ¢ — 1st row to the [ + 1st block in the ¢th row. This means
that the /th block in the ith row receives (I — 1)m;;/(i(: — 1)) from the | — Ist
block in the 7 — 1st row and thus receives (i — [+ 1 — 1)m;;/(i(i — 1)) = m;;/i in
total.

Each phase takes only n/(2k+1) steps if the capacity of a link is 1+1/(2k+1).
Now we show that the above algorithm indeed uses only a link capacity of 1 +
1/(2k + 1). For each of the (2k + 1)? blocks, there are 8 triangles. For i > j, the
ith rows of these 8(2k + 1)? triangles receive my; - b packets during the jth phase
where b is the number of processors in one block. The total amount of moved
packets is therefore 8(2k + 1) - zg’zl m;; - b packets. For symmetry reasons, each

link is subject to an equal flow of data. There are (2k + 1)? - b processors in the

grid. Each has 8 links, so the capacity per link is 37, mi; =1+1/(2k+1):

(k+2) XL 2+ (k=) ¥l
JG+ 1) +2)(2k +1)2

J
> omiy = 12(k+1)
=1

12



Lk+2)jQ2i+ 1)@ +1) + 20k —5)i(G+1)
30+ 1) +2)(2k + 1)

= 12(k+1)

1

— 1 .
NETS

We assumed one link has capacity of 141/(2k + 1) packets instead of one packet
at a time. If we return to the normal capacity of 1, then the above algorithm
can be performed with a slowdown of 1 + 1/(2k + 1), which means it needs
(14+1/(2k+1))-n/2 instead of n/2 steps. We choose k = n'/3 which corresponds
to a block-size of n*/3. This means we can perform an all-to-all mapping in
n/2 + O(n?/?) steps on a torus with diagonals.

It remains to consider the effect of the movements, that is, to show that the
packets are distributed in the desired way. By an induction on j, we show that
the amount of packets in the ith row of a triangle after the jth phase is

C12(k+1) (k+2)i+k—j
MW k+12 G+ +2)

for ¢ < j. (For i > j, obviously a;; = 0.) The ith row receives m;; = a;; in the
1th step. From now on the amount in the jth step changes by

S _12(k+1) (k+2)2e+1)4+k—
VUM T k412 G+ DG+

which means we get a; ;1 + m;; — miy1

_ 12(k+1) ((k+2)i+k—j+1 B (k+2)(2i+1)+k—j>

(2k+1)? i +1) JG+1(G+2)
12(k+1) (k+2)ij+kji—j> _
Ck+1)?2  jE+1D@E+2)

After the kth stage we have a fraction

12¢
2k +1)2

of the center block in the ith row, which means that we have 12/(2k+1)? in each

Qi =

block, since we transport data in such a way that each block within a row gets
exactly the same amount of data. Here we can see that this method works for a

load of h = 12 packets per processor.
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This fast algorithm for all-to-all mapping immediately yields a fast sorting

algorithm.

Theorem 4.1 A torus with diagonals can solve the h—h sorting problem for h >

12 in asymptotically optimal hn/12 4+ O(n?/?) steps.

Proof. Two all-to-all mappings need hn/12 + O(n??) steps using the above
algorithm. Local sorting needs another O(n?/?) steps. Every sorting algorithm
needs at least hn/12 steps, the bisection bound. Thus our result is asymptotically

optimal. O

5 An Embedding of Tori with Diagonals into
Grids with Diagonals

At first sight, due to its wrap-around connections, the torus appears to be more
complicated than the grid. By now, however, the torus with diagonals has come
nearer to its bisection bound for sorting than the grid [12]. The reason for this
is the symmetry of the torus (no center, no borders). This symmetry leads to
simple algorithms.

A torus without diagonals can be embedded into a grid with delay 2 [25].
In this section, we show that there is also an embedding for tori with diagonals
into grids. Again the delay is 2. The rough idea is to fold the torus two times,
bringing together 4 processors each time, and then again unfolding it as described
in Figure 5.1. Since the embedding jumbles a sorting algorithm’s indexing, we
also have to show that embedding all-to-all mappings on a torus onto the grid
results in all-to-all mappings. As a consequence, we get an optimal algorithm for
all-to-all mapping for the grid with diagonals.

To embed a torus algorithm into a grid, a one-to-one mapping from torus

processors to grid processors is first necessary. Secondly, we must show how
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33(34|35|36(37|38|39|40 17 24|18 23|19 22|20 21 17|24]18|23|19|22|20|21
41142|43|44|45]46 (47|48 41 48|42 47|43 46|44 45 41(48|42|47|43|46|44 |45
49150|51|52|53|54|55|56 25 32|26 31|27 30|28 29 25(32(26|31|27|30|28|29
57(58|59|60(61|62|63|64 33 40|34 39|35 38|36 37 33|40|34|39(35|38|36|37

Figure 5.1: An embedding of an 8 x 8-torus into an 8 x 8-grid with the intermediate
step of a 4 x 4-grid resulting from the “folding process.”

moves from one processor to another are translated into moves on the grid. Here
a move simply means a data transport between neighboring processors.
Subsequently, for ease of presentation, we first concentrate on the one-dimensional
case, that is, embedding a ring of processors into a linear array. Assume that
the processors of the ring and of the array are consecutively numbered from 0
to n—1. Then the mapping of the ring processors to the array processors is given
by the bijective function s: {0,...,n—1} = {0,...,n — 1},
S(Z.):{m' | if 0 < <n/2
2ln—i—1)+1 ifn/2<i<n.
The following lemma shows that s maps neighboring ring processors to array
processors that have at most distance 2 from each other. Therefore delay 2 is the

best we can hope for.

Lemma 5.1 [s(i) —s(i+1)| < 2 for 0 <i <n—1 and [s(n — 1) — s(0)| =
|s(n/2=1) —s(n/2)| = 1.

Proof. First consider 0 <1i < n/2—1, then |s(i) —s(i+ 1) =[2i —2(i+1)| = 2.
Second consider n/2 < i <n—1, then [s(i) —s(i+1)] = |2(n—i—1)+1—-2(n—
(i4+1) — 1)+ 1| = 2. Finally we have |s(n/2—1) —s(n/2)| = [2(n/2—1) —2(n —
(n/2—1)—1)+1/=1and |[s(n—1)—s(0)|=|2(n—(n—1)—1)+1—-2-0| = 1.
O
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Describing how moves in the torus are simulated by, at most, two moves in
the grid requires the introduction of some more notation. Starting with a notion
for moves and double moves in the next definition, it will be possible to give a
precise and simple description of the translation of moves on the ring (which may
be “to the left”(—1), “to the right” (+1), or “remain where you are” (0)) into
double moves on the array. We make additional use of the symbolic values “—0”
and “40” for the description of double moves. In fact both these zeros mean the
move leads from a processor to itself using outer links. The real importance of

—0- and +0-moves lies in two-dimensional tori and grids.

Definition 5.2

1. There are five kinds of possible move directions, represented by the symbols
-1, =0, 0, 40, and +1. A —1 (+1) represents a move to the left (right)
and 0 represents “remain where you are.” The special symbols —0 and +0
represent a move to the left (resp. right) that turns around on half the way

and returns to the processor it started, using the outer links.

2. A move is represented by a pair (z,7), where ¢ € {0,...,n — 1} denotes the
processor where the move starts and r € {—1,0,+1} denotes the direction

of the move.

3. A double mowve is represented by a pair (7, [r1,r2]), where i € {0,...,n—1}
denotes the processor where the move starts and r1, 7, € {—1,—-0,0,+0,+1}

denote the directions of the double move.

The following definition presents the transformation of moves on the ring to

double moves on the array.
Definition 5.3 The function m mapping moves to double moves is defined as
m(i,r) = (s(3),6(s, 7)),
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where ¢ is defined via

d(i,r) r=—-1 r=0 r=+I1
i=0 [—0,1]  [0,0] [1,1]
0O<i<mn/2 | [-1,-1] [0,0] [1,1]
i=n/2—1 | [-1,-1 [0,0] [1,+0]
i=n/2 | [+0,—1] [0,0] [-1,—1]
n/2<i<n-—1 [1,1] [0,0] [-1,—1]
i=n-—1 1,1  [0,0] [-1,-0].

The definition of m(i, ) guarantees that the resulting double move is in fact
possible, e.g., that [+0, —1] is applied only at the right border, while [1, 1] is never
applied at the right border.

To show the correctness of our proposed translation of ring algorithms into
array algorithms, we have to show that no link between neighboring processors
is used for more than one transport at any point of time. To formalize this,
we introduce the notion of a collision between double moves. Two double moves
collide if they make use of the same link between two processors at the same point
of time in the same direction. Note that a collision may occur only between the
first moves or the second moves of double moves, because first and second moves

take place at different times.

Definition 5.4 A collision occurs if there are two double moves (i, [t1,?2]) and
(4, [r1,72]) such that i = j and r; = ¢; (collision during first move) or i+, = j+t;

and ro = t5 (collision during second move). Herein “=” means syntactic equality

on {—1,—-0,0,+0,+1} (that is, for example, —0 % 0).

Lemma 5.5 Let (i1,71) and (iz,72) be two moves on a ring and (i1, 1) # (i, 72).
Then the corresponding double moves on the array m(iy,r1) and m(iz,r2) do not

collide.

Proof. We can safely assume 7, ry # 0 since 0 stands for “remain where you are.”

The double moves m(i1,r1) and m(is,r2) cannot collide during their first move
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unless i1 = 19, that is, they start from the same processor. Let us assume that
indeed iy = iy =: i, but r; # 19, i.e., 7 :=1ry = —r9. Let m(i,r) = (s(2), [r11,7T12])
and m(i, —r) = (s(i), [ro1, 722]). From the definition of m (see Definition 5.3 and
compare the columns 7 = —1 and r = +1 for each value of 7) follows 711 # 791, S0
the first moves of the double moves m(i,r) and m(i, —r) lead into two different
directions.

Showing that also the second moves of double moves do not collide completes
the proof. The only possible directions for double moves are [0,0], [+1,+1],
[—1,-1], [+1,+0], [-1, —0], [+0, —1], and [—0, +1] as the definition of function m
shows. The only cases where the second components coincide but the first ones
are different are the double moves [+1,+1] and [0, +1] respectively [—1, —1]
and [+0, —1]. Inspection of the table given in Definition 5.3 shows that this may
only occur for ¢ = 0 in the first case and i = n/2 in the second case. But this
implies that the second components of the respective double moves are performed
by different array processors, making a collision impossible. In all other cases, it
holds that if the second components of two such directions are identical, so are
the first. This means that if a collision occurred during the second move, then

there would be a collision during the first move. O

Having dealt successfully with the one-dimensional case, we now proceed with
the definition of move, double move, and collision for two-dimensional tori and

grids.

Definition 5.6

1. A (two-dimensional) move is a pair (m,, m,) of one-dimensional moves m,
and m,, called the - and y-part of (mg, my). A move ((iz,7s), (¢y,7y)) is
performed by sending a packet from processor (iy,i,) to processor (i +

Tz, 1y + 7,) over a link according to Figure 5.2.

2. A (two-dimensional) double move is a pair (M, M,) of one-dimensional
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Figure 5.2: Realization of all valid moves (r;,7y) in the two-dimensional case. The
moves in the upper row employ conventional links, the moves in the lower row outer
links.
double moves M, and M,, called the z- and y-part of (M,, M,). A dou-
ble move ((iz, [7z, Sz]); (4y, [Ty, Sy])) is performed by sending a packet from
processor (i, %,) to processor (iy + 4,4, + r,) and then to processor (i, +
Ty + Sz, Iy + 7y +8y) over the two links according to Figure 5.2 (first (r;, ),

then (s, sy))-

3. Two two-dimensional double moves (M, M,) and (N, N,) collide if both
pairs M, and N,, and M, and N, collide.

4. A (two-dimensional) move (m,, m,) on the torus is mapped to a double

move on the grid by the function M(m,, m,) = (m(my,), m(my)).

The following lemma provides the correctness of our methodology also in the

two-dimensional case.

Lemma 5.7 Let (mg,my), (ng,ny) be two moves on a torus and (mgy,my) #

(ng,ny), then M(mg, my) and M(ng, ny) do not collide.

Proof. Let us assume that M(mg, m,) and M (ngz,n,) do collide. Then m(my)
and m(ng), and m(m,) and m(n,) collide. By Lemma 5.5 we may conclude
my = ng and m, = n,, a contradiction to the precondition (mg, my) # (ng, ny).

O
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Now we are ready to state one of our main results. It provides a general
translation of torus algorithms onto grids with a delay factor of 2. For this
purpose, we introduce the two-dimensional embedding function f from tori into
grids. The embedding function f from {0,...,n—1}x{0,...,n—1}t0 {0,...,n—
1} x{0,...,n— 1} maps torus processors to grid processors in a component-wise
fashion with respect to the two-dimensional coordinates of the processors. That
is, it makes use of the mapping s from the one-dimensional case such that we
have

[, 3) == (s(2), 5(4))-
The subsequent theorem now demonstrates that the mathematical embedding

given by the functions f and M can be realized in our model of computation.

Theorem 5.8 An algorithm on a torus can be simulated on a grid of same size
with delay 2 such that the uniquely determined processor f(i,j) on the grid plays

the role of processor (i,7) on the torus.

Proof. Besides performing internal operations, processors only send packets to
their neighbors and receive packets from them. In every second step, processor
f(i,j) simulates processor (i,j) by sending and receiving identical packets and
performing identical internal operations. The directions of the sends and receives,
however, are not identical, but the images under M. Within two steps, each
packet must reach its destination going over one intermediate processor, which
must route incoming packets into the appropriate direction. Fortunately, this is
simple because the incoming and outgoing directions are always identical, so no

additional information needs to be added to the packets themselves. O

We can now translate sorting algorithms for the torus into sorting algorithms
for the grid. However, the indexing gets transformed. To get a sorting algorithm
for the grid with respect to an arbitrary block-wise continuous indexing function
directly, we show that the all-to-all mapping performed along the embedded torus

also describes an all-to-all mapping on the grid without wrap-arounds.
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If we consider a block in the grid then this block is normally not a block in
the embedded torus. However, if a block B in the grid has sidelength 2b, where
b is the sidelength of a block on the torus, then B is the image of four blocks of
the torus.

Let B denote blocks in the grid, and A denote blocks in the torus. Let I()
denote the interval [2ib,2(¢+1)b—1] for i = 0,...,n/(2b) — 1. Then let B(i,j) =
I(i) x I(j) denote a block in the grid. Let Io(i) denote the set of even integers
from I(i) and I,(i) the odd ones. Then A(i,j)[z,y] := s™ (L(i)) x s (L,(5))
describes a block in the torus for all z,y € {0,1}, where s is defined as in the
beginning of the section. It is easily seen that A(, 7)[z,y] N A(l, m)[u,v] = @ for
(z,y) # (u,v) or (3,5) # (I,m) and all z,y,u,v € {0,1}. That is, the union of
all A(4, j)[z,y] fills the whole torus. Further, note that

FHB, §)) = A, 5)[0,0]U A, 5)[0, 1] U A, 5)[1, 0] U A, 5)[1, 1].

Lemma 5.9 The function ata’' = f o ata o f~! is an all-to-all mapping on the

grid, if ata is an all-to-all mapping on the torus.

Proof. We have to show for all blocks B(7,j) and B(l,m) that |ata’(B(i, 7)) N
B(l,m)| = c for a fixed value c. (For an h—h problem ¢ = 16hb*/n?.)

Since ata is an all-to-all mapping on the torus, we have
|ata(A(i, 5)[z, y]) N AL m)[u, v])| = ¢
for all 4, 5,1, m and all z,y, u,v. Therefore
lata(f~1(B(i,4))) N f7H(B(l,m))| = 16¢".
Since f is a bijection, we conclude
|f(ata(f~(B(i,4)) N f(f7(B(l,m)))| = 16¢
for all 7, 7,1, m. Hence ata’ is an all-to-all mapping on the grid. O

For the following theorem remember that the complexity of sorting is asymp-

totically governed by the complexity of two all-to-all mappings (cf. Section 3).
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Theorem 5.10 A grid with diagonals can solve the h—h sorting problem in asymp-
totically optimal hn/6 + O(n?/?) steps for every blockwise continuous indezing

scheme for h > 12.

Proof. A torus can perform an all-to-all mapping for load 12 in n/2 + O(n?/3)
steps. Thus by Lemma 5.9 and Theorem 5.8, a grid can perform an all-to-all

mapping in n 4+ O(n%?) steps. The result easily generalizes to h > 12. O

6 Results for Small Loads Using Concentration
Techniques

Concentrating data into a smaller area of a grid turns a 1-1 problem into an
h—h problem. Since h—h problems were not studied intensively until quite re-
cently [13] (though already Valiant and Brebner [29] considered them as early
as in 1981 and others maybe even earlier), data concentration was introduced a
short time ago [9]. The first use of concentration was to solve the 1-1 sorting
problem in 2.5n 4+ o(n) steps, while the previous best known bound without using
concentration was 3n + o(n) [23]. (Today an optimal 2n + o(n) steps algorithm
is known [3, 5].)

We solved 12-12 sorting in optimal time. Therefore h—h sorting with A < 12 is
a candidate for speed-up via concentration. Let us start with the fastest algorithm

for grids in this paper, an algorithm for the 1-1 routing problem.

Theorem 6.1 Let s(n) be the time a 9-9 sorting algorithm needs on a grid with
diagonals. Then routing works on a grid with diagonals in 8n/9 + s(n/9) +
O(n?3) < 89n/81+0(n?/?) steps and on a torus with diagonals it works in 4n/9+
s(n/9) + O(n?/?) < 53n/81 + O(n?3) steps.

Proof. Let us divide the torus or the grid into 9 submeshes each n/3 x n/3 big

and each submesh into 9 subsubmeshes each n/9 x n/9 big. We route a packet
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in three stages to its destination. The destination of each packet consists of
a submesh-number (1-9), a subsubmesh-number (1-9), and a position within a
subsubmesh ((z,y) € {1,...,n/9} x{1,...,1n/9}). In the first stage, each packet
whose subsubmesh-number is not already correct is shifted into one of the right
subsubmeshes leaving its relative position in the subsubmesh unchanged. In the
case of a torus, the nearest correct subsubmesh is chosen and the shift takes n/9
steps. In the case of a grid, the right subsubmesh within the original submesh
is chosen and the shift takes 2n/9 steps. (A direct approach to do this can be
adapted from [12]. Another method is to embed the obvious routing scheme for
a torus that takes n/9 steps into the subgrid. In order to get ezactly 2n/9 steps,
the additional outer links are essential and also that n/81 is even since inside the
grid outer links have to be simulated by diagonals leading into the neighboring
subgrid. Otherwise, one additional step is necessary. Note that for the statement
of the theorem only 2n/9 + O(n?3) steps are necessary. This can be achieved
easily even without outer links at all.) Next, the position within the subsubmesh
is adjusted using 9-9 sorting algorithm for grids. This takes another s(n/9) steps.
Finally, each packet is routed to the right submesh without changing its position
within the submesh. This takes n/3 steps for a torus and 2n/3 steps for a grid.
For grids, Theorem 6.2 says s(n) < 17n/9 + O(n?/?). O

Krizanc and Narayanan [7] showed lower bounds for sorting on meshes and
tori with diagonals: 1-1 sorting takes at least 1.166n steps on a grid and at least
n — o(n) steps on a torus if data replication is forbidden and queue-size bounded
by 9. Using the first part of Theorem 6.1, they concluded that routing is faster
than sorting on a grid. The second part of Theorem 6.1 now demonstrates that
sorting is also harder than routing on tori.

Let us next turn to sorting. We present results for the 1-1, 2-2, 3-3, 4-
4, 5-5, 6-6, 7-7, 88, and 9-9 sorting problem on grids with diagonals. The

technique used in these algorithms is a combination of concentration and all-to-
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all mappings. This means, we present routing schemes that move all the data to
a small area and simultaneously sending bricks from each block to each block.
We can describe all routing schemes by diagrams that show data movement and
load after each phase.

In general, we divide the mesh into square shaped clusters. In the beginning,
we perform a local all-to-all mapping on each cluster individually. Then an equal
portion of all clusters is sent into each cluster of the concentration region. This
concludes the concentrating all-to-all mapping.

We must give a diagram for each cluster in the concentration area illustrating
how it receives data from each cluster in the grid. We can cut down the number

of these diagrams by exploiting symmetries.

Theorem 6.2 A grid with diagonals can solve the h—h sorting problem in t +
O(n?/3) steps with buffer size b using c x ¢ many clusters that are concentrated
into d X d many clusters located in the center, where t, c, d, and b are as follows

for the varying h.

h—h t cxc dxd b
1-1 Sp=12n  20x20 4x4 25
2-2 In=14n 10x10 4x4 15
3-3 Sn=1.5n 8 x 8 4x4 13
4-4 h=16n 10x10 6x6 14
55 In~1.6Tn  6x6 4x4 12
6-6 In=17n  8x38 6x6 13
7 Tn~183n  12x12 10x10 14
8-8 2pna~186n 14x14  12x12 15
9-9 Tpa~189n 18x18 16x16 16

Proof. We divide the n x n mesh into ¢ x ¢ square shaped clusters of size n/cxn/c
each and describe an algorithm for a concentrating all-to-all mapping that routes
1/d* of the data in each of the c? clusters into each of the d? clusters in the
center of the mesh. The algorithm for concentrating all-to-all mapping consists of

several phases. In each phase data are transported between neighboring clusters.
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In principle, we have to describe d? routing schemes that concentrate 1/d? of
the data in each of the ¢? clusters in one of the d? center clusters. These routes
all are scheduled in parallel. Actually, it is sufficient to give the description of
(d —2)d/8 4+ d/2 types of these routes, because, due to symmetry, we only face
(d —2)d/8 + d/2 basically different types of goal clusters. The above numbers
were obtained from a program that recursively searches a routing scheme for a
c X c to dxd concentrating all-to-all mapping. The data produced by the program
is quite big.

We present the routing scheme only for the 3-3 problem in detail, since the
involved diagrams describing the schemes are quite space consuming.?

For the 3-3 problem, we have ¢ = 8 and d = 4, so up to symmetry there
are 3 goal clusters, called A, B, and C (see Figure 6.1). For these three types
we present each time five diagrams exhibiting the routing scheme that takes five
phases for the 3-3 problem.

For the 3-3 problem, we define the basic transport unit to be n?/1024 packets.
This means that the original load of 3n?/64 packets of a cluster consisting of
n? /64 processors consists of 48 basic transport units, where a group of 3 of them
have the same destination but may go different ways. An arrow simply means a
move of a transport unit from a cluster to one of its neighbors. Labeled arrows
denote multiple transport units. The superposition of everything does not exceed
16 basic transport units, which means that not more than n?/64 packets from
any cluster are transported to each of its neighbors during one phase. Figure 6.1
depicts the three routing schemes. You can check the correctness by counting the
arrows between two arbitrary neighbors, taking the 4 existing symmetries into
account.

Altogether this implies that one phase works in n/8 steps. Thus we can

realize a concentrating all-to-all mapping by first all-to-all mapping all clusters

2An algorithm showing all cases h < 9 is available under the following address:
http://www-fs.informatik.uni-tuebingen.de/ reinhard/concmap.html.

25



individually (n/8 steps) and then performing the five phases (5n/8 steps). O

Concentration is a technique not very well suited for tori, since a proper
subgrid of a torus is a grid, but not a torus. The gain by concentration is usually
more than compensated by the loss of having to work on a grid instead of a handy
torus. We overcome this difficulty by data replication, but only in the following

case. All other algorithms in this paper never copy data packets.

Theorem 6.3 If replication is allowed, a torus can solve the 1-1 sorting problem

in 2n/3 + O(n?/?) steps with buffer size 9.

Proof. We divide the n x n torus into 9 subgrids of size n/3 x n/3. We con-
centrate all data in all 9 subgrids, which requires data replication. Now all 9
subgrids contain all data, identically. We can now use our sorting algorithm for
tori individually on all 9 subgrids, sorting in layer first order. We can use the
algorithm for tori, since each subgrid behaves just as a torus: If some element
is shifted downwards across the border of the subgrid, it reappears at the up-
per border, since in the above subgrid the same algorithm shifts the same data
element downwards.

In the end, all nine subgrids contain all data sorted in layer first order. Now
the 7th subgrid again gets rid of all data save the 7th layer, hence all data is sorted.
The concentration takes n/3 steps and sorting of subgrids takes n/3 + O(n??)
steps according to Theorem 4.1. Thus the overall running time is 2n/3+O(n?/?).
O

Data replication was crucial in order to achieve this running time. Krizanc
and Narayanan showed that with buffer size 9, and without making copies, a

torus with diagonals needs at least n — o(n) steps for sorting [7].
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Figure 6.1: The three types of routing schemes of an algorithm for concentrating all-
to-all mapping for the 3-3 sorting problem. A, B, and C represent different types of
destinations. The schemes for all other destinations are symmetrical to one of them.
The goal is to get 1/64 of the data in each submesh into each destination submesh.
This works in 5 phases of n/8 steps each. Each arrow denotes transport of 3n?/64
packets, labeled arrows a multiple thereof according to the label.
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7 Historical remarks

In this section, we give a short account to the main points in the history of sorting
and routing algorithms on grids (also see [25]).

Thompson and Kung [28] and Nassimi and Sahni [20] were the first that
presented O(n) steps algorithms for sorting on meshes. In 1986, Schnorr and
Shamir [23] presented an optimal 3n+o0(n) steps algorithm under the assumption
of buffer size 1 (also see [8] for the corresponding lower bound). Schnorr and
Shamir’s result has been improved for buffer size greater than 1. Introducing
concentration techniques, the running time could be improved to 2.5n + o(n)
steps [9]. Then Kaklamanis and Krizanc developed an optimal 2n + o(n) steps
algorithm, which, however, was randomized [3]. Finally, Kaufmann, Sibeyn,
and Suel derandomized the latter algorithm and found the first deterministic,
asymptotically optimal algorithm [5]. Note that for the corresponding routing
problem an optimal algorithm, even up to additive constants (it matches the
distance bound 2n — 2), had been known for quite some time [18].

As to the h—h sorting problem for h > 8, first a hn + o(n) steps algorithm for
sorting was given [9]. Later an optimal randomized hn/2 + o(n) steps algorithm
matching the bisection bound was discovered [4]. Recently, the first optimal
deterministic algorithm was presented [10]. Later, by derandomizing the optimal
randomized algorithm, Kaufmann, Sibeyn, and Suel obtained the same algorithm
in a different way [5].

For meshes with diagonals, first a result better than the bisection bound for
meshes without diagonals, that is, a 2hn/9 + o(n) steps algorithm, was pre-
sented [12]. We improved this to optimal An/6+o(n) steps using completely new
techniques.

For deterministic average case sorting for grids and tori with and without
diagonals, one can obtain results that, in general, are twice as fast as in the worst

case [11].
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8 Conclusion

Doubling the capacity of each individual communication link in a mesh obviously
leads to twice as fast algorithms. By adding diagonal connections, we not only
doubled the overall capacity of all communication links, but got three times as fast
algorithms. This counterintuitive result suggests that parallel computers should
be built as grids or tori with diagonals rather than without diagonal links, though
the algorithms are not practical for small processor numbers. The constant factors
in the low order terms, mostly O(n??), are rather high. To give an idea of the low
order terms, take the algorithm for 12-12 sorting on a torus. There are two all-

to-all mappings each taking (1+1/(2n*/? +1))n/2 < n/2+n%3 /4. Additionally,

2/3 2/3

we need to sort n?/3 x n2/3 submeshes and 2n?/3 x n?/3 submeshes two times.

2/3

Making the rough assumption that 12-12 sorting on a n%3 x n%3 mesh can be

2/3 2/3

performed in at most 612 steps and on a 2n%3 x n?/3 mesh in at most 12n
steps (both without additional low order terms), this gives an upper bound of
n + 37n?/? steps. The low order term does not seem so big, but for small 7 it
makes a large contribution to the running time. Note that even for n = 50000
the value of 37n?/3 is larger than n. The low order terms of the other algorithms
are similar in magnitude. We presented asymptotically optimal algorithms for
all practical (with respect to load) cases (i.e., large h), and many other cases
as well. However, the development of algorithms with smaller low order terms,
which would be of practical benefit, remains an open problem.

By using a different sorting scheme with only one all-to-all mapping, it is
possible to halve the running times of many of our algorithms in the average

case [11]. Particularly, one can obtain, in the average, optimal h—h sorting and

routing algorithms for tori and grids with diagonals for all h (see [11]).
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