
Counting as Method, Model and Task

in Theoretical Computer Science

Von der Fakultät für Informations- und Kognitionswissenschaften
der Universität Tübingen

als Habilitationsschrift genehmigte Abhandlung

von
Klaus Reinhardt

Tübingen

Habilitationskolloquium: 16.02.2005

2

Preface

Counting is trivial from a mathematical viewpoint. However, in theoretical com-
puter science there are various interesting aspects concerning counting. In com-
plexity theory, counting is an important method. In formal languages, the idea
of augmenting a finite automaton with one or more counters leads to interesting
models which, in one case, directly correspond to the places in Petri nets. Con-
sidering counting as a task for a logic formalism gives insight into its complexity
and into its ability to describe languages. Therefore, counting is an important
point in the close connections among these fields.

In complexity theory, a number can be an essential information during compu-
tation. Small (logarithmic) representations of numbers allow us, in some cases,
to get by with fewer resources than expected. This enables us to put problems
in a lower complexity class. For example, the closure of nondeterministic log-
arithmic space under complement has been accomplished in this way with the
inductive counting technique. In doing so, storing lots of different configurations
was avoided. We extend this method to simulate nondeterministic logarithmic
space even with unambiguous logarithmic space (NL/poly = UL/poly). Further-
more, when we consider complexity classes defined using other conditions on the
number of accepting paths (such as SPL), we can specifically deal with the prob-
lem of the existence of a matching with less space than the matching itself would
need. With a similar idea we get a low multi-party communication complexity by
communicating the number of times certain properties are fulfilled in the input
instead of communicating parts of the input.

Methods in formal languages allow us to represent a counter in several ways and
to recognize if two numbers represented in some particular way are successors.
This enables us to construct special context-free languages having a particular
complexity with respect to measures such as height of the derivation tree, push-
down complexity, time for parallel recognition and ambiguity.

A different aspect of counting in formal languages is the ability to count letters in
a string. This has always been viewed as a benchmark for language recognition
formalisms. For example, {anbn|n > 0} is the “prototype” of a language which
is not regular. In contrast to this, we show that the language of pictures (two-
dimensional words) with the same number of a’s and b’s is a recognizable picture
language. Recognizable picture languages are the two-dimensional equivalent

3

4

of regular languages, and we conclude that their recognition formalism has the
ability to count. This also means that counting in two-dimensional arrays is
definable in existential monadic second-order logic.
As a model of computation, we consider automata with various kinds of storages.
In particular, we consider automata having some restricted access to counters.
This brings us to the borderline of decidability. Emptiness and word problem
for such automata correspond to the reachability problem for Petri nets and
conditions about inhibitor arcs, where the value of a counter corresponds to
the number of tokens on a place in a Petri net. In order to get a powerful
but still decidable formalism, we define two operators on relations over natural
numbers that generalize the operators ’+’ and ’*’ and show that the membership
and emptiness problem for relations constructed from finite relations with these
operators and ∪ is decidable. This generalizes Presburger arithmetic and allows
us to decide the reachability problem for Petri nets in which inhibitor arcs occur
only in some restricted way. A particular example of such Petri nets are the ones
with only one inhibitor arc.

Contents

1 Introduction 9
1.1 Complexity . 9
1.2 Formal Languages . 11
1.3 Logic and Pictures . 11
1.4 Petri Nets . 12

2 Counting methods in Complexity 13
2.1 Preliminaries . 13

2.1.1 Counting classes . 14
2.1.2 Nonuniformity . 16
2.1.3 Connection to Formal Languages 18
2.1.4 Circuits . 21
2.1.5 Parallel Random Access Machines 22

2.2 The principle of inductive counting 24
2.3 NL/poly=UL/poly . 25

2.3.1 Open Problems . 30
2.4 LogCFL/poly=UAuxPDA(log n, pol)/poly 31

2.4.1 Open Problems . 36
2.5 Machines with Few Accepting Computations 37

2.5.1 An unconditional derandomization 39
2.5.2 The classes LogFew and LogFewNL 40

2.6 Matching . 41
2.6.1 Deciding the Existence of a Matching 42
2.6.2 Construction algorithm . 44
2.6.3 Open Problems . 46

2.7 Derandomizing the Constructions 47
2.7.1 A conditional derandomization 47
2.7.2 Open Problems . 47

2.8 Counting pushdownautomata . 48
2.8.1 Separating classes with different context free acceptances . 48
2.8.2 The logarithmic closure over push-down automata with dif-

ferent acceptances . 48
2.8.3 Evaluating circuits with a ⊕push-down automaton 49

5

6 CONTENTS

2.8.4 Counting accepting paths with a threshold circuit 49
2.8.5 Empty alternating push-down automata 50

2.9 Decision-tree-size for symmetric functions 53
2.10 Multiparty Communication Complexity 57

3 Formal Languages 59
3.1 Preliminaries . 59
3.2 Tree Height Hierarchy . 66

3.2.1 The connection to pushdown complexity 67
3.2.2 The connection to parallel recognition 68
3.2.3 Closure properties . 68
3.2.4 Bounded non regular languages have linear derivation tree

height . 70
3.2.5 Parallelizable non regular languages 71
3.2.6 Strictness and denseness of the hierarchy 73
3.2.7 Ambiguity Hierarchy . 75

4 Picture languages and logic 79
4.1 Preliminaries . 79

4.1.1 First order logic . 80
4.1.2 Second order logic . 81
4.1.3 Picture languages . 82

4.2 Complexity of monadic second order logic 83
4.2.1 Monadic second order logic 83
4.2.2 First order logic with < 85
4.2.3 Simulation of a Turing machine by logic 88

4.3 Recognizing #a = #b pictures . 91
4.3.1 Simple counting for one line 92
4.3.2 Reduction to odd positions 93
4.3.3 The skeleton for squares of the power of 2 94
4.3.4 The counting flow for squares of the power of 2 97
4.3.5 The generalization to exponentially many appended squares 100
4.3.6 Outlook . 101

4.4 Connectedness in a Planar Grid 102
4.4.1 The Recognition of a Picture as a Deterministic Process . 104

5 Reachability in Petri nets with Inhibitor arcs 109
5.1 Introduction and Preliminaries . 109

5.1.1 Multisets . 111
5.2 The reachability relation for Petri nets 114

5.2.1 The reachability relation for Petri nets without inhibitor
arcs . 114

5.2.2 Petri nets with inhibitor arcs 116

CONTENTS 7

5.2.3 The reachability relation for Petri nets with one inhibitor arc117
5.3 Nested Petri Nets as normal form for expressions 119

5.3.1 The property T . 121
5.3.2 The size of an expression 122
5.3.3 Additional operators working on expressions 123

5.4 The main algorithm establishing property T 125
5.4.1 Condition 1 Recursion and introducing witnesses 126
5.4.2 Condition 2 Quantitative consistency 126
5.4.3 Condition 3 Elimination of witnesses 127
5.4.4 Condition 4 Elimination of bounded places 129
5.4.5 Condition 5 Making the constant firing 132

5.5 Building up compensating firing sequences 132
5.6 The reachability relation with inhibitor arcs 135
5.7 Priority-Multicounter-Automata 139
5.8 Restricted Priority- Multipushdown- Automata 140

5.8.1 Folding pushdown-stores into a nested Petri net 140
5.9 Alternative proof of Lemma 5.4.1 143

8 CONTENTS

Chapter 1

Introduction

In this chapter, we give an overview of the research presented in this thesis. In
each of the chapters 2; 3; 4; and 5, we will start by providing the necessary defini-
tions and background information before presenting the results about complexity
theory, formal languages, picture languages and logic, and Petri-Nets respectively.

1.1 Complexity

Chapter 2 is a collection of the results in [RA00], [ARZ99], [Rei92], and of two
yet unpublished results. Sections 2.3 and 2.4 contain the results published in
[RA00] together with Eric Allender. Sections 2.5, 2.6 and 2.7 contain the results
published in [RA00] together with Eric Allender and Shiyu Zhou. Section 2.8 was
published in [Rei92]. All of these results were obtained using counting methods
in complexity theory.

The notion of nondeterminism is a fundamental notion in many areas of computer
science and one of the most significant results in complexity theory was the closure
of the class NL:=NSPACE(log n) (and more generally nondeterministic space-
bounded classes) under complement. This was independently obtained by N.
Immermann [Imm88] and R. Szelepcsényi [Sze88] using the method of inductive
counting. We will review this in Section 2.2.

Unambiguous computation is the version of nondeterminism where at most one
nondeterministic path is accepting. This is a restriction on the machine in con-
trast to the concept of uniqueness which is a tool for increasing the power to
be able to reject inputs with more than one paths. Unambiguity is important
because of its connection to cryptology [GS88].

As context-sensitive languages coincide with nondeterministic linear space and,
analogously, unambiguous context-sensitive grammars correspond to unambigu-
ous linear space, nondeterministic and unambiguous space-bounded computation
have also been the focus of much work in computer science. However, the question
whether nondeterminism and unambiguity coincide here still remains open.

9

10 CHAPTER 1. INTRODUCTION

Sections 2.3 and 2.4 contain the results published in [RA00] together with Eric
Allender. Here, we extend the method of inductive counting to show that in the
context of nonuniform complexity, nondeterministic logarithmic space bounded
computation can be made unambiguous. An analogous result holds for the class
of problems reducible to context-free languages. In terms of complexity classes,
this can be stated as:

NL/poly = UL/poly
LogCFL/poly = UAuxPDA(log n, nO(1))/poly

Using similar techniques, we show in Section 2.5, which is also published in
[ARZ99], that counting the number of accepting paths of a nondeterministic
logspace machine can be done in NL/poly, if the number of paths is small. This
clarifies the complexity of the class FewL (defined and studied in [BDHM92,
BJLR91]). Using derandomization techniques, we then improve this to show
that this counting problem is in NL (Theorem 2.5.4).
Next, we turn to counting classes which extend nondeterminism by placing con-
ditions on the number of accepting paths (see Section 2.1.1 for definitions). In
Section 2.6, also published in [ARZ99] together with Eric Allender and Shiyu
Zhou, we show that the perfect matching problem is in the complexity class SPL
(in the nonuniform setting). This provides not only a better upper bound on
the complexity of the matching problem but also a motivation for studying the
complexity class SPL.
Although determining whether our other theorems will hold in the uniform setting
remains an important open question, we provide evidence that they do in Section
2.7 ([ARZ99]). More precisely, if there are problems in DSPACE(n) requiring
exponential-size circuits, then all of our results hold in the uniform setting.
In Section 2.8, which was published in [Rei92], we show that CFL, the class
of context free languages, is not equal to ⊕1−PDA (= ⊕CFL). This is the
class of languages which are recognized by a nondeterministic one-way push-
down automaton equipped with parity acceptance. Furthermore, we show that
LOG(⊕CFL) = ⊕AuxPDApt contains all languages which can be recognized by
a uniform weak unambiguous AC1-circuit introduced in [LR90a]. We show that
L#AuxlogPDApt is contained in uniform TC1. This sharpens a result obtained in
[Vin91] where inclusion in NC2 was shown.
A completely different complexity measure is the size of a binary decision tree
(this can be viewed as a big nested if-then-else statement). At each inner node,
the parity of some bits from the input decides whether we go to the left or right
subtree. The leaf node reached in this way contains the resulting value. In
Section 2.9, we apply a counting technique for the number of true input variables
to calculate the majority function and arbitrary symmetric function, by using a
binary decision tree.
Another complexity measure is the number of bits of communication among play-
ers collaborating in calculating the result where each player does not see some

1.2. FORMAL LANGUAGES 11

part of the input. In Section 2.10, we show that the language (c∗ac∗b)∗c∗ is rec-
ognizable by 5 players with log n communication and by 4 players with

√
n log n

communication. Here, the players count the occurrences of certain structures in
the input. The result obtained disproves a conjecture in [RTT98].

1.2 Formal Languages

As in complexity theory, closure properties are important in understanding classes
of formal languages and automata theory. Our special focus is on the ratio-
nal transduction under which most of the classes of the Chomsky hierarchy are
closed. In Section 3.1, we describe how classes of languages recognized by vari-
ous automata can be characterized by the closure under rational transduction of
special languages. We give an overview of the inclusions between these classes
and the connections concerning decidability to the result in Chapter 5 and to the
set automata introduced in [LR94]. This explains the power of automata using
various kinds of counters and other restrictions of context free languages. One of
these restrictions is the consideration of the number of parallel derivation steps
as a complexity measure for context-free languages. This is explained in Section
3.2 and published in [Rei99] where we showed that a strict and dense hierarchy
is obtained between logarithmic and linear (arbitrary) tree height. In doing so,
we improve a result obtained by Gabarro in [Gab84]. Furthermore, we provide
a counter-example to disprove a conjecture of Culik and Maurer in [CM78] who
suggested that all languages with logarithmic tree height would be regular. As a
new method, we use counter-representations where the successor relation can be
handled as the complement of context-free languages.

1.3 Logic and Pictures

The picture languages considered in this work are characterized in [GRST94]
as existential monadic second order logic over two-dimensional structures. To
describe the power of logic, we consider its ability to express representations of a
counter.

First, we consider one dimensional structures where the recognized languages are
regular. In Section 4.2 and published in [Rei02], we show a non elementary lower
bound for the complexity of translating logic to finite automata. This is done
directly by constructing a sequence of formulas describing consecutive counter
representations with non elementary growing size. In doing so, we show that
the equivalent finite automaton must have a non elementary size. The main
motivation is understanding whether the decidability of truth and satisfiability
of formula can be accomplished more efficiently than by constructing a finite
automaton which can lead to an exponentiation in each step of recursion. Fur-

12 CHAPTER 1. INTRODUCTION

thermore, we use these counters in Section 4.2.3 to mark positions according to
the length of configurations of Turing machines. In this way, we show that the
satisfiability of formulas in first order logic with < and also the truth of formulas
in monadic second order logic is complete for a non elementary complexity class.
This means that there is no significantly better method of proving decidability of
monadic second order logic or satisfiability of first order logic with < other than
the construction of the automaton.
In Section 4.3 and published in [Rei01], we show that the language of pictures over
{a, b} (with a reasonable relation between height and width), in which the number
of a’s is equal to the number of b’s, is recognizable using a finite tiling system. This
means that counting in two-dimensional arrays is definable in existential monadic
second-order logic. Here, we use counters similar to those used in [Für82].
In Section 4.4 and published in [Rei98], we show that the language of pictures
over {a, b}, in which all occurring b’s are connected, is recognizable. This solves
an open problem in [Mat98]. We, furthermore, generalize the construction to
show that mono-causal deterministically recognizable picture languages are rec-
ognizable. This kind of inclusion (deterministic class in nondeterministic class)
is surprisingly nontrivial here.

1.4 Petri Nets

The variables of the kinds of logic considered in Chapter 4 are quantified over a
finite universe. This is in contrast to the result of Chapter 5 which corresponds
to a logic where the universe is N.
Also in contrast to the other chapters, Chapter 5 contains one monolithic result:
we define 2 operators on relations over natural numbers that generalize the op-
erators ’+’ and ’*’. We will show that the membership and emptiness problem
of relations, constructed from finite relations with these two operators together
with ∪, are decidable. This generalizes Presburger arithmetics and allows us to
decide the reachability problem for Petri nets in which inhibitor arcs occur only
in some restricted way. In particular, the reachability problem is decidable for
Petri nets having only one1 inhibitor arc. This was an open problem in [KLM89]
. Furthermore, we describe the corresponding automata and conclude that they
have a decidable emptiness problem.

1Decidability without inhibitor arcs [May84], [Kos84], [Lam92] and undecidability with more
than one inhibitor arcs [Min71] were known before.

Chapter 2

Counting methods in Complexity

This chapter contains a collection of results in complexity theory. All the results
were obtained using counting methods. The most significant of them is NL/poly
= UL/poly. We start by defining the necessary notions.

2.1 Preliminaries

In complexity theory, we analyze the difficulty of a problem by the time and
space (or other cost measures) which a Turing machine (or other models for
a computation device) needs to solve it. We assume that the reader is familiar
with the concepts of Turing machines, reductions, completeness, and context-free
grammars (see for example [HU79]). Complexity classes are families of languages
(sets of words) where this cost measure for deciding membership of a word is
limited by a function on the input length:

DSPACE(S(n)) (respectively NSPACE(S(n))) is the class of languages recognized
by a deterministic (respectively nondeterministic) Turing machine needing S(n)
space for an input of length n. DTIME(T(n)) (respectively NTIME(T(n))) is the
class of languages recognized by a deterministic (respectively nondeterministic)
Turing machine needing T (n) steps for an input of length n (see [HU79]). Special
classes are

NL:=NSPACE(log n), P:=
⋃

c>1

DTIME(nc), NP:=
⋃

c>1

NTIME(nc),

PSPACE:=
⋃

c>1

DSPACE(nc) and EXPTIME:=
⋃

c>1

DTIME(2nc

).

A Turing machine is an Oracle Turing machine if it has access to a language L in
a class A as oracle; this means, it can write a word on an oracle tape and branch
depending on whether the word is in L (or, in case of a function, depending on
the value of one of the output bits). If such an Oracle Turing machine fulfills the
conditions of class C in other respects, then CA denotes the class of languages
which it can recognize. For a class F of functions, we define CF by allowing the
Oracle Turing machine with an f ∈ F to write a pair (x, i) on the oracle tape

13

14 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

and branch depending on whether the i-th bit of f(x) is 1.
NL has been the focus of much attention, in part, because it captures the com-
plexity of many natural computational problems [Jon75]. The s-t connectivity
problem takes as input a directed graph with two distinguished vertices s and t,
and determines if there is a path in the graph from s to t. It is well-known that
this is a complete problem for NL [Jon75].
The unambiguous version of NL, denoted UL, was first explicitly defined and
studied in [BJLR91, AJ93b]. A language A is in UL if and only if there is a
nondeterministic logspace machine M accepting A such that, for every x, M has
at most one accepting computation on input x.
Previously, the complexity class UP (unambiguous polynomial time) was first
introduced by Valiant [Val76]. UP has been the focus of much attention since
the proper containment of P in UP is a necessary precondition for the existence
of one-way functions [GS88]. One-way functions are important in cryptology.
Although UP is one of the most intensely-studied subclasses of NP, it is nei-
ther known nor widely-believed that UP contains any sets that are hard for NP
under any interesting notion of reducibility. (Recall that Valiant and Vazirani
showed that “Unique.Satisfiability” – the set of all Boolean formulae with ex-
actly one satisfying assignment – is hard for NP under probabilistic reductions
[VV86]. However, the language Unique Satisfiability is hard for coNP under ≤p

m

reductions, and thus, is not in UP unless NP = coNP.)

2.1.1 Counting classes

In [Val79], Valiant defined the counting class #P for polynomial time-bounded
Turing machines. The function #accM(x) : Σ∗ → N gives the number of accept-
ing computations of a machine M on input x. The class #L (first studied by
[AJ93b]) is the class of functions of the form #accM for an NL machine M .
More generally, we define the counting class #X as the class of functions f for
which there is a nondeterministic automaton or grammar of type X (whatever X
is) such that, for any input i, f(i) is the number of accepting computation paths
of the automaton (respectively leftmost derivations of the grammar in Section
3.2.7 in the case of #CFL) on input i. By analogy to the definition of MODkL
in [BDHM92], we can define the class ModkX as the class of of languages A
with ∃f ∈ #X ∀i i ∈ A ⇔ f(i) 6≡ 0 mod k. According to [GNW90], we
can write this as {x 6≡ 0 mod k}X and define the classes NX := {x > 0}X,
co−NX := {x = 0}X, C=X := {x = y}X and PX := {x > y}X. Of special
interest is ⊕X := Mod2X [Dam90]. For example, ⊕L is the class of languages
A for which there is a nondeterministic logspace bounded machine M such that
x ∈ A if and only if M has an odd number of accepting computation paths on
input x.
GapL consists of functions that are the difference of two #L functions. Alterna-
tively, GapL is the class of all functions that are logspace many-one reducible to

2.1. PRELIMINARIES 15

UL

NL LFew SPL

co-C=LC=LMatching

PL
ModmL

@
@

@

�
�

�

T
TT
HHHHHH

HHHHHH

�
�

�

D
D
D

�
�

��

aaaaaaaa

�
�

�

@
@

@

�
�
�
�
��

Figure 2.1: Previously-known inclusions among some logspace-counting problems
and classes

computing the determinant of integer matrices. (See, e.g. [AO96, MV97].)
By analogy with the class GapP [FFK94], one may define a number of language
classes by means of GapL functions. We mention in particular the following three
complexity classes; the first two have already been studied previously.

• PL = {A : ∃f ∈ GapL, x ∈ A ⇔ f(x) > 0} (See, e.g., [Gil77, RST84,
BCP83, Ogi96, BF97].)

• C=L = {A : ∃f ∈ GapL, x ∈ A ⇔ f(x) = 0} [AO96, ABO97, ST94].

• SPL = {A : χA ∈ GapL}, where χA is the characteristic function of A with
χA(x) = 1 if x ∈ A and 0 otherwise.

It seems that this is the first time that SPL has been singled out for study. In
the remainder of this section, we will state some of the basic properties of SPL.

Proposition 1 ∀m UL ⊆ SPL ⊆ ModmL ∩ C=L ∩ co-C=L.

(The second inclusion holds because SPL is easily seen to be closed under com-
plement.)

Proposition 2 SPL = {A : GapLA = GapL} (using the Ruzzo-Simon-Tompa
notion of space-bounded Turing reducibility for nondeterministic machines in
[RST84]).

(This is proved very similarly to the analogous result in [FFK94]. In showing
that GapLA ⊆ GapL if A ∈ SPL, we need only to observe that in the simulation
of an oracle Turing machine given in [FFK94], it is not necessary to guess all of
the oracle queries and answers at the start of the computation; instead these can
be guessed one-by-one as needed.)

16 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

UL

LFew

NL SPL

co-C=LC=LMatching

PL
ModmL

@
@

@

�
�

�

D
D
D

HHHHHH

D
D
D

�
�

��

aaaaaaaa

�
�

�

@
@

@

�
�
�
�
��

Figure 2.2: Uniform inclusions among logspace classes.

A matching in a graph is a set of edges, such that no two of these edges share
a vertex. A matching is perfect if every vertex is adjacent to an edge in the
matching. In the inclusion structures in Figures 2.1, 2.2 and 2.3, we regard it as
a class with logarithmic closure.
The complexity class LFew, originally defined and studied in [BDHM92, BJLR91],
is the class of languages A for which there exists (a) an NL machine M such that
#accM(x) is bounded by a polynomial, and (b) a logspace-computable predicate
R such that x is in A if and only if R(x, #accM(x)) is true.
It is immediate from the definition that LFew is closed under complement, and as
observed in [AO96], LFew is contained in C=L. In Theorem 2.5.5, we show LFew
⊆ NL ∩ SPL. This improves the previously known inclusions shown in Figure 2.1
to Figure 2.2.

2.1.2 Nonuniformity

Our results indicate that NL and UL are probably equal, but we cannot prove
this equality. In order to state our theorem, we first need to discuss the issue of
uniformity.
Complexity classes such as P, NP, and NL that are defined in terms of machines
are known as “uniform” complexity classes. Here, the same machine is used for
all input lengths. This is in contrast to “non-uniform” complexity classes where
different machines, depending on the input length, are used. Such “non-uniform”
classes are defined most naturally in terms of families of circuits {Cn} with a
circuit required for each input length. In order to make a circuit complexity
class “uniform”, it is necessary to require that the function n 7→ Cn be “easy” to
compute in some sense. (We will consider “logspace-uniform” circuits where the
function n 7→ Cn can be computed in space log n.) P and NL (and many other

2.1. PRELIMINARIES 17

uniform complexity classes) have natural definitions in terms of uniform circuits;
for instance, NL can be characterized in terms of switching-and-rectifier networks
(see, e.g. [Raz92, Raz90]) and skew circuits [Ven92]. Uniform complexity classes
can also be used to give characterizations of the non-uniform classes using a
formalism presented in [KL82]: Given any complexity class C, C/poly is the class
of languages A for which there exists a sequence of “advice strings” {α(n) | n ∈
N} and a language B ∈ C such that x ∈ A if and only if (x, α(|x|)) ∈ B.
It is worth emphasizing that, in showing the equality UL/poly = NL/poly, we
must show that for every B in NL/poly, there is a nondeterministic logspace
machine M that has never more than one accepting path on any input, and there
is an advice sequence α(n) such that M(x, α(|x|)) accepts if and only if x ∈ B.
This is stronger than merely saying that there is an advice sequence α(n) and a
nondeterministic logspace machine such that M(x, α(|x|)) has never more than
one accepting path, and accepts if and only if x ∈ B.
Our work in Section 2.3 extends the earlier work of Wigderson and Gál. This was
motivated in part by asking whether it is possible to prove a space-bounded analog
of the result of [VV86] about unique solutions and NP. Wigderson [Wig94, GW96]
proved the inclusion NL/poly ⊆ ⊕L/poly. (An alternative proof of this inclusion
is sketched in [Reg97, p. 284].) The result, however, is a weaker statement than
NL ⊆ ⊕L. The latter is still not known to hold.
In the proof of the main result of [Wig94, GW96], Wigderson observed that a
simple modification of his construction produces graphs in which the shortest
distance between every pair of nodes is achieved by a unique path. We will refer
to such graphs in the following as min-unique graphs. Wigderson wrote: “We see
no application of this observation.” The proof of our main result in Section 2.3
is precisely such an application.
From UL/poly = NL/poly in Section 2.3, it follows that, in the nonuniform
setting, NL is contained in SPL. (See the inclusion structure in Figure 2.3.)
However, it needs to be noted at this point that it is not quite clear what the
“nonuniform version of SPL” should be. Here are two natural candidates:

• SPL/poly = {A : ∃B ∈ SPL ∃k∃(αn)|αn| ≤ nk and ∀x x ∈ A ⇔ (x, α|x|) ∈
B}.

• nonuniform SPL = {A : χA ∈ GapL/poly}.
It is easy to verify that SPL/poly is contained in nonuniform SPL. Containment
in the other direction, however, remains an open question. We will use the second
class as the nonuniform version of SPL for the following reasons:

• The study of nonuniform complexity classes is motivated by questions of
circuit complexity. GapL/poly has a natural definition in terms of skew
arithmetic circuits. (See [All97] for a survey and discussion.) Skew circuits
were defined in [Ven91] and studied in [Tod92]. Thus, a natural defini-
tion of SPL is in terms of skew arithmetic circuits over the integers which

18 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

UL = NL = LFew

Matching

SPL

co-C=LC=L

PL
ModmL

�
�

�

D
D
D

aaaaaaaa

�
�

�

@
@

@

�
�
�
�
��

Figure 2.3: Inclusions assuming secure pseudorandom generators. These inclu-
sions also hold in the nonuniform setting.

produce an output value in {0,1}. When the circuits are nonuniform, this
corresponds to the definition of nonuniform SPL given above.

• We are not able to show that the matching problem is in SPL/poly; we
only show that it is in nonuniform SPL. However, note that, Theorem 2.7.1
shows that, under a plausible complexity-theoretic hypothesis, the matching
problem is in uniform SPL.

2.1.3 Connection to Formal Languages

In contrast to the complexity classes where no separation results between all these
counting variants of the classes are known, (for example all the classes in Section
2.1.1 with X = P or X = L), separations for deterministic and nondeterministic
context-free or linear languages are well known. In Section 2.8.1, we continue this
by showing some separations for context free grammars (We keep the counting
class concept in Section 2.1.1 and plug in X = CFL instead of a complexity
class) and one-way push-down automata without auxiliary tape (X = 1−PDA).
In order to extend the possibilities of a systematic description of Y X classes even
further, we allow Y to be also in {U, SP, AΣgX, EAΣlog, ...}; for example U
stands for unambiguity.
An Auxiliary Pushdown Automaton (AuxPDA) is a nondeterministic Turing ma-
chine with a read-only input tape, a space-bounded work-tape, and a pushdown
store that is not subject to the space-bound. The class of languages accepted
by Auxiliary Pushdown Automata in space s(n) and time t(n) is denoted by
AuxPDA(s(n), t(n)). If an AuxPDA satisfies the property that, on every input
x, there is at most one accepting computation, then the AuxPDA is said to be

2.1. PRELIMINARIES 19

unambiguous. This gives rise to the class UAuxPDA(s(n), t(n)).

The logarithmic closure over a class S of languages is LOG(S):= {A | ∃B ∈ S
with A ≤log

m B} where L ≤log
m L′ means that there is a logarithmic space-bounded

transducer T with x ∈ L if and only if fT (x) ∈ L′. NL=LOG(LIN) is the class of
languages reducible to linear context-free languages [Sud75]. The class LogCFL
=LOG(CFL) is characterized in [Sud78, Ven92] as

LogCFL = AuxPDA(log,pol):= AuxPDA(log n, nO(1)) = SAC1.

(The circuit class SAC1 is defined later in Section 2.1.4.) An easier proof avoiding
multi-head automata of this is in [MRV99]. In the same way, the class of languages
accepted by deterministic AuxPDAs in logarithmic space and polynomial time is
LOG(DCFL).
There are various connections between formal language classes and complexity
classes [Lan89, Rei89, Rei90]. In Section 2.8.2, we will see that push-down au-
tomata with Y-acceptance (Y ∈ {⊕, N, co−N,C=, P,Modk}), without two-way
input and without logspace working tape, recognize languages which are com-
plete for the complexity class Y AuxPDA(log,pol) with respect to ≤log

m -reduction.
Thus, we generalize the equation NAuxPDA(log,pol)= LOG(CFL) of Sudbor-
ough in [Sud78] to Y AuxPDA(log,pol)= LOG(Y 1−PDA). This result may be
interpreted in the sense that the work of a Y AuxPDA(log,pol)-automata may be
decomposed into a push-down part and a separate logspace/two-way part.
This leads to the search for similar relationships for the unambiguous classes.
Unambiguous context-free languages UCFL form one of the most important sub-
classes of the class of context-free languages. Unfortunately, it is not known
whether UAuxPDA(log n, pol) or UL is reducible to unambiguous context-free
languages. Furthermore, it is also not known whether UL is reducible to unam-
biguous linear languages ULIN or to DCFL. However, LOG(ULIN) was shown
to be in LOG(DCFL) in [BJLR91] using a polynomial tree unfolding. It appears
that unambiguous automata do not allow decompositions of these two parts.
The problem is that the PDA would not work unambiguously on inputs which
are not generated by the transducer. For more on the subtleties and difficulties
see [NR95]. (The same problem would occur if we considered LOG(SPCFL) or
LOG(SPLIN).)
On the other hand, this decomposition is also possible for (full) alternating push-
down automata. This is shown in [Rei89] and [Rei90], and improves a result
obtained if [JK89]. The concept of alternation [CKS81] is a more complicated
kind of acceptance than counting. It corresponds to the alternation of quantifiers
in logic and leads to an equivalent characterization of the polynomial hierarchy.
In analogy to the counting classes, alternation classes are defined as follows: For
X ∈ { L, AuxPDA(log, pol), AuxPDA(log), P, PSPACE } and a function g,
let AΣgX denote the set of all languages recognized by alternating machines
which are of type X, but augmented with a logspace working tape and making

20 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

NC2

��
��

TC1

��
��

CRCW1 = AC1
PP

PP 2.8.4

L#AuxPDA(log ,pol)
aa

aa
aa

aa
aa

Det

!!
!!

⊕AuxPDA(log,pol)
````

````̀
@@
SAC1 =LOG(CFL)

@@XXX
XXX

X

L#L

 2.8.3

WeakUAC1

CREW1 =UAC1
XXX

XXX
�
�
��

UAuxPDA(log,pol)
PP

PP
PP

PPP

��
��

��
�

⊕L
HH

HH
HH

H

NL=LOG(LIN)

LOG(UCFL)
XXX

XXX
@@ ��

UL

CROW1 =LOG(DCFL)
hhhh ��

��
��

LOG(ULIN)

L

NC1

Figure 2.4: Overview of known inclusions among the classes

g(n) − 1 alternations. Here, we admit the cases where g is a constant, or where
g is unbounded. In the latter case, this will be indicated by the symbol ω.

If we apply alternation to push-down automata, we obtain very high complexity
classes such as the polynomial hierarchy, PSPACE or EXPTIME [Rei89], [LSL84],
[LLS84]. This motivated [LR94] to introduce the notion of empty alternation by
investigating alternating automata which are restricted to emptying their stor-
age except for a logarithmically space-bounded tape before making an alternating
transition: Let (S)EAΣlog

g X denote the set of all languages recognized by Tur-
ing machines with a logarithmic space-bounded tape augmented with storage
of type X which make g(n) − 1 empty alternations; The “S” stand for a re-
striction for the automaton to make only finitely many steps in universal states
before alternating into an existential state. This led to new characterizations
of the circuit classes ACk=EAΣlog

logkn
PDA(log, pol), SACk=SEAΣlogknPDA(log,

pol) and P=EAΣlog
ω PDA(log, pol)= EAΣlog

ω PDA(log) in [LR94]. Furthermore,
by applying empty alternation to polynomial time-bounded Turing machines, we
obtain a new characterization for Wagners class ΘP

2 := LNP = PNP [log] [Wag88]
as EAΣlog

2 P=EAΣlog
ω P. In Section 2.8.5, when we apply empty alternation to one-

way push-down automata, which we denote as 1-EAΣaPDA (see Definition 2 for
more details), we obtain results similar to those in Section 2.8.2.

2.1. PRELIMINARIES 21

2.1.4 Circuits

The classes NCk,SACk,ACk,TCk are defined as classes of languages accepted by
uniform circuits of depth O(logk n) and polynomial size. This means that, for
every length of the input, there exists a circuit which, when given a word as
input-signals, has outputs of the value 1 if and only if the word is in the language.
There are several models for the uniformity condition, like logspace-uniformity,
which uses a logspace-computable function for calculating a representation of
the circuit from the (unary encoded) length of the input. The most refined
model is DLOGTIME-Uniformity [BIS90] where the circuit is described by a
representation which is recognized by a deterministic logarithmic time-bounded
Turing-machine. All classes allow negation of input signals and ∧ and ∨ gates
with bounded fan-in [Ruz81]. SACk has semi-unbounded fan-in. This means that
the number of input signals to an ∨ gate is not bounded; ACk has unbounded fan-
in, and TCk has even threshold-gates which are a model for neural nets. TC0 is
characterized in [Par90] by constant time Parallel Random Access Machines with
an additional majority function and, in [BIS90], by first order logic augmented
with majority quantifiers (FO+MAJ).
Problems in NC =

⋃

k NCk =
⋃

k TCk NC are usually regarded as those which
are efficiently parallelisable (see however a discussion in [Rei97] where multiplex
select gates are introduced). Not much is known about separations between these
classes (For example, it is not known if TC0 6= NP). As for Turing machines,
the computational power of an oracle can be used in a circuit. Here a reduction
to a language or function is done by using it as a gate; for example Det was
defined by Cook in [Coo81] as the class of problems which are NC1 reducible to
the computation of integer determinants.
In correspondence to the result LOG(CFL)=SAC1 obtained in [Ven92], we show
the following three characterizations of classes in [MRV99]:

• LOG(DCFL) corresponds to circuits built from the multiplex select gates
of [FLR96] with polynomial size proof trees,

• L corresponds to self-similar such circuits having logarithmic depth, and

• NC1 corresponds to bounded width polynomial size such circuits.

This shows that multiplex select gates correspond to determinism. Such a multi-
plex select gate has two kinds of input signals: one bundle of O(log(n)) steering
signals and up to n bundles of O(log(n)) data signals. The number which is
encoded in binary by the steering signals is the number of the bundle of data
signals which is switched through to the output.
In order to find a circuit model corresponding to unambiguity, the unambiguous
versions UACk and USACk, and the weak unambiguous versions WeakUACk and
WeakUSACk, of the classes ACk and SACk were considered in [Lan90], [LR90a]
and [NR95]. Unambiguity means that an unbounded ∧ (respectively ∨) gate

22 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

NC2

��
��

TC1

��
��

CRCW1 = AC1
PP

PP 2.8.4

L#AuxPDA(log ,pol)
aa

aa
aa

aa
aa

Det

!!
!!

⊕AuxPDA(log,pol)
XXX

XXX
X

@@

L#L

 2.8.3

WeakUAC1

CREW1 =UAC1
XXX

XXX

SAC1 =LOG(CFL)
PP

PP
PP

PPP

��
��

��
�

⊕L PL

LOG(UCFL)
XXX

XXX
@@ ��

��

UL=NL

CROW1 =LOG(DCFL)
hhhh ��

��
��

LOG(ULIN)

L

NC1

Figure 2.5: Inclusions that hold in the nonuniform setting

should under no circumstances have more than one 0 (respectively 1) as input.
This condition is relaxed under weak unambiguity where the output of an ∧
(respectively ∨) gate with more than one 0 (respectively 1) as input is just un-
defined. The result WeakUSACk=UAuxPDA(log, pol) is shown in [LR90a] (see
also [NR95]). Figure 2.4 gives a overview on the inclusions of some the various
classes. In Sections 2.8.3 and 2.8.4 we add two further connections to the graph.

2.1.5 Parallel Random Access Machines

A Parallel Random Access Machine (PRAM) is a set of Random Access Machines,
called Processors, which work synchronously and communicate via a Global Mem-
ory. Each step takes one time unit regardless of whether it performs a local or a
global (i.e., remote) operation. We assume the word length of a register’s contents
to be logarithmically bounded in the number of used processors. Furthermore,
all participating processors are active at the first step and need not be activated.
We distinguish three (increasingly restrictive) ways in which the processors are
allowed to read (respectively write) to the global memory:

• The Concurrent access allows simultaneous read (respectively write). Note
that, fortunately, several conventions prescribing how to solve a write con-
flict turned out to be equivalent.

• The Exclusive access forbids simultaneous reads (respectively writes) and
requires that, in each step, at most one processor may change the contents of

2.1. PRELIMINARIES 23

a global memory cell. This, however, has to be a property of the algorithm.

• The Owner access [DR86] means that for every cell of the global memory,
there is a designated processor which is the only one allowed to write into
that cell. This processor is called the owner of that cell. Again, this concept
turned out to be invariant under several obvious modifications.

In this way, we get nine versions of PRAMs, denoted as XRYW-PRAMs with
X,Y ∈ {O,E,C}, where XR specifies the type of read access and YW that of
the write access; the access types being designated by their initials. If we work
with a polynomial number of processors, we denote the class of all languages
recognizable in time f by XRYW-PRAMs by XRYW-TIME(f(n)). By definition,
we know that for X,Y ∈ {O,E,C}, we have

ORYW-TIME(f) ⊆ ERYW-TIME(f) ⊆ CRYW-TIME(f) and
XROW-TIME(f) ⊆ XREW-TIME(f) ⊆ XRCW-TIME(f).

If we are working with a non-polynomial number of processors, we let CRYW-
TIPR(f ,g) be the class of all languages accepted by CRYW-PRAMs in time
O(f(n)) using O(g(n)) processors on inputs of size n.
Rytter [Ryt87] (see also [RR92]) showed that any unambiguous context-free lan-
guage can be recognized in logarithmic time by a CREW-PRAM. This leads
one to suggest that our results in Section 2.3, combined with those of [Ryt87],
would also yield such CREW algorithms for problems complete for NL. This as-
sumption is reached because of the close connection between deterministic and
nondeterministic context-free languages with their related deterministic and non-
deterministic complexity classes. However, no CREW algorithm is known for any
problem complete for NL. This is even true in the nonuniform setting.
In fact, CREW algorithms are closely associated with a version of unambiguity
called strong unambiguity. In terms of circuits, it was shown in [Lan90] that
CREW=UAC1. In terms of Turing-machine based computation, strong unam-
biguity means that, not only is there at most one path from the start vertex to
the accepting configuration, but also there is at most one path between any two
configurations of the machine.
Strongly unambiguous classes have more efficient algorithms than those known
for general NL or UL problems. It is shown in [AL96] that problems in strongly
unambiguous logspace have deterministic algorithms using less than log2 n space
and, furthermore, that this class is also in LogDCFL (and hence has logarithmic-
time CROW-PRAM algorithms and is in SC2). For more information on this
connection to CROW-PRAM algorithms, see [FLR96], where the equivalence
CROW=LogDCFL shown in [DR86] is generalized to

DAuxPDA(fO(1), log g) = CROW-TIPR(log f, gO(1)).

In addition, the first circuit characterizations of depth O(logf) for deterministic
sequential automata which are f time bounded is provided in [FLR96].

24 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

More connections to other classes can be found in [SV84] ,[AJ93a], [NR92] and
[Ros91].

2.2 The principle of inductive counting

To show that NL is closed under complement, the complement of the s-t connec-
tivity problem is recognized by an NL machine as follows:
The inductive counting technique of [Imm88] and [Sze88] counts the number ck

of vertices having a distance at most k from the start vertex. Given a graph G,
numbers k, ck and a vertex v, we have to decide if d(v) ≤ k. This is achieved
with the following routine which uses the knowledge of ck to be sure to visit all
vertices with distance d(v) ≤ k on an accepting path:

Input (G, k, ck, v)
count := 0; path.to.v := false;
for each x ∈ V do

Guess nondeterministically if d(x) ≤ k.
if the guess is d(x) ≤ k then

begin
Guess a path of length l ≤ k from s to x (If this fails, then

halt and reject).
count := count +1;
if x = v then path.to.v := true;
end

endfor
if count = ck

then return the Boolean value of path.to.v
else halt and reject

end.procedure

Using this decision routine on all predecessors of a vertex, one step of inductive
counting can be done by visiting all vertices which were not counted yet, and
count it if one of its predecessors was counted in the previous step, as follows:

Input (G, k, ck−1)
Output ck

ck := ck−1;
for each vertex v do

if ¬(d(v) ≤ k − 1) then
for each x such that (x, v) is an edge do

if d(x) ≤ k − 1 then ck := ck + 1;
endfor

endfor

2.3. NL/POLY=UL/POLY 25

Deciding the existence of an s-t path in a graph G can be done by repeating the
previous algorithm inductively on k with the following algorithm:

Input (G)
c0 := 1; k := 0;
repeat

k := k + 1;
compute ck from ck−1;

until ck−1 = ck.
There is an s-t path in G if and only if d(t) ≤ k.

Since the complete algorithm only needs a constant number of counters and
pointers to vertices, the required space is logarithmic.
Not long after NL was shown to be closed under complement [Imm88, Sze88],
LogCFL was also shown to be closed under complement in a proof that also used
the inductive counting technique ([BCD+89]).
The idea is to count the number of gates evaluating to 1 in the k-th layer of the
circuit (instead of reachable vertices). An auxiliary pushdown automaton can
guess and verify an accepting subtree of the circuit (instead of a path from s).
A similar history followed a few years later; not long after it was shown that
NL is contained in ⊕L/poly [Wig94, GW96], the isolation lemma was again used
to show that LogCFL is contained in ⊕SAC1/poly [Gál95, GW96]. (This was
independently shown by H. Venkatesvaran.)

2.3 NL/poly=UL/poly [RA00]

The following lemma is implicit in [Wig94, GW96]. However, for completeness
we make it explicit here.

Lemma 2.3.1 There is a logspace-computable function f and a sequence of “ad-
vice strings” {α(n) | n ∈ N} (where |α(n)| is bounded by a polynomial in n) with
the following properties:

• For any directed acyclic graph G on n vertices, f(G,α(n)) = 〈G1, . . . , Gn2〉.

• For each i, the directed acyclic graph Gi has an s-t path if and only if G
has an s-t path.

• There is some i such that Gi is a min-unique graph.

Proof: We first observe that a standard application of the isolation lemma tech-
nique of [MVV87] shows that, if each edge in G is assigned a weight in the range
[1, 4n4] uniformly and independently at random, then with probability at least
3
4
, for any two vertices x and y such that there is a path from x to y, there is

26 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

only one path having minimum weight. (Sketch: The probability that there is
more than one minimum weight path from x to y is bounded by the sum, over
all edges e, of the probability of the event Bad(e, x, y) ::= “e occurs on one
minimum-weight path from x to y and not on another”. Given any weight as-
signment w′ to the edges in G other than e, there is at most one value z with the
property that, if the weight of e is set to be z, then Bad(e, x, y) occurs. Thus,
the probability that there are two minimum-weight paths between two vertices
is bounded by

∑

x,y,e

∑

w′ Bad(e, x, y|w′)Prob(w′) ≤∑x,y,e

∑

w′ 1/(4n4)Prob(w′)

=
∑

x,y,e 1/(4n4) ≤ 1/4.)

Our advice string α will consist of a sequence of n2 weight functions, where each
weight function assigns a weight in the range [1, 4n4] to each edge. (There are
A(n) = 2O(n5) such advice strings possible for each n.) Our logspace-computable
function f takes as input a digraph G and a sequence of n2 weight functions,
and produces as output a sequence of graphs 〈G1, . . . , Gn2〉, where graph Gi is
the result of replacing each directed edge e = (x, y) in G by a directed path of
length j from x to y, where j is the weight given to e by the i-th weight function
in the advice string. Note that, if the i-th weight function satisfies the property
that there is at most one minimum weight path between any two vertices, then
Gi is a min-unique graph. To see this, it suffices to observe that, for any two
vertices x and y of Gi, either (a) there exist vertices u and v such that x and y
were both added in replacing the edge (u, v) (in which case, there is exactly one
path connecting u to v, or (b) there are vertices x′ and y′ such that

• x′ and y′ are vertices of the original graph G, and they lie on every path
between x and y,

• there is only one path from x to x′, and only one path from y′ to y, and

• the minimum weight path from x′ to y′ is unique.

Let us call an advice string “bad for G” if none of the graphs Gi in the sequence
f(G) is a min-unique graph. For each G, the probability that a randomly-chosen
advice string α is bad is bounded by (probability that Gi is not min-unique)n2

≤ (1/4)n2
= 2−2n2

. Thus, the total number of advice strings that are bad for
some G is at most 2n2

(2−2n2
A(n)) < A(n). Thus, there is some advice string

α(n) that is not bad for any G.

Theorem 2.3.1 NL⊆UL/poly

Proof: It suffices to present a UL/poly algorithm for the s-t connectivity problem.
We show that there is a nondeterministic logspace machine M that takes as input
a sequence of digraphs 〈G1, . . . , Gr〉, and processes each Gi in sequence, with the
following properties:

2.3. NL/POLY=UL/POLY 27

• If Gi is not min-unique, M has a unique path that determines this fact and
goes on to process Gi+1;

1 all other paths are rejecting.

• If Gi is a min-unique graph with an s-t path, then M has a unique accepting
path.

• If Gi is a min-unique graph with no s-t path, then M has no accepting
path.

Combining this routine with the construction of Lemma 2.3.1 yields the desired
UL/poly algorithm.
Our algorithm is an enhancement of the inductive counting technique of [Imm88]
and [Sze88]. We call this the double counting technique since, in each stage, we
count not only the number of vertices having distance at most k from the start
vertex, but also the sum of the lengths of the shortest path to each such vertex.
In the following description of the algorithm, we denote these numbers by ck and
Σk, respectively.
Let us use the notation d(v) to denote the length of the shortest path in a graph
G from the start vertex to v. (If no such path exists, then d(v) = n + 1.) Thus,
using this notation, Σk =

∑

{x|d(x)≤k} d(x).
A useful observation is that if the subgraph of G induced by vertices having a
distance at most k from the start vertex is min-unique (and if the correct values
of ck and Σk are provided), then an unambiguous logspace machine can, on input
(G, k, ck,Σk, v), compute the Boolean predicate “d(v) ≤ k”. This is achieved
with the routine shown in Figure 2.6.
To see that this routine is truly unambiguous if the preconditions are met, note
the following:

• If the routine ever guesses incorrectly for some vertex x that d(x) > k, then
the variable count will never reach ck and the routine will reject. Thus, the
only paths that run to completion are the ones that correctly guess exactly
the set {x | d(x) ≤ k}.

• If the routine ever guesses the length l of the shortest path to x to be too
small (d(x) > l), then no path of length l will be found.

• If the routine ever guesses the length l of the shortest path to x to be too
big (d(x) < l), then the variable sum will be incremented by a value greater
than d(x) and, at the end of the routine, the variable sum will be greater
than Σk, and the routine will reject.

1More precisely, our routine will check if, for every vertex x, there is at most one minimal-
length path from the start vertex to x. This is sufficient for our purposes. A straightforward
modification of our routine would provide an unambiguous logspace routine that will determine
if the entire graph Gi is a min-unique graph.

28 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

Input (G, k, ck,Σk, v)
count := 0; sum := 0; path.to.v := false;
for each x ∈ V do

Guess nondeterministically if d(x) ≤ k.
if the guess is d(x) ≤ k then

begin
Guess a path of length l ≤ k from s to x (If this fails, then halt and

reject).
count := count +1; sum := sum +l;
if x = v then path.to.v := true;
end

endfor
if count = ck and sum = Σk

then return the Boolean value of path.to.v
else halt and reject

end.procedure

Figure 2.6: An unambiguous routine to determine if d(v) ≤ k.

Clearly, the subgraph having a distance at most 0 from the start vertex is min-
unique, and c0 = 1 and Σ0 = 0. A key part of the construction involves computing
ck and Σk from ck−1 and Σk−1 respectively while at the same time checking that
the subgraph having a distance at most k from the start vertex is min-unique.
It is easy to see that ck is equal to ck−1 plus the number of vertices having
d(v) = k. Note that d(v) = k if and only if there is some edge (x, v) such that
d(x) ≤ k − 1 and it is not the case that d(v) ≤ k − 1. (Note that both of these
latter conditions can be determined in UL, as discussed above.) The subgraph
having a distance at most k from the start vertex fails to be a min-unique graph
if and only if there exist some v and x as above, as well as some other x′ 6= x
such that d(x′) ≤ k − 1 and there is an edge (x′, v). The code shown in Figure
2.7 formalizes these considerations.
Recall that we are building an algorithm that takes as input a sequence of graphs
〈G1, . . . , Gr〉 and processes each graph G in the sequence in turn, as outlined at
the start of this proof. Searching for an s-t path in a graph G in the sequence is
now expressed by the routine shown in Figure 2.8.
We complete the proof by describing how our algorithm processes the sequence
〈G1, . . . , Gr〉 as outlined at the start of the proof. Each Gi is processed in turn.
If Gi is not min-unique (or more precisely, if the subgraph of Gi that is reachable
from the start vertex is not a min-unique graph), then one unique computation
path of the routine returns the value BAD.GRAPH and goes on to process Gi+1;
all other computation paths halt and reject. Otherwise, if Gi is min-unique, the
routine has a unique accepting path if Gi has an s-t path, and if this is not the
case the routine halts with no accepting computation paths.

2.3. NL/POLY=UL/POLY 29

Input (G, k, ck−1,Σk−1)
Output (ck,Σk), and also the flag BAD.GRAPH

ck := ck−1; Σk := Σk−1;
for each vertex v do

if ¬(d(v) ≤ k − 1) then
for each x such that (x, v) is an edge do

if d(x) ≤ k − 1 then
begin
ck := ck + 1; Σk := Σk + k;
for x′ 6= x do

if (x′, v) is an edge and d(x′) ≤ k − 1 then BAD.GRAPH := true
endfor
end

endfor
endfor
At this point, the values of ck and Σk are correct.

Figure 2.7: Computing ck and Σk.

Input (G)
BAD.GRAPH := false; c0 := 1; Σ0 := 0; k := 0;
repeat

k := k + 1;
compute ck and Σk from (ck−1,Σk−1);

until ck−1 = ck or BAD.GRAPH = true.
If BAD.GRAPH = false then there is an s-t path in G if and only if d(t) ≤ k.

Figure 2.8: Finding an s-t path in a min-unique graph.

30 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

Corollary 2.3.1 NL/poly = UL/poly

Proof: Clearly UL/poly is contained in NL/poly. It suffices to show the converse
inclusion. Let A be in NL/poly. By definition, there is a language B ∈ NL and
there is an advice sequence αn such that x is in A if and only if (x, α|x|) is in B.
By the preceding theorem, B is in UL/poly, and thus, there is a C in UL and an
advice sequence βn such that (x, αn) is in B if and only if ((x, α|x|), β|x|+|α|x||) is
in C. It is now obvious how to construct the desired advice sequence from αn

and βn+|αn
.

2.3.1 Open Problems

The reader is encouraged to note that, in a min-unique graph, the shortest path
between any two vertices is unique. This bears a superficial resemblance to the
property of strong unambiguity. We see no application of this observation.
It is natural to ask if the randomized aspect of the construction can be eliminated
using some sort of derandomization technique to obtain the equality UL = NL. In
Section 2.7, we observe that if DSPACE(n) contains a language with sufficiently
high circuit complexity, then the techniques of [NW94] can be used to build
pseudorandom generators of sufficiently high quality. This would mean that the
results of this paper would also hold in the uniform setting.
A corollary of our work is that UL/poly is closed under complement. It remains
an open question if UL is closed under complement, although some of the unam-
biguous logspace classes that can be defined using strong unambiguity are known
to be closed under complement [BJLR91]. Similarly, UL/poly has a complete
set under the natural types of reducibility to consider (nonuniform logspace re-
ductions, or even nonuniform projections). In contrast, UL itself is not known
to have any complete sets under logspace reducibility. In this regard, note that
Lange has shown that one of the other unambiguous logspace classes does have
complete sets [Lan97].
It is disappointing that the techniques used in this paper do not seem to pro-
vide any new information about complexity classes such as NSPACE(n) and
NSPACE(2n). It is straightforward to show that NSPACE(s(n)) is contained in
the advice class USPACE(s(n))/2O(s(n)), but this is interesting only for sub-linear
s(n). (In a personal communication, Fortnow has pointed out that our argument
does show that NSPACE(n) = USPACE(n) relative to a random oracle.)
There is a natural class of functions associated with NL, denoted FNL [AJ93b].
This can be defined in several equivalent ways, such as

• The class of functions computable by NC1 circuits with oracle gates for
problems in NL.

• The class of functions f such that {(x, i, b) | the i-th bit of f(x) is b} is in
NL.

2.4. LOGCFL/POLY=UAUXPDA(LOG N , POL)/POLY 31

• The class of functions computable by logspace-bounded machines with or-
acles for NL.

Another important class of problems related to NL is the class #L which counts
the number of accepting paths of a NL machine. #L characterizes the complexity
of computing the determinant [Vin91]. (See also [Tod92, Dam, MV97, Val92,
AO96].) It was observed in [AJ93b] that if NL = UL, then FNL is contained in
#L. Thus, a corollary of the result in this paper is that FNL/poly ⊆ #L/poly.
Many questions about #L remain unanswered.
Two interesting complexity classes related to #L are PL (probabilistic logspace)
and C=L (which characterizes the complexity of singular matrices, as well as
questions about computing the rank). It is known that some natural hierarchies
defined using these complexity classes collapse:

• AC0(C=L) = C=LC=L.·.C=L

= NC1(C=L) = LC=L [AO96, ABO96].

• AC0(PL) = PLPL.·.PL

= NC1(PL) = PL [AO96, Ogi96, BF97].

In contrast, the corresponding #L hierarchy (equal to the class of problems AC0

reducible to computing the determinant) AC0(#L) = FL#L.·.#L

is not known to
collapse to any fixed level. Does the equality UL/poly = NL/poly provide any
help in analyzing this hierarchy in the nonuniform setting?

2.4 LogCFL/poly=UAuxPDA(log n, pol)/poly

[RA00]

In this section, we show that the same techniques that were used in Section 2.3
can be used to prove an analogous result about LogCFL. (In fact, it would also
be possible to derive the result of Section 2.3 from a modification of the proof
of this section. Since some readers may be more interested in NL than LogCFL,
we have chosen to present a direct proof of NL/poly = UL/poly.) The first step
is to state the analog to Lemma 2.3.1. Before we can do that, we need some
definitions.
A weighted circuit is a semiunbounded circuit together with a weighting function
that assigns a nonnegative integer weight to each wire connecting any two gates
in the circuit.
Let C be a weighted circuit, and let g be a gate of C. A certificate for g(x) = 1
(in C) is a list of gates, corresponding to a depth-first search of the subcircuit of
C rooted at g. The weight of a certificate is the sum of the weights of the edges
traversed in the depth-first search. This informal definition is made precise by
the following inductive definition. (It should be noted that this definition differs
in some unimportant ways from the definition given in [Gál95, GW96].)

32 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

• If g is a constant 1 gate or an input gate evaluating to 1 on input x, then
the only certificate for g is the string g. This certificate has weight 0.

• If g is an AND gate of C with inputs h1 and h2 (where h1 lexicographically
precedes h2), then any string of the form gyz is a certificate for g, where y
is any certificate for h1, and z is any certificate for h2. If wi is the weight of
the edge connecting hi to g, then the weight of the certificate gyz is w1 +w2

plus the sum of the weights of certificates y and z.

• If g is an OR gate of C, then any string of the form gy is a certificate for
g, where y is any certificate for a gate h that is an input to g in C. If w is
the weight of the edge connecting h to g, then the weight of the certificate
gy is w plus the weight of certificate y.

Note that if C has logarithmic depth d, then any certificate has length bounded
by a polynomial in n and has weight bounded by 2d times the maximum weight
of any edge. Every gate that evaluates to 1 on input x has a certificate, and no
gate that evaluates to 0 has a certificate.
We will say that a weighted circuit C is min-unique on input x if, for every gate
g that evaluates to 1 on input x, the minimal-weight certificate for g(x) = 1 is
unique.

Lemma 2.4.1 For any language A in LogCFL, there is a sequence of advice
strings α(n) (having length polynomial in n) with the following properties:

• Each α(n) is a list of weighted circuits of logarithmic depth 〈C1, . . . , Cn〉.

• For each input x and for each i, x ∈ A if and only if Ci(x) = 1.

• For each input x, there is some i such that Ci is min-unique on input x.

Lemma 2.4.1 is in some sense implicit in [Gál95, GW96]. We include a proof for
completeness.
Proof: Let A be in LogCFL, and let C be the semiunbounded circuit of size nl

(i.e., having at most nl gates) and depth d = O(log n) recognizing A on inputs
of length n.
As in [Gál95, GW96], a modified application of the isolation lemma technique of
[MVV87] shows that, for each input x, if each wire in C is assigned a weight in
the range [1, 4n3l] uniformly and independently at random, then with probability
at least 3

4
, C is min-unique on input x. (Sketch: The probability that there is

more than one minimum weight certificate for g(x) = 1 is bounded by the sum,
over all wires e, of the probability of the event Bad(e, g) ::= “e occurs in one
minimum-weight certificate for g(x) = 1 and not in another”. Given any weight
assignment w′ to the edges in C other than e, there is at most one value z with
the property that, if the weight of e is set to be z, then Bad(e, g) occurs. Thus,

2.4. LOGCFL/POLY=UAUXPDA(LOG N , POL)/POLY 33

the probability that there are two minimum-weight certificates for any gate in
C is bounded by

∑

g,e

∑

w′ Bad(e, g|w′)Prob(w′) ≤∑g,e

∑

w′ 1/(4n3l)Prob(w′) =
∑

g,e 1/(4n3l) ≤ 1/4.)
Now consider sequences β consisting of n weight functions 〈w1, . . . , wn〉, where
each weight function assigns a weight in the range [1, 4n3l] to each edge of C.

(There are B(n) = 2nO(1)
such sequences possible for each n.) There must exist

a string β such that, for each input x of length n, there is some i ≤ n such that
the weighted circuit Ci that results from applying weight function wi to C is
min-unique on input x. (Sketch of proof: Let us call a sequence β “bad for x”
if none of the circuits Ci in the sequence is min-unique on input x. For each x,
the probability that a randomly-chosen β is bad is bounded by (probability that
Ci is not min-unique)n ≤ (1/4)n = 2−2n. Thus, the total number of sequences
that are bad for some x is at most 2n(2−2nB(n)) < B(n). Thus, there is some
sequence β that is not bad for any C.)
The desired advice sequence α(n) = 〈C1, . . . , Cn〉 is formed by taking a good
sequence β = 〈w1, . . . , wn〉 and letting Ci be the result of applying weight function
wi to C.

Theorem 2.4.1 LogCFL ⊆ UAuxPDA(log n, pol)/poly.

Proof: Let A be a language in LogCFL. Let x be a string of length n, and let
〈C1, . . . , Cn〉 be the advice sequence guaranteed by Lemma 2.4.1.
We show that there is an unambiguous auxiliary pushdown automaton M that
runs in polynomial time and uses logarithmic space on its worktape. When this
is given a sequence of circuits as input, it processes each circuit in turn, and has
the following properties:

• If Ci is not min-unique on input x, then M has a unique path that deter-
mines this fact and goes on to process Ci+1; all other paths are rejecting.

• If Ci is min-unique on input x and evaluates to 1 on input x, then M has
a unique accepting path.

• If Ci is min-unique on input x but evaluates to zero on input x, then M
has no accepting path.

Our construction is similar in many respects to that of Section 2.3. Given a
circuit C, let ck denote the number of gates g that have a certificate for g(x) = 1
of weight at most k, and let Σk denote the sum, over all gates g having a certificate
for g(x) = 1 of weight at most k, of the minimum-weight certificate of g.
(Let W (g) denote the weight of the minimum-weight certificate of g(x) = 1, if
such a certificate exists, and let this value be ∞ otherwise.)
A useful observation is that if all gates of C having certificates of weight at most
k have unique minimal-weight certificates (and if the correct values of ck and Σk

34 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

are provided), then on input (C, x, k, ck,Σk, g), an unambiguous AuxPDA can
determine if W (g) > k, and if W (g) ≤ k, the AuxPDA can compute the value of
W (g). This is achieved with the routine shown in Figure 2.9.

Input (C, x, k, ck,Σk, g)
count := 0; sum := 0; a := ∞;
for each gate h do

Guess nondeterministically if W (h) ≤ k.
if the guess is W (h) ≤ k then

begin
Guess a certificate of size l ≤ k for h (If this fails, then halt and reject).
count := count +1; sum := sum +l;
if h = g then a := l;
end

endfor
if count = ck and sum = Σk

then return a
else halt and reject

end.procedure

Figure 2.9: An unambiguous routine to calculate W (g) if W (g) ≤ k and return
∞ otherwise.

To see that this routine is truly unambiguous if the preconditions are met, note
the following:

• If the routine ever guesses incorrectly for some gate h that W (h) > k, then
the variable count will never reach ck and the routine will reject. Thus,
the only paths that run to completion guess correctly exactly the set {h |
W (h) ≤ k}.

• For each gate h such that W (h) ≤ k, there is exactly one minimal-weight
certificate that can be found. An UAuxPDA will find this certificate using
its pushdown to execute a depth-first search (using nondeterminism at the
OR gates, and using its O(log n) workspace to compute the weight of the
certificate), only one path will find the minimal-weight certificate. If, for
some gate h, a certificate of weight greater than W (h) is guessed, then the
variable sum will not be equal to Σk at the end of the routine, and the path
will halt and reject.

Clearly, all gates at the input level have unique minimal-weight certificates (and
the only gates g with W (g) = 0 are at the input level). Thus, we can set c0 = n+1
(since each input bit and its negation are provided, along with the constant 1),
and Σ0 = 0.

2.4. LOGCFL/POLY=UAUXPDA(LOG N , POL)/POLY 35

Input (C, x, k, ck−1,Σk−1)
Output (ck,Σk), and also the flag BAD.CIRCUIT

ck := ck−1; Σk := Σk−1;
for each gate g do

if W (g) > k − 1 then
begin
if g is an AND gate with inputs h1, h2, connected

to g with edges weighted w1, w2 and
W (h1) + W (h2) + w1 + w2 = k then

ck := ck + 1; Σk := Σk + k
if g is an OR gate then

for each h connected to g by an edge weighted w do
if W (h) = k − w then

begin
ck := ck + 1; Σk := Σk + k
for h′ 6= h connected to g by an edge of weight w′ do

if W (h′) = k − w′

then BAD.CIRCUIT := true:
endfor
end

endfor
end

endfor
At this point, if BAD.CIRCUIT = false, the values of ck and Σk are correct.

Figure 2.10: Computing ck and Σk.

36 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

A key part of the construction involves computing ck and Σk from (ck−1,Σk−1),
while simultaneously checking that no gate has two minimal-weight certificates of
weight k. Consider each gate g in turn. If g is an AND gate with inputs h1 and h2

and weights w1 and w2 connecting g to these inputs, then W (g) ≤ k if and only
if (W (g) = l ≤ k − 1) or ((W (g) > k − 1) and (W (h1) + W (h2) + w1 + w2 = k)).
If g is an OR gate, then it suffices to check, for each gate h that is connected
to g by an edge of weight w, if (W (g) = l ≤ k − 1) or ((W (g) > k − 1) and
(W (h) + w = k)); if one such gate is found, then W (g) = k; if two such gates are
found, then the circuit is not min-unique on input x. If no violations of this sort
are found for any k, then C is min-unique on input x. The code shown in Figure
2.10 formalizes these considerations.
Evaluating a given circuit Ci is now expressed by the routine shown in Figure
2.11.

Input (Ci)
BAD.CIRCUIT := false; c0 := n + 1; Σ0 := 0;
for k = 1 to 2d4n3l

compute (ck,Σk) from ck−1,Σk−1;
if BAD.CIRCUIT = true, then exit the for loop.

endfor
If BAD.CIRCUIT = false then the output gate g evaluates to 1 if and only if
W (g) < ∞.

Figure 2.11: Evaluating a circuit.

We complete the proof by describing how our algorithm processes the sequence
〈C1, . . . , Cn〉, as outlined at the start of the proof. Given a sequence 〈C1, . . . , Cn〉,
the algorithm processes each Ci in turn. If Ci is not min-unique on input x, then
one unique computation path of the routine returns the value BAD.CIRCUIT
and goes on to process Ci+1; all other computation paths will halt and reject.
Otherwise, the routine has a unique accepting path if Ci(x) = 1, and if this is
not the case, then the routine will halt with no accepting computation paths.

Corollary 2.4.1 LogCFL/poly = UAuxPDA(log n, pol)/poly.

From UAuxPDA(log n, pol) = WeakUnambSAC1 ⊆WeakUnambAC1 in [LR90a]
(see also [NR95]) follows:

Corollary 2.4.2 LogCFL/poly ⊆WeakUnambAC1/poly.

2.4.1 Open Problems

Is there a corresponding CREW algorithm for LogCFL/poly or at least for any
problem complete for NL, even in the nonuniform setting?

2.5. MACHINES WITH FEW ACCEPTING COMPUTATIONS 37

It is instructive to view our results in terms of arithmetic circuits. An equivalent
definition of the class of functions #L is obtained by taking the Boolean circuit
characterization of NL (see [Ven92]) and replacing each Boolean AND and OR
gate by integer multiplication and addition, respectively. The class #SAC1 can
similarly be defined. This notion of arithmetic circuit complexity has been in-
vestigated in a series of papers including [Vin91, CMTV96, AAD97, All97]. Our
results say that the zero-one valued characteristic function of any language in
NL (or LogCFL) can be computed by the corresponding (nonuniform) class of
arithmetic circuits. Note that, although the output gate is producing a value in
{0,1}, some of the interior gates will be producing larger values. Are there equiv-
alent arithmetic circuits where all gates take values in {0,1}? (This is essentially
the notion of strong unambiguity.) Note that each such gate is itself defining
a language in NL (or LogCFL) and, thus, there is a zero-one valued arithmetic
circuit for it – but this circuit may itself have gates that produce large values.
Can more inclusions be shown among other logspace-counting classes (at least in
the nonuniform setting)? Is C=L contained in ⊕L? Is LogCFL contained in L#L?

2.5 Machines with Few Accepting Computa-

tions [ARZ99]

There are many complexity classes related to counting the number of accepting
paths of an NL machine. As examples, we mention L#L, PL, C=L, ModmL, SPL,
and NL. We think that existing techniques may suffice to find new relationships
among these classes (at least in the nonuniform setting). As a start in this
direction, we show that if an NL machine has only a polynomial number of
accepting computations, then counting the number of accepting paths can be
done in NL. First, we show that this holds in the nonuniform setting, and then
we derandomize this construction to show that it also holds in the uniform setting.
The main result of this section can be stated as follows:

Theorem 2.5.1 Let f be in #L. Then the language {(x, 0i) : f(x) = i} is in
NL/poly.

In particular, if f is a #L function such that f(x) is bounded by a polynomial in
|x|, then in the nonuniform setting, computing f is no harder than NL.
Proof: First we use the Isolation Lemma of [MVV87] to show that, if we choose
a weight function w : (V × V) → [1..4p(n)2n2] at random, then with probability
≥ 3

4
, any graph with at most p(n) accepting paths will have no two accepting

paths with the same weight. To see this, assume that this property fails to hold.
This means there exist some i, j and (v, w) such that the i-th accepting path (in
lexicographic order) has the same weight as the j-th accepting path, and (v, w) is
on the i-th path and not on the j-th path. Call this event Bad(i, j, v, w). Thus,

38 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

it suffices to bound

∑

i

∑

j

∑

v

∑

w

Prob(Bad(i, j, v, w)).

Now just as in [MVV87] (or as in our application of the Isolation Lemma in
Section 2.3), Prob(Bad(i, j, v, w)) is at most 1/(4p(n)2n2). This completes the
proof.
Thus, just as in Section 2.3, there must exist some sequence (w1, w2, . . . , wn2) of
weight functions such that, for all graphs G on n vertices, if G has at most p(n)
accepting paths, then there is some i such that, when wi is used as the weight
function, then G will not have two accepting paths with the same weight.
Now it is easy to see that the language {(x, 0j) : f(x) ≥ j} is in NL/poly. On
input x, for each i, for each t ≤ 4p(n)2n3, try to guess an accepting path having
weight t using weight function wi, and remember the number of t’s for which such
a path can be found. If there is some i for which this number is at least j, then
halt and accept.
The theorem now follows by closure of NL/poly under complement [Imm88,
Sze88].
This is also an appropriate place to present two results that improve on a lemma
of [BDHM92] in the nonuniform setting. Lemma 12 of [BDHM92] states that, if
M is a “weakly unambiguous” logspace machine with f(x) = #accM(x), and g
is computable in logspace, then the function

(
f(x)
g(x)

)
is in #L.

(Although we will not need the definition of a “weakly unambiguous machine”
here, we note that as a consequence, f(x) is bounded by a polynomial in |x|.)
Below, we remove the restriction that M be weakly unambiguous. We also relax
the restriction on g by allowing g to be any function in #L. However, in this case,
we obtain only a nonuniform result.

Theorem 2.5.2 Let f and g be in #L, where f(x) is bounded by a polynomial
in |x|. Then

(
f(x)
g(x)

)
is in #L/poly.

Proof: Use Theorem 2.5.1 to find the number i = |x|O(1) such that f(x) = i. If,
for all j ≤ i, g(x) 6= j, then output zero. Otherwise, let j = g(x). It is clear that
determining the correct values of i and j can be done in NL/poly. Using the fact
that NL/poly = UL/poly, as proved in Section 2.3, we may assume that there
is a unique path that determines the correct values of i and j. Our #L/poly
machine will reject on all the other paths and continue on this unique path to
produce

(
i
j

)
accepting paths as follows.

As in the proof of Theorem 2.5.1, we may assume that our nonuniform advice
consists of a sequence of weight functions, and our algorithm can find one of these
weight functions such that each of the i paths of the machine realizing f(x) have
distinct weights. Our #L/poly machine will pick j of these weights t1, . . . , tj and

2.5. MACHINES WITH FEW ACCEPTING COMPUTATIONS 39

attempt to guess j paths of f(x) having these weights. This gives a total of
(

i
j

)

accepting paths.
The preceding can be improved even to FNL/poly.

Theorem 2.5.3 Let f and g be in #L, where f(x) is bounded by a polynomial
in |x|. Then

(
f(x)
g(x)

)
is in FNL/poly.

Proof: Compute i = f(x) and j = g(x) as in the preceding proof. Now note
that

(
i
j

)
can be computed using a polynomial number of multiplications and one

division and, thus, has P-uniform NC1 circuits [BCH86]. The resulting algorithm
is NC1 reducible to NL and, therefore, is contained in FNL/poly.
(Note that, in contrast to Theorem 2.5.2, Theorem 2.5.3 cannot be derandomized
using Theorem 2.7.1, since the construction in [BCH86] does not use a proba-
bilistic argument.)

2.5.1 An unconditional derandomization

In this section, we show that Theorem 2.5.1 does hold in the uniform setting.

Theorem 2.5.4 Let f be in #L. Then the language {(x, 0i) : f(x) = i} is in
NL.

Proof: First, we show that the language {(x, 0i) : f(x) ≥ i} is in NL. In fact, since
counting paths in directed acyclic graphs is complete for #L, we will consider only
the problem of taking as input (G, 0i), where G is a directed acyclic graph with
distinguished vertices s and t, and determine if there are at least i paths from s
to t in G.
On input (G, 0i), for all prime numbers p in the range i ≤ p ≤ n4, we see if there
are at least i numbers q ≤ p with the property that there exists a path from s
to t that is equivalent to q mod p. That is, for each prime p in this range, guess
a sequence of numbers q1, q2, . . . , qi, and for each j attempt to find a path in the
graph (where a path may be viewed as a sequence of bits) such that this path
(again, viewed as a sequence of bits encoding a binary number) is equivalent to
qj mod p.
It is easy to see that the above computation can be done by an NL machine, since
logarithmic space is sufficient to compute the residue class mod p of the path. By
[FKS82][Lemma 2] (see also [Meh82][Theorem B]), if there are at least i distinct
paths from s to t, then there is some prime p in this range such that none of the
first i paths are equivalent mod p. Thus, the nondeterministic logspace algorithm
sketched above will accept if and only if there are at least i paths.
Now, since NL is closed under complementation, it follows that an NL machine
can determine if there are exactly i paths from s to t, which completes the proof.

We note that a more complicated proof of this theorem, using ε-biased probability
spaces, was presented in an earlier version of this work [AZ98].

40 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

2.5.2 The classes LogFew and LogFewNL

Theorem 2.5.4 has the following consequences. In [BDHM92], the complexity
classes LogFewNL and LogFew were defined. In a companion paper at about the
same time, [BJLR91], the class LogFewNL was called FewUL, and we will follow
this latter naming scheme here.
Before we can present the definitions of these classes, we need one more definition
from [BDHM92]. An NL machine is weakly unambiguous if, for any two accepting
computation paths, the halting configurations are distinct.

Definition 1 [BDHM92, BJLR91] The class FewUL consists of languages ac-
cepted by weakly unambiguous logspace-bounded machines.
LogFew is the class of languages A for which there exists (a) a logspace-bounded
weakly-unambiguous machine M , and (b) a logspace-computable predicate R, such
that x is in A if and only if R(x, #accM(x)) is true.
FewL consists of languages accepted by NL machines having the property that the
number of accepting computations is bounded by a polynomial.

The definitions in [BDHM92, BJLR91] were made in analogy with the complexity
classes FewP and Few ([AR88, CH90]). However, in [BDHM92] the authors
considered only the classes FewUL and LogFew (defined in terms of weakly-
unambiguous machines). This is in contrast to [BJLR91] where the authors
defined classes without the restriction to weakly-unambiguous machines but did
not consider LogFew or its analog. This, we will call LFew here.
It is obvious that UL ⊆ FewUL ⊆ FewL ∩ LogFew ⊆ FewL ⊆ NL. FewL and
LogFew are obviously both contained in LFew. Thus, it is immediate from Section
2.3 that FewUL and FewL coincide with UL in the nonuniform setting. We
conjecture that these classes all coincide in the uniform setting as well, but this
remains open. It was shown in [BDHM92] that LogFew is contained in ModmL
for every m. Although [BDHM92] leaves open the relationship between LogFew
and NL, Buntrock [Bun98] has pointed out that there is a simple direct argument
showing that LogFew is in NL.
Whether LFew is contained in NL remained open so far. An affirmative answer
follows from Theorem 2.5.4.

Theorem 2.5.5 LFew ⊆ NL ∩ SPL.

Proof: Let N be an NL machine accepting a language A in LFew, and let B be the
logspace-computable predicate such that x ∈ A if and only if (x, #accN (x)) ∈ B.
By Theorem 2.5.4, the language {(x, i) : #accN(x) ≥ i} is in NL. Thus, an NL
machine can determine the value of i = #accN(x) exactly, and then check if
(x, i) ∈ B. This shows that LFew is in NL.
Let g(x, i) be the #L function that counts the number of accepting computations
of the NL machine that, on input x, tries to find at least i paths in the graph G.

2.6. MATCHING 41

Note that if G really has exactly i accepting paths, then g(x, i) = 1 (since there
is exactly one sequence of guesses that will cause the NL machine to find the i
paths). Also, if i is larger than the number of paths in G, then g(x, i) = 0.
Now consider the function h(x, i) that is defined to be

g(x, i)
∏

i<i′≤|x|O(1)

(1 − g(x, i′)).

It follows from the standard closure properties of GapL that h is in GapL. (See,
e.g. [AO96].)
For the correct value of i, h(x, i) is equal to 1. For all other values of i, h(x, i) is
equal to 0.
It now follows easily that any LFew language is in LSPL which is in turn equal to
SPL.
It is perhaps worth noting that Theorem 2.5.5 is, in some sense, the logspace-
analog of the inclusion Few ⊆ SPP which was proved in [KSTT92]. Their proof
relies on the fact that, for any #P function f and any polynomial-time function
g that is bounded by a polynomial in n, the function

(
f(x)
g(x)

)
is in #P. Note that,

in contrast, this closure property is not known to hold for #L or GapL functions
(but compare this with Theorem 2.5.3).
However, we still do not know how to “derandomize” Theorems 2.5.2 and 2.5.3.

2.6 Matching [ARZ99]

The perfect matching problem is one of the best-studied graph problems in the-
oretical computer science. (For definitions, see Section 2.1.) It is known to
have polynomial-time algorithms [Edm65], and it is also known to be in RNC
[KUW86, MVV87]. However, at present, no deterministic NC algorithm is known.
Our new upper bound for matching builds on the RNC algorithm. Before we can
explain the nature of our bound, we need some definitions.
In [FFK94], Fenner, Fortnow, and Kurtz defined the complexity class SPP to be
{A : χA ∈ GapP}. They also showed that this same class of languages can be
defined equivalently as {A : GapPA = GapP}.
Up till now, the analogous class SPL (namely, the set: {A : χA ∈ GapL}) has not
received very much attention. In this section, we show that SPL can be used to
provide a better classification of the complexity of some important and natural
problems. However, the exact complexity of these problems remains unknown.
In particular, we show that the following problems are in the non-uniform version
of SPL:

• perfect matching (i.e., does a perfect matching exist?).

• maximum matching (i.e., constructing a matching of maximum possible
size)

42 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

• maximum flow with unary weights

All of these problems were previously known to be hard for NL and were also
known to be (nonuniformly) reducible to the determinant [KUW86, MVV87].
It was observed in [BGW] that the perfect matching problem is in (nonuniform)
ModmL for every m. Vinay has pointed out that a similar argument shows that
the matching problem is in (nonuniform) co-C=L (see also [ABO97]). A different
argument seems to be necessary to show that the matching problem is itself in
(nonuniform) C=L. Since SPL is contained in C=L ∩ co-C=L, this follows from
our new bound on matching.
Under a natural hypothesis (that DSPACE(n) has problems of “hardness” 2εn),
all of our results hold in the uniform setting as well. (See Theorem 2.7.1.)
Most natural computational problems turn out to be complete for some natural
complexity class. The perfect matching problem is one of the conspicuous exam-
ples of a natural problem that has, thus far, resisted classification by means of
completeness. Our results place the matching problem between NL and SPL.

2.6.1 Deciding the Existence of a Matching

We will find it very helpful to make use of the GapL algorithm of [MV97] for
computing the determinant of a matrix. (For our purposes, it is sufficient to
consider only matrices with entries in {0, 1}.) The following definitions are from
[MV97]:

A clow (clow for clo-sed w-alk) is a walk 〈w1, . . . , wl〉 starting from
vertex w1 and ending at the same vertex, where any 〈wi, wi+1〉 is an
edge in the graph. w1 is the least numbered vertex in the clow, and
is called the head of the clow. We also require that the head occurs
only once in the clow. This means that there is exactly one incoming
edge (〈wl, w1〉) and one outgoing edge (〈w1, w2〉) at w1 in the clow.

A clow sequence is a sequence of clows 〈C1, . . . , Ck〉 with two proper-
ties.
The sequence is ordered: head(C1) < head(C2) < . . . < head(Ck).
The total number of edges (counted with multiplicity) adds to exactly
n.

The main result of [MV97] is that the determinant of a matrix A is equal to the
number of accepting computations of M minus the number of rejecting computa-
tions of M ; where M is the nondeterministic logspace-bounded Turing machine
that, when given a matrix A, tries to guess a clow sequence C1, . . . , Ck. (If M fails
in this task, then M flips a coin and accepts/rejects with probability one-half.
Otherwise, M does find a clow sequence C1, . . . , Ck.) If k is odd, then M rejects;
otherwise M accepts.

2.6. MATCHING 43

The crucial insight that makes the construction of [MV97] work correctly is this:
If C1, . . . , Ck is not a cycle cover (that is, a collection of disjoint cycles covering all
of the vertices of M), then there is a corresponding distinct “twin” clow sequence
D1, . . . , Dk+

−1 using exactly the same multiset of edges as that of C1, . . . , Ck.

Note that the parity of the number of clows of this “twin” clow sequence is the
opposite of that of C1, . . . , Ck and, thus, their contributions to the count of the
number of accepting computations cancel each other. The only clow sequences
that survive this cancellation are the cycle covers. Since cycle covers correspond
to permutations, this yields exactly the determinant of A.
Here is an algorithm showing that the perfect matching problem is in SPL (non-
uniformly). For simplicity, we consider only the bipartite case here. The general
case follows as in [MVV87].
First, note that there is a sequence

(w1, w2, . . . , wr)

having length nO(1) with the property that, for every bipartite graph G on 2n
vertices, either G has no perfect matching, or there is some i and some j ≤ n6

such that, under weight function wi, the minimum-weight matching in G is unique
and has weight j. (To see this, note that [MVV87] shows that if a weight function
is chosen at random, giving each edge a weight in the range [1, 4n2], then with
probability at least 3

4
there is at most one minimum-weight matching. Now pick

a sequence of n2 such weight functions independently at random. The probability
that (w1, w2, . . . , wn2) is “bad” for all G is ≤ (1

4
)n2 ·2n2

< 1. Thus, some sequence
does satisfy the required property.)
Thus, there is a function f in GapL/poly with the following properties:

• If G has a perfect matching, then for some i, j |f(G, i, j)| = 1.

• If G has no perfect matching, then for all i, j, f(G, i, j) = 0.

To see this, consider the machine that, on input G, i, j, attempts to find a clow
sequence in G having a weight j under the weight function wi. (The weight
function wi is given as “advice” to the machine.) If there is no perfect matching,
then for all i, j, the only clow sequences that the machine finds will be cancelled
by their “twins”, and the value of f(G, i, j) will be zero. If there is a unique
perfect matching having weight j, then only one computation path will remain
uncancelled (and thus f(G, i, j) will be either 1 or −1).
Now consider the function g(G) =

∏

i,j(1 − (f(G, i, j))2). This function is in
GapL/poly (See, e.g. [AO96]). If G has a perfect matching, then g(G) = 0.
Otherwise, g(G) = 1. This completes the proof of the following theorem.

Theorem 2.6.1 The perfect matching problem is in nonuniform SPL.

44 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

2.6.2 Construction algorithm

So far we have described the decision algorithm for deciding the existence of a
perfect matching. As shown in [KUW86], there is a function that finds a perfect
matching (if it exists) in Random-NC. We will now show that this can be done in
SPL. However, first, we must define what it means for a function to be in SPL.
One natural way to define a class of functions computable in SPL is to first

consider FLSPL. FLSPL is the set of functions calculated by a logspace machine
with a SPL oracle. This class of functions can be defined equivalently as the set of
all functions where |f(x)| = |x|O(1) and the language {(x, i, b) : the ith bit of f(x)

is b} is in LSPL. However, by Proposition 2, LSPL = SPL, so there is no need
to consider logspace-reductions at all (although this turns out to be a convenient
way to present the algorithms). An equivalent definition can be formulated in
terms of arithmetic circuits, or using NC1 reductions to SPL. Since all of these
definitions are equivalent, we feel justified in denoting this class of functions by
FSPL.
In order to build a perfect matching, we will construct an oracle machine that
finds an (i, j) such that |f(G, i, j)| = 1 (which means that there is a unique
matching with minimum-weight j under the weight function wi). If we can find
such an (i, j), then the machine can output all edges e with |f(G−e, i, j)| = 0,
where G−e is the result of deleting e from G. (We know that |f(G−e, i, j)| = 1 if
e does not belong to the perfect matching.) The obvious approach would be to
ask the oracle the value of f(G, i, j) for each value of i and j – but the problem
is that, for some “bad” values of i and j, the value of f would not be zero-one
valued and, thus, the oracle would not be in SPL. The proof of Theorem 2.6.2
avoids running into this particular problem.

Theorem 2.6.2 Constructing a perfect matching is in nonuniform FSPL.

Proof: By analogy to the proof of the previous theorem, note that there is a
sequence

(w′
1, w

′
2, . . . , w

′
r′)

having length nO(1) with the property that, for every i ≤ r and j ≤ n6 and every
bipartite graph G on 2n vertices, either G has no perfect matching with weight
j under the weight function wi, or there is some i′ ≤ r′ and some j′ ≤ n6 such
that, among those matchings having weight j under the weight function wi, under
weight function w′

i′ , the minimum-weight matching in G is unique and has weight
j′.
We randomly choose each weight between 0 and 4n2 for each of the weight func-
tions w′

i′ . Let p(G, i, j) be the probability that, among those matchings hav-
ing weight j under the weight function wi, under weight function w′

i′ , there
is more than one minimum-weight matching in G. For fixed G, i, j, the prob-
ability p(G, i, j) is upper bounded by the sum over all edges e of the prob-
ability of the event Bad(e) that e occurs in one minimum-weight matching

2.6. MATCHING 45

but not in another. As shown in [MVV87], given any weight assignment w′
−e

to the edges in G other than e, there is at most one value for the weight of
e that can cause the event Bad(e) occur. Thus, the probability p(G, i, j) is
at most

∑

e

∑

w′
−e

Prob(Bad(e)|w′
−e)Prob(w′

−e) ≤
∑

e

∑

w′
−e

1/(4n2)Prob(w′
−e) =

∑

e 1/(4n2) ≤ 1/4.
For fixed G, i, j, the probability that all w′

i′ are “bad” is ≤ (1/4)r′ = 2−2r′. The
probability that (w′

1, w
′
2, . . . , w

′
r′) is “bad” for all G, i, j is ≤ 2−2r′ · 2n2 · r · n6 < 1

for r′ = n2 + log r + 6 log n.
By using a machine that, on input G, i, j, i′, j′, looks for a clow sequence having
weight j under wi and simultaneously having weight j′ under w′

i′ , we obtain a
function in GapL/poly with the following properties:

• If G has a perfect matching with weight j under the weight function wi,
then for some (i′, j′), |f(G, i, j, i′, j′)| = 1.

• If G has no perfect matching with weight j under the weight function wi,
then for all (i′, j′), f(G, i, j, i′, j′) = 0.

Here again, if there is no perfect matching with weight j under the weight function
wi, then the only clow sequences that the machine finds will be cancelled by their
“twins”, and the value of f(G, i, j, i′, j′) will be zero. If there is a unique perfect
matching having weight j under wi and simultaneously j′ under w′

i′ , then only
one computation path will remain uncancelled (and thus f(G, i, j, i′, j′) will be
either 1 or −1).
If G has a perfect matching with weight j under the weight function wi, then
g(G, i, j) =

∏

i′,j′(1 − (f(G, i, j, i′, j′))2) = 0. Otherwise, g(G, i, j) = 1.
If g(G, i, j) = 0, this does not necessarily mean that there is a unique matching
with minimum weight j; thus, we still need to check that the set {e : g(G−e, i, j) =
1} really is a perfect matching (meaning that each vertex is adjacent to exactly
one edge). However, the logspace oracle machine can easily check this condition
until a good pair (i, j) is found.
To ensure that we keep to the same advice string (consisting of r(|G|) + r′(|G|)
weight functions and weights) for all calculations of the oracle answers, the en-
coding of the oracle question is chosen in a way such that the length of an oracle
question stays always the same for a given graph G.
By adding an increasing number of vertices having edges to every vertex until a
perfect matching is found (and eliminating these vertices afterwards), we get:

Corollary 2.6.1 Constructing a maximum matching is in nonuniform FSPL.

Since by [KUW86], constructing a maximum flow in a graph with unary weights
can be reduced to constructing a maximum matching, we get:

Corollary 2.6.2 Constructing a maximum flow in a graph with unary weights
is in nonuniform FSPL.

46 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

Corollary 2.6.3 Deciding the existence of flow ≥ k in a graph with unary weights
is in nonuniform SPL.

As Steven Rudich has pointed out (personal communication), a standard re-
duction shows that this latter problem is, in fact, equivalent to testing for the
existence of a matching of size ≥ k in a bipartite graph, under AC0 many-
one reducibility. More precisely, given a bipartite graph G = (V1, V2, E) (with
E ⊆ V1 × V2) one can build a new graph G′ by adding two new vertices s (con-
nected to all vertices of V1) and t (connected to all vertices of V2); note that G has
a matching of size k if and only if G′ has a flow of size k. Conversely, given a di-
rected graph G = (V,E) with unary weights on the edges, and with distinguished
vertices s and t, we build a bipartite graph G′ ⊆ V1×V2 where, for i ∈ {1, 2} and
if edge e of G has weight j, then Vi contains vertices (e, 1, i), . . . , (e, j, i). Let ms

be the sum of the weights of all edges adjacent to s in G, and let mt be the sum of
the weights of all edges adjacent to t in G. Let m be the maximum of ms and mt.
V1 contains vertices (s, 1) . . . (s,m), and V2 contains vertices (t, 1) . . . (t,m). The
vertices (e, j, 1) and (e, j, 2) are adjacent (for all e and j), and also the vertices
(e, j, 2) and (e′, j, 1) are adjacent if e, e′ is a path of length two in G. Similarly,
there is an edge between (s, j) and (e, j, 2) when e is an edge starting at s in G,
and there is an edge between (t, j) and (e, j, 1) when e is an edge ending at s in
G. It is straightforward to verify that G has a flow of size k if and only if G′ has
a matching of size k + |E|.

2.6.3 Open Problems

Our results sandwich the matching problem between two classes that are closed
under complement (NL and SPL). Is the perfect matching problem reducible to
its complement?
Is the matching problem in NL? Is it complete for SPL? (Does SPL even have
any complete problems?) Is the matching problem complete for some “natural”
class between NL and SPL?
As in [MVV87], our techniques apply equally well to both the perfect matching
problem and to the bipartite perfect matching problem. What is the true rela-
tionship between these two problems? Is the perfect matching problem reducible
to the bipartite perfect matching problem?
Is SPL/poly equal to nonuniform SPL? Note that, in an analogous way, one can
define both UL/poly and “nonuniform UL” (where “nonuniform UL is equal to
the class of all languages A such that χA is in #L/poly). However, since UL/poly
⊆ nonuniform UL ⊆ NL/poly = UL/poly, it follows that these classes all coincide.
No similar argument for SPL is known.

2.7. DERANDOMIZING THE CONSTRUCTIONS 47

2.7 Derandomizing the Constructions [ARZ99]

It is natural to wonder if our constructions will also hold in the uniform setting.
In this section, we present reasons to believe that our other results will probably
hold in the uniform setting too.

2.7.1 A conditional derandomization

Nisan and Wigderson [NW94] defined a notion of “hardness” of languages. A
language A has hardness h(n) if there is no circuit family {Cn} of size less than
h(n) with the property that, for all input lengths n, Cn(x) agrees with χA(x) on
more than (1

2
+ 1

2h(n)
)2n strings.

The techniques and results of Nisan and Wigderson [NW94], together with some
technical material from [IW97][Lemma18], can be used to show that if there
is a set K in DSPACE(n) having hardness 2εn, then there is a pseudorandom
generator g computable in space log n with the property that no statistical test
of size n can distinguish pseudorandom inputs from truly random strings. In
[ARZ99], we describe how this can be done.

Theorem 2.7.1 [ARZ99] If there is a set in DSPACE(n) with hardness 2εn for
some ε > 0, then the nonuniform constructions in Sections 2.3, 2.4, 2.5 and 2.6
hold also in the uniform setting.

It was shown by Klivans and van Melkebeek [KvM02] that the techniques of
[IW97] allow for an even weaker assumption than that used in Theorem 2.7.1.

Theorem 2.7.2 [KvM02] If there is a set in DSPACE(n) and an δ > 0 with the
property that, for all large n, no circuit of size less than 2δn accepts exactly the
strings of length n in A, then the nonuniform constructions in Sections 2.3, 2.4,
2.5 and 2.6 hold also in the uniform setting.

Although Klivans and van Melkebeek use the techniques of [IW97], an alternate
proof is possible using the framework developed by Sudan, Trevisan, and Vadhan
[STV99].

2.7.2 Open Problems

Can some of the other probabilistic inclusions relating to NL and UL be deran-
domized? Can one show that FewL = UL, or that LFew = UL? Can one show
that UL = coUL? It seems that some of these questions should be in reach of
current methods.

48 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

2.8 Counting pushdownautomata [Rei92]

2.8.1 Separating classes with different context free accep-
tances

It is easy to see, using the methods in [HU79], that there is a one to one
correspondence between leftmost derivations of a grammar and the accepting
paths of a push-down automaton. Therefore, Y CFL= Y 1−PDA holds for
Y ∈ {⊕, N, co−N,C=, P,Modk} and also #CFL= #1−PDA

Theorem 2.8.1 ⊕CFL 6⊆ CFL

Proof: The language {anbmcl | n ≥ m ⊕ m ≥ l ⊕ l ≥ n} is a member of ⊕CFL
because it is generated by the grammar {S → Cc | aA | B,C → Cc | aC |
D,D → aDb | ab,A → aA | E,E → bE | F, F → bFc | bc, B → Bc | G,G →
aGc | aHc,H → bH | b}. However, the assumption L ∈ CFL leads to a
contradiction when pumping the word anbncn.
In the same way, it holds ModkCFL 6⊆ CFL for any k and C=CFL 6⊆ CFL and
PCFL 6⊆ CFL follow from c=CFL ⊇ coCFL and PCFL ⊇ coCFL.

2.8.2 The logarithmic closure over push-down automata
with different acceptances

Theorem 2.8.2 Y AuxPDA(log,pol)= LOG(Y 1−PDA) holds for Y ∈ {#, N,⊕,
co−N,C=, P,Modk}

’⊇’ is clear, the idea for ’⊆’ is the following: A surface configuration contains the
logarithmic space-bounded tape and the state, but not the push-down store. The
logarithmic space-bounded transducer writes every possible transition on surface
configurations of the AuxPDA in a list. Since the number of surface configura-
tions is polynomial, the number of such transitions is also polynomial. This is
done in a way such that every item of the list contains a surface configuration
written reversely, followed by the information about what is popped or pushed,
followed by the following surface configuration in the transition. The transducer
then writes a block marker and repeats the whole list p(|x|) times where p is
the polynomial, which bounds the time of the AuxPDA. Now the 1−PDA can
simulate the AuxPDA in the following way: It guesses a sequence of transitions
by visiting the corresponding item for each transition in each block. Each time
it uses the top of the pushdown store to find from one transition to another
appropriate following transition in the next block by comparing the surface con-
figurations (if it guesses the wrong position, it rejects). This leads to a one-to-one
correspondence between the accepting paths of the simulated and the simulating
automaton.

2.8. COUNTING PUSHDOWNAUTOMATA 49

2.8.3 Evaluating circuits with a ⊕push-down automaton

Theorem 2.8.3 WeakUAC1 ⊆ ⊕AuxPDA(log,pol)

Proof: According to the definition of WeakUAC1in [LR90a], an AND-(OR-)gate
with unbounded fan-in may have an undefined value, if more than one input signal
has the value 0 (1). This means that we need not care about these situations and
so we can regard these gates as replaced by ⊕ gates having the same behavior
in the remaining cases. We also regard the OR-gates as replaced by AND- and
NOT-gates. A simulating AuxPDA(log,pol) walks through the circuit starting
at its output gate. We want to make sure that when it enters a gate for the first
time, the number of accepting paths in the sub-computation tree following this
point reaches an odd value if and only if the value of the gate is 1. We get this
by induction based on the following behavior:

• When the automaton reaches an ⊕-gate, it nondeterministically branches
to one of the inputs.

• When it reaches a NOT-gate, the automaton nondeterministically branches
to go to its input or accept (add 1 modulo 2).

• When it reaches an input signal, the automaton has three possible behav-
iors:

1. It rejects, if the value of the input signal is 0; otherwise

2. the automaton pops a gate and continues thereon or

3. if the pushdown store is empty, it accepts.

• When it reaches an AND-gate, the automaton pushes one of its inputs and
goes to the other one (this, together with the later continuation, multiplies
modulo 2).

Since the depth is logarithmic, the runtime is polynomial on every path

2.8.4 Counting accepting paths with a threshold circuit

Definition L#X := {A | A is logspace Turing-reducible to bin(f) for some
f ∈ #X} with bin(f) := {(x, i) | the i-th bit of f(x) is 1}.

Theorem 2.8.4 L#AuxPDA(log ,pol) ⊆ TC1

Proof: As shown in [Vin91], the number of accepting paths of the automaton
is equal to the number of certificates of the corresponding circuit, this means
#AuxPDA(log,pol)= #SAC (see also [LR90a] [LR90b] [NR91]). To get this

50 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

number for an OR-gate (with unbounded fan-in), we have to sum up the num-
bers of all inputs. To get this number for an AND-gate (with bounded fan-in),
we have to multiply the numbers of the (without loss of generality 2) inputs.
According to [HHK91], both can be done by a threshold circuit with constant
depth, hence a threshold circuit with logarithmic depth can calculate the num-
ber for the complete SAC1-circuit and simulate the logarithmic space-bounded
transducer on the result.

2.8.5 Empty alternating push-down automata

In [LR94], we have shown EAΣlog
logkn

PDA(log,pol) = EAΣlog
logkn

(= AΣlogkn =

ACk) for each k. This means that, as long as we keep a polynomial time bound,
the additional push-down store does not increase the computational power for
empty alternating automata with a logarithmic space-bounded tape and logkn
alternations. This section sheds light on the other side: We will see that empty
alternating push-down automata without two-way input and without logspace
working tape generate languages which are complete for EAΣlog

a(n)PDA. Thus,

we again generalize the equation AΣlog
1 PDA(log,pol) = LOG(A1Σ1PDA) of Sud-

borough in [Sud78].

Here, we see that the definitions of alternating push-down automata differ con-
cerning the role of λ-transitions. Fortunately, this does not matter when consid-
ering empty alternation.

Definition 2 A 1-way-empty-alternating-push-down automaton is an 8-tuple

A = (Ze, Zu,Σ,Γ, δ, z0, $, E)

with the set of states Z = Ze∪Zu consisting of existential states Ze and universal
states Zu, the input alphabet Σ, the push-down alphabet Γ, the transition relation
δ ⊆ (Z × Σ × Γ) × (Z × Γ∗), the start state z0, the bottom symbol $, the final
states E, the rejecting states R, the configuration set CA = Z × Σ∗ × Γ∗, the
start configuration σA(x) = 〈z0, x, $〉 and the configuration transition relation
〈z, x1x, gk〉 |

A
〈z′, x, g′k〉 if and only if z, z′ ∈ Z, k, g′ ∈ Γ∗, g ∈ Γ, g′ ∈ Γ∗

and 〈z, x1, g, z′, g′〉 ∈ δ. If z ∈ Za, then a configuration 〈z, x, k〉 ∈ CA is called a
universal configuration. If z ∈ Ze, then it is called an existential configuration.
If z ∈ E and x = λ, then it is called accepting.

Since an unaugmented push-down automaton has only finite memory, it is not
possible to count and bind the depth of alternation by an infinitely growing
function. Thus, we could only treat the cases of either unbounded or constant
alternation depth. To cope with that problem, we apply a depth bound not
within the automaton, but instead within the language:

2.8. COUNTING PUSHDOWNAUTOMATA 51

Definition 3 Let A be a one-way empty alternating push-down automaton. The
EAΣa(n)-language of A is the set of all words x accepted by A which have a finite
accepting subtree of configurations within the computation tree of A on x such
that

i) The root is the existential start configuration σA(x),
ii) for every existential configuration c in the tree, there is a d with c |

A
d in

the tree,
iii) for every universal configuration c in the tree, all d’s with c |

A
d are in

the tree,
iv) the leaves of the tree are accepting,
v) alternations from an existential to an universal configuration or vice versa

are only allowed if the push-down-store is empty (the push-down store is regarded
as empty when the bottom symbol $ is the only symbol on the push-down store.2),
and

vi) there are at most a(n) − 1 alternations on every path on the tree.
Thus, the EAΣω-language of S is L(A) and for a(n) ≤ b(n) the EAΣa(n)-language
is a subset of the EAΣb(n)-language of A.
The set of all EAΣa(n)-languages of one-way empty alternating push-down au-
tomata is denoted by 1−EAΣa(n)PDA. 1−SEAΣa(n)PDA is the set of languages
which can be recognized by 1-way-empty-semi-unbounded-alternating- push-down
automata which in turn are only allowed to make finitely many steps in universal
states before alternating into an existential state.

Using the result of [BCD+88], it is easy to see the following:

Theorem 2.8.5 LOG(1−EAΣkPDA) = LOG(CFL) for each k.

Theorem 2.8.6 1. ACk = EAΣlog
logkn

PDA(log,pol) = LOG(1-EAΣlogknPDA)

2. SACk = SEAΣlog
logkn

PDA(log,pol) = LOG(1-SEAΣlogknPDA)

3. P = LOG(1-EAΣωPDA) = LOG(1-SEAΣωPDA)

Proof: Since 1−(S)EAΣa(n)PDA is contained in (S)EAΣlog
a(n)PDApt, and the lat-

ter is closed under log-reducibility, and because (S)ACk = (S)EAΣlog
logkn

PDApt, it

suffices to exhibit some (S)ACk-complete set. This is generated as (S)EAΣlogkn-
language by an one-way empty alternating push-down automaton. This is done
in Lemma 2.8.1 and Lemma 2.8.2 below.

Lemma 2.8.1 ACk ⊆ LOG(1−EAΣlogknPDA)

Proof: We define the following formal language CFEk which is in the case of
k = ω just a variation of the context-free-emptiness problem.

2A is not allowed to push further $ symbols.

52 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

CFEk := {w | w =< S >R #&vu ,where v is a concatenation of
all < A > %# < B1 >R # < B2 >R #...# < Bi >R #& for
a production A → B1B2..., Bi ∈ P and u is a concatenation of all
< T > & for terminals T ∈ Σ for an encoding <> of Σ ∪ V and a
grammar G = (Σ, V, P, S) such that there exist a word in L(G) having
a derivation tree not deeper than O(logk(|w|) using the productions
in the order of v.}

CFEk is complete for ACk:
The idea behind the ACk-hardness of CFEk is to transform conjunctions B =
B1 ∧ B2 ∧ . . . ∧ Bn into context-free rules B ⇒ B1B2 . . . Bn and disjunctions
A = A1 ∨ A2 ∨ . . . ∨ An into (the set of) rules A ⇒ A1|A2| . . . |An.
Let L be accepted by an ACk circuit family. Using the unifying machine of this
family, we can construct a logspace computable function f which maps an input
x to an unbounded fan-in circuit of logk depth. This circuit evaluates to 1, if
and only if x ∈ L. A logarithmic transducer T can convert such a circuit to a
context-free grammar in the following way:
We assume without loss of generality, that the output gate is OR and that there
are only connections from OR gates to AND gates and vice versa. If A is the
output of an OR-gate and B1, ...Bi are the inputs of an AND-gate with its output
connected to this OR-gate, then the production A ⇒ B1...Bi has to be in the
grammar. The productions have to be in a monotone order. This means that an
encoding of a production with A on the left side has to be after the encoding of
a production with A on the right side; this can simply be done by repeating the
productions logkn times. All inputs having the value 1 are the terminals and the
output of the circuit is the start-symbol of the grammar. A gate of the circuit
has value 1 if and only if a word consisting of terminals can be derived from the
corresponding variable. In this way T reduces L to CFEk.
An alternating 1-way push-down automaton M recognizing CFEω works as fol-
lows: M chooses existentially a production and tests the reverse order encoding
of the variable with the push-down store in existential states. In doing so, it
empties the push-down store. Then, M chooses the variable on the right side of
a production in an universal state without using the push-down store. M starts
with < S > on the push-down store. Clearly, the EAΣlogk-language of M is
CFEk.
The following is the formal definition:

M = ({z0, z1, z2, za}, {zu},Σ ∪ {#,%,&},Σ ∪ {$}, δ, z0, $, {za})
with

δ := { (z0, x, g, z0, xg) | x ∈ Σ, g ∈ Σ ∪ {$}, (z0,#, g, z1, g),
(z1, y, g, z1, g) | y ∈ Σ ∪ {#,%,&}, (z1,&, g, z2, g),
(z2, g, g, z2, λ), (z2,&, $, za, $), (z2,%, $, zu, $),
(zu, x

′, $, zu, $), (zu,#, $, z0, $), (zu,#, $, zu, $),
(zu,&, $, za, $), (za, y, $, za, $)}

2.9. DECISION-TREE-SIZE FOR SYMMETRIC FUNCTIONS 53

Lemma 2.8.2 SACk ⊆ LOG(1−SEAΣlogknPDA)

Proof: By restricting the grammars to Chomsky normal form, we settle the semi-
unbounded case where the bounded fan-in of AND-gates correspond to the re-
striction to 2 variables on the right hand side of the productions of the simulated
grammar.
We define CFECk analogously to CFEk with only this difference; that the gram-
mar must be in Chomsky normal form. CFECk can be recognized by an automa-
ton like in Lemma 2.8.1. This automaton performs only one step in an universal
state by deciding which variable on the right side of a production is used. Anal-
ogously to CFEk, the language CFECk is complete for SACk. The bounded
fan-in of AND-gates corresponds with the restriction to 2 variables on the right
side of the productions. The formal definition is:

M = ({z0, z1, z2, z3, za}, {zu},Σ ∪ {#,%,&},Σ ∪ {$}, δ, z0, $, {za})

with

δ := { (z0, x, g, z0, xg) | x ∈ Σ, g ∈ Σ ∪ {$}, (z0,#, g, z1, g),
(z1, y, g, z1, g) | y ∈ Σ ∪ {#,%,&}, (z1,&, g, z2, g),
(z2, g, g, z2, λ), (z2,&, $, za, $), (z2,%, $, zu, $),
(zu,#, $, z0, $), (zu,#, $, z3, $),
(z3, x, $, z3, $), (z3,#, $, z0, $), (za, y, $, za, $)}.

2.9 Decision-tree-size for symmetric functions

In this section, we describe a counting method for the number of true variables
in the input by linear transformed decision tree. The results in this section came
out of joint work (paper still to be written) and many fruitful discussions with
Pierre McKenzie, who brought up the questions, and later on, also with Simon
Pilette.
There are many formalisms to represent Boolean functions. Among them, Bi-
nary Decision Diagrams (BDDs) and Branching Programs [Weg00] received a lot
of attention because of their applications to hardware design and verification.
Various restrictions of BDDs allow an efficient treatment of various related prob-
lems, for example, the equality of two functions. One of these restrictions is that
the diagram has to be a tree. Another restriction says that the variables have
to occur in a fixed order which leads to Ordered Binary Decision Diagrams (OB-
DDs). This was extended again to Linearly transformed ordered binary decision
diagrams (LTOBDDs). At the nodes of such an LTOBDD, parities of variables

54 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

may be tested instead of only variables as in the case of an OBDD. Lower bound
methods for LTOBDDs and some generalizations of LTOBDDs were presented in
[Sie02]. In this section, we consider linear transformed (ordered) binary decision
trees.

Definition 4 A linear transformed (ordered) binary decision tree LT(O)BDT is
a tree allowing a linear test on each of its branching nodes. This refers to the
parity of a subset of the variables deciding whether to go to the left or to the right
subtree. On each leaf node, we have a 0 (reject) or 1 (accept) or some other value
of the function which we want to represent by the tree. Ordered means that there
is a fixed order of n linear independent parity-expressions. These are the only
ones available and their order has to be respected on every path of the tree. Some
of them, however, might be left out. Here, we measure the size of a tree by the
number of leaf nodes.

Here, we are also interested in the LT(O)BDT-size of symmetric functions. We
do not require every parity-expression to be used on a path as this would force
every tree to have size 2n. Of special interest to us is the the majority function.
The use of only single variables for branching does not improve the exponent
from this trivial upper bound for the LT(O)BDT size of MAJ. It is given by the
following recursion on the size Sk

n for the threshold k function: If k = 0 accept,
if k > n reject, else branch on variable xn which leads to two subtrees with n− 1
variables but the right one must have a threshold of k − 1. By induction, we get

Sk
n = Sk

n−1 + Sk−1
n−1 =

(
n
k

)

+
(

n
k − 1

)

=
(

n + 1
k

)

.

For MAJ we get S
n/2
n =

(
n + 1

n/2

)

≡ 2n/O(n).

Theorem 2.9.1 For any symmetric function f : {0, 1}n 7→ {0, 1} the LTOBDT-
size for f is ≤ 2 ·

√
3

n ≡ 2 · 20.7925n

Proof: Consider the following order of expressions: xn ⊕ xn−1, xn, xn−2 ⊕ xn−3,
xn−2, ..., x1. Construct the decision tree for n variables, a variable l (initially n)
counting the number of un-queried variables and a counting variable k (initially
0), which counts the number of variables xi with i ≤ l having the value 1,
recursively as follows: If l = 0 then accept if f(1k0n−k) = 1; otherwise reject. If
l = 1 then branch on variable x1, then accept if f(1k0n−k−1x1) = 1; otherwise
reject. If l ≥ 2 then branch on xl ⊕ xl−1, if xl ⊕ xl−1 = 1 then continue with a
subtree with l − 2 and k + 1; if xl ⊕ xl−1 = 0 then branch on xl if xl = 0 then
continue with a subtree with l := l − 2 and k, if xl = 1 then continue with a
subtree with l := l − 2 and k := k + 2.

2.9. DECISION-TREE-SIZE FOR SYMMETRIC FUNCTIONS 55

��
�

HH
H

xn

���
���

XXX
XXX

xn ⊕ xn−1

�� @@

xn−2

�� @@
xn−2 ⊕ xn−3

�� ��@@ @@

xn−2 xn−2

�� ��@@ @@
xn−2 ⊕ xn−3 xn−2 ⊕ xn−3

This uses three subtrees for a recursion step where n is reduced by 2. Therefore,
the size of the tree is 2 · 3n/2 = 2 ·

√
3

n
.

Corollary 2.9.1 LTOBDT size of MAJ is ≤ 2 ·
√

3
n ≡ 2 · 20.7925n

Theorem 2.9.2 LTBDT size of MAJ is ≤ 1.618034n ≡ 20.69424n

Proof: Like the oblivious pairing algorithm in [HKvM02], we construct a decision
tree similar to the last theorem, but we keep additional variables i1, i2, i4, ... and
k0, k1, k2, k4, k8, ... (all initially 0); the i’s store indices of representing variables
and the k’s store numbers of equal variables. The idea is to compare blocks of
size power of 2 of variables known to have the same value such that they either
compensate each other or a block of double size is obtained:
for l := n downto 1 do

j := 1
while kj > 0 do

kj := 0
branch on xij ⊕ xl

if xij ⊕ xl = 1 then j := 0
else j := j ∗ 2

od
kj := j, ij := l

od
branch on xij for the biggest j with kj 6= 0 and let the leave have the value of xij .

��
�

HH
H

xn−2 ⊕ xn−3

���
���

XXX
XXX

xn ⊕ xn−1

�� @@
xn−4 ⊕ xn−5

�� @@
xn−2 ⊕ xn−3

�� @@
xn−4 ⊕ xn−5

�� @@
xn ⊕ xn−2

�� @@
xn ⊕ xn−4

�� @@
xn−4 ⊕ xn−5

To analyze the size, let Sl+l′ be the size of the subtree where l′ is the number of
j’s with j > 0 and kj > 0 at the beginning of one of the loops after the “do”. It

56 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

holds S0 = 1 since there is no variable to query in this case. It holds S1 = 2 since
there is exactly one variable to query in this case. In the case that there are no
blocks of equal size of variables, the biggest block is already the majority. This
means only one variable of the biggest block is queried. This leads to Si = 2. In
the remaining case, two blocks of equal size are compared. This leads to i − 1
if they are equal or i − 2 otherwise. Thus, we have Si < Si−1 + Si−2. Solving
this recursion equation leads to an asymptotic upper bound of the tree-size of
O(((1 +

√
5)/2)n) ≡ O(20.69424n).

By branching on all (logarithmically many) xii and calculating

f(1
Σ
j

xij
ij+(n−Σ

j
ij)/2

0
Σ
j
(1−xij

)ij+(n−Σ
j

ij)/2
)

we can generalize to the following:

Theorem 2.9.3 For any symmetric function f : {0, 1}n 7→ {0, 1} the LTBDT
size of f is ≤ O(n × 1.618034n) ≡ O(20.69424n)

In [ARS97], it is shown that the average depth, using comparisons for majority,
is 2n/3 +

√

8n/(9π) + O(log n). This gives a lower bound of ω(20.666n) for the
size of the decision tree in the case that only the parity of fan-in 2 can be used.
The proof method in [ARS97] leads to the same recursion equation as in the
proof of Theorem 2.9.2. This shows that the factor in the exponent in Theorem
2.9.3 is optimal in the case that only the parity of fan-in 2 can be used. There
are further measures to optimize the tree-size for MAJ by ending the for-loop
earlier when the biggest block is already bigger than the remaining variables. For
example, for n = 7, it is not necessary to compare x3 ⊕ x2 if, like on the leftmost
branch, x7, ...x4 are equal. However, for n = 11, if x11, ...x8 are equal and x7, x6

are equal, it is better to compare x11 ⊕ x7 first instead of x5 ⊕ x4. Furthermore,
using the the parity of more than two variables can also help. For example, for
n = 7, the best method is to ask x7 ⊕ x6 ⊕ x5 ⊕ x4 and continue with x3 ⊕ x2

if the result is odd. This is because it avoids looking at x7, ...x4 again when
x3, ...x1 are equal. An applet calculating the sizes can be found on the web-site
http://www.cs.mcgill.ca/∼reinhard/p4tree.html. However, we conjecture that
these measures do not change the factor in the exponent.

2.10. MULTIPARTY COMMUNICATION COMPLEXITY 57

2.10 Multiparty Communication Complexity

The idea of communication complexity [KN97] is to measure the amount of in-
formation several players have to exchange while they collaborate in calculating
a function. We consider a k-party communication game where n input variables
are partitioned into k sets [n] = X1∪̇ . . . ∪̇Xk, and where the player Pi has access
to all variables except the ones in Xi.
Languages having a group as syntactic monoid (see [Eil74] for background and
definitions), were considered in [RTT98]. There it was shown that they have
constant k-party communication complexity (k ≥ 2) if and only if the group is
nilpotent of class (k − 1) and have linear complexity otherwise. For aperiodic
monoids, however, the situation is not so easy as conjectured in [RTT98]. We
consider the language (c∗ac∗b)∗c∗ because it is important in this context.

Theorem 2.10.1 The language (c∗ac∗b)∗c∗ can be recognized using O(
√

n log(n))
bits of communication by 4 players and by 5 players using O(log(n)) bits of com-
munication.

Proof: Let us first assume we have 4 players. Given an input word, let us consider
intervals between two positions with the following two properties:

• Either player 1 or player 2 holds (and thus does not see) an a and

• there is no position in between where player 1 or player 2 holds an a or a b.

If the word is in the language, then each such interval must contain exactly one
b more than a’s (all of which are held by player 3 or player 4). In step k of the
algorithm, player 3 and player 4 can both see all those intervals having length k.
Player 3 counts and communicates the difference of the number of b’s minus the
number of a’s being held by player 4 inside those intervals of length k. Player
4 does the same for player 3. The sum must be exactly the number of those
intervals, otherwise the input is rejected. The same is done for each pair of
players (6 possibilities) and also for a and b exchanged. Thus, one step has at
most 24 log(n) bits of communication.
We will now show by induction that after step k (if the input was not rejected so
far), we will know that for any two a’s with distance k + 1 there is at least one
b in between, and for any two b’s with distance k + 1 there is at least one a in
between. For k = 0 or k = 1 this is clear since no two b’s can be in one interval,
and thus, they must be equally distributed. For general k, assume that there
is an interval containing no b. Since the total sum is correct, there must – for
compensation – be an interval containing two b’s more than a’s. This means two
of them have no a in between. However, this is a contradiction to the induction
hypothesis because their distance must be smaller than k.
For each pair of players, the sum of the lengths of the intervals can at most
be n. Thus, there are at most O(

√
n) different k’s appearing as length of an

58 CHAPTER 2. COUNTING METHODS IN COMPLEXITY

interval. Thus, there are at most O(
√

n) of the n steps in which anything has to
be communicated.
Suppose now that we have 5 players. Here, we do not consider the length of
the intervals. Player 3 and 4 only consider those intervals going from a position
containing an a held by Player 1 to a position containing an a held by Player 2,
where only Player 3 or Player 4 hold an a or a b on a position inside this interval.
Player 3 counts and communicates the difference of the number of b’s held by
Player 4 in those intervals minus the number of a’s held by Player 4 in those
intervals. Player 4 does the same for Player 3. The sum of both differences must
be exactly the number of those intervals, otherwise the input is rejected. The
same is done by each pair of players (10 possibilities), choice of first and second
(9 related possibilities) and also for a and b exchanged. Thus, there is at most
180 log(n) bits of communication.
Let us assume that there are la intervals between a’s on different players without
a b in-between, and there are l′a intervals between a’s on one player without a
b in-between (lb and l′b analogously). The first case would decrease the number
of b’s in 3 of the combinations but increase the number of a’ on the other side
only in 1 combination. The second case would decrease the number of b’s in
6 of the combinations but increase the number of a’ on the other side only in
5 combinations. Obviously, the system of equations 3la + 6l′a = lb + 5l′b and
3lb + 6l′b = la + 5l′a has only one nonnegative solution la = l′a = lb = l′b = 0.

Chapter 3

Formal Languages

First, we introduce full Trio’s and full AFL’s where we focus on those classes
which correspond to counter automata and the border of decidability for the word
and the emptiness problem. Then, we use counter representations to describe a
hierarchy of full AFL’s described by restricted tree height.

3.1 Preliminaries

Let M be a monoid. A set R ⊆ M is called rational if R is finite or R = AB or
R = A ∪ B or R = A+ with A,B rational. Let X,Y be alphabets. A rational
relation is a rational subset of the monoid X∗×Y ∗. Let L ⊂ X∗ and L′ ⊂ Y ∗ then
L is rational reducible to L′ (L ≤ L′) if there is a rational relation R such that
L = τR(L′) = {x ∈ X∗|∃y ∈ L′ 〈x, y〉 ∈ R}. In this case, we call τR a rational
transduction. For example, S< := {anbm | n < m} ≤ S= := {anbm | n = m} via
the relation R = 〈a, a〉∗〈λ, a〉+〈b, b〉∗.
The same reduction can also be done by a rational transducer T reducing the
language L = τT (L′) = τRT

(L′) to L′ (see [Ber79]). We can think of T as a finite
automaton with two input tapes recognizing the rational relation RT . We can
also think of T in a differently appearing but completely equivalent way: For
every given x ∈ X∗ on the input tape, the finite transducer T writes (nondeter-
ministically) a word y ∈ Y ∗ on the output tape (similar to an oracle tape, but
it is done only once and one-way), and x ∈ L if and only if one of the guessed
y is in L′. A class of languages is called a Trio if it is closed under non-erasing
homomorphism, under inverse homomorphism and under intersection with reg-
ular languages; it was shown by Nivat (see [Ber79]) that this is equivalent to
closure under rational transduction (without λ-transitions). A class of languages
is called a abstract family of languages (AFL) if it is a Trio and closed under
concatenation, ∪ and +. We say that the class is a full AFL, respectively a full
Trio, if it is also closed under erasing homomorphisms. This corresponds to the
transducer binge allowed to make λ-transitions.

59

60 CHAPTER 3. FORMAL LANGUAGES

An equivalence relation δ over Σ∗ is a congruence if, for all w, x, y, z ∈ Σ∗ with
[w]δ = [x]δ and [y]δ = [z]δ, it holds [wy]δ = [xz]δ as well. The Semi-Dyck-
Language is

D′
n
∗

= {w ∈ {a0, ...an−1, b0, ..., bn−1}∗|[w]δ′ = [λ]δ′}
where δ is defined by [aibi]δ′ = [λ]δ′ for all i ≤ n. Analogously, the Dyck-Language
is Dn

∗ = {w ∈ {a0, ...an−1, b0, ..., bn−1}∗|[w]δ = [λ]δ} with [aibi]δ = [biai]δ = [λ]δ
for all i ≤ n.
The Semi-Dyck-Language can be viewed as a protocol language for push-down
stores, where ai corresponds to pushing the i-th symbol of the push-down alpha-
bet, and bi to popping the i-th symbol of the push-down alphabet. This allows a
rational transducer to simulate a push-down automaton by guessing operations
on the push-down store (including the symbol to pop) and writing them on the
output tape. The input word can be accepted by the push-down automaton if
and only if the simulating transducer can write a correct push-down protocol on
the output tape. Here, everything can be encoded in two pairs of symbols. For-
mally, this means D′

n
∗ ≤ D′

2
∗ by the transduction which we can simply express

with the rational relation (
⋃

k<n〈ak, a1a
k
2〉∪ 〈bk, b

k
2b1〉)∗. Thus, CFL is the closure

of D′
2
∗ under rational transduction.

Continuing the idea in [Gre78], we can generalize this and characterize various
automata classes using the rational closure over a protocol language for the kind of
storage the automaton uses. Figure 3.1 contains an overview. For each such class
and its corresponding protocol language L, we can formulate the word problem
as follows:

Given a transducer T and a word w, is w ∈ τT (L)?

Furthermore, the emptiness problem is as follows:

Given a transducer T ′ is τT ′(L) 6= ∅?
The two problems are Turing-equivalent: In the direction from emptiness problem
to word problem, given a transducer T ′, we can construct T that ignores its input,
guesses a word w′ and simulates T ′ on w′. We have w := λ ∈ τT (L) if and only if
τT ′(L) 6= ∅. In the other direction, we construct T ′ with w built in such that each
transition of T reading a symbol from w, as well as each transition of T reading
λ from the input tape, is simulated by a transition of T ′ reading λ from the input
tape and, thus, τT ′(L) = {λ} if w ∈ τT (L) and τT ′(L) = ∅ if w 6∈ τT (L).
As a convention, in our protocol languages a stands for adding, b for extracting
and c for checking for emptiness. In this way, (D′

1
∗c)∗ describes a (strong) counter

with a zero test being done by writing a c to the protocol tape. This forces the
last part of the word in D′

1
∗ to end here. This means that the difference of the

number of a’s and b’s, occurring so far, has to be zero.
Let the shuffle L t L′ of languages be

L t L′ := {u1v1u2v2...unvn | u1u2...un ∈ L ∧ v1v2...vn ∈ L′ ∧ ∀i ≤ n ui, vi ∈ Σ∗}.

3.1. PRELIMINARIES 61

Decidability of the emptiness and word problem
Is the class an AFL ?

Protocol language storage type class
D′

n
∗ with n > 1 pushdown store CFL + +

{w$wR | w ∈ {a, b}∗} 1-turn pushdown LIN - +
S= 1-turn counter - +

{w | |w|a = |w|b} blind counter 1-BLIND - +
D′

1
∗ weak counter ROCL - +

(D′
1
∗c)∗ counter OCL + +

{
w | ∀ vcz = w |v|a >= |v|b

|w|a = |w|b}

}

≥ 0-test counter - +
{

w | ∀ vbiz = w ∃xaiy = v
∀j < n |x|aj

= |xy|bj
}

}

Queue r.e. + -
{

w | ∀ vbiz = w |v|ai
> |v|bj

∧
∀j < i |v|aj

= |v|bj
}

}

Priority-queue (-) +

{w ∈ ((b0 + b1)(a0 + a1)(L + R))∗ | ...} Turing tape r.e. + -
{

w1cw2...cwm | ∀ i ≤ m wi ∈ {a, b}∗
|wi|a = |wi+1|b

}

Register r.e. + -

{w | ∀i < k|w|ai
= |w|bi

} k blind counters k-BLIND - +
Mark1(D

′
1
∗)tMark2(D

′
1
∗)...tMarkk(D

′
1
∗) k weak counters k-PBLIND - +

((...(((D′
1
∗c1)

∗tMark1(D
′
1
∗))c2)

∗...)ck)
∗ priority multicounter k-PMCA + +

((...((D′
2
∗tMark1(D

′
1
∗))c2)

∗...)ck)
∗ priority m.c. pushdown k-PMCPDA + ?

D′
2
∗ t k weak counters pushdown + weak c. k-MCPDA - ?

PMPDAk priority multi pushdown k-PMPDA + ?
RPMPDAk restricted p. m. p.d. k-RPMPDA + +

L+,− defined in [LR96] Set ? +
L+,−,del Set with deletion ? +

Figure 3.1: This figure shows protocol languages and their corresponding storage
type and class name. A Turing tape protocol word w is correct, if for every
uaiv = w, the longest x with u = xy and |y|L = |y|R has the property that
x = x′bi or there is no such x and i = 0. (We could easily make the class generated
by the Priority-queue an AFL if we add one more emptiness test. Furthermore,
the corresponding hierarchy allowing arbitrary alphabets is an AFL.)

62 CHAPTER 3. FORMAL LANGUAGES

The marking function, Marki : Σ 7→ Σi, is a homomorphism with Marki(a) = ai

which attaches the (possibly additional) index i to each letter in Σ. The purpose
of the marking function is to make the alphabets of Mark1(L) and Mark2(L

′)
disjoint. With this we define the marked shuffle Mark1(L) t Mark2(L

′) =

{w ∈ (Σ1 ∪ Σ2)
∗ | π1(w) ∈ Mark1(L), π2(w) ∈ Mark2(L

′)},

where pi1 and pi2 are the canonical projections to Σ1 and Σ2. If an automaton
has more than one storage, we can use L′′ :=Mark1(L)tMark2(L

′) to combine
two protocol languages L,L′ ⊆ Σ∗. For example, two counters can be described
by Mark1((D

′
1
∗c)∗)tMark2((D

′
1
∗c)∗). That an automaton with two counters can

recognize any recursively enumerable set immediately follows from the Turing
completeness for register automata which was shown in [Min71]. We can also re-
formulate the proof in purely formal language terms using the following sequence
of rational transductions for the respective protocol languages form Figure 3.1:

Turing-tape ≤ 2-push-down-stores ≤ 3-counters ≤ Register ≤ 2-counters

For the first transduction, we view the half tape on the left side of the head
as push-down store number 1 and the half tape from the head-position on as
push-down store number 2. Both can be filled with 0’s at the beginning which
corresponds to a0 and the remaining 0’s are removed at the end (b0). In the
meantime, a read (bi) and a write (aj) is simulated first on the push-down store
number 2 and a movement is simulated by its corresponding transfer from one
push-down store to the other. This is described by the following rational relation:

〈λ, a0,1∪a0,2〉∗

⋃

i,j,l∈{0,1}

〈bi, bi,2〉〈aj , aj,2〉(〈L, bl,1al,2〉 ∪ 〈R, bl,2al,1〉)

∗

〈λ, b0,1∪b0,2〉∗

In the second transduction, we simulate a push-down store with a counter where
we regard its contents as representation of a number in base 3. (We use base 3
to avoid problems with the bottom of the push-down store.) The third counter
is used as an intermediate store during a multiplication or division by 3. In this
way, for example, popping a 1 from push-down store j (represented by b1,j) is
simulated by subtracting 2 from counter j and then dividing counter j by 3.

⋃

i,j∈{1,2}

〈bi−1,j, b
i
j(b

3
ja3)

∗cj(b3aj)
∗c3 ∪ 〈ai−1,j, (bja3)

∗cj(b3a
3
j)

∗c3a
i
j

∗

In the third transduction, we encode the counter values n1, n2, n3 as pn1
1 pn2

2 pn3
3 =

2n13n25n3 in the register starting and ending with 1. A zero test of counter i
corresponds to checking that the register contents is not a multiple of pi. The
idea of the register protocol language is to enable a description of an operation

3.1. PRELIMINARIES 63

on the register by language over {a, b}. Here, the number of b’s corresponds to
the previous value and the number of a’s corresponds to the new value. For
example (baaa)∗ describes multiplication by 3 or (bbaa)∗ba describes checking if
the number is odd.

〈λ, a〉

⋃

i∈{1,2}

〈ai, c(ba
pi)∗〉 ∪ 〈bi, c(b

pia)∗〉 ∪ 〈ci, c(b
piapi)∗

⋃

0<j<pi

(ba)j〉

∗

〈λ, cb〉

In the fourth transduction, on each c, the contents of counter one is copied to
counter two and then the the register operation is simulated going from counter
two back to counter one:

〈a, a1〉∗(〈c, c2(b1a2)
∗c1〉(〈a, a1〉 ∪ 〈b, b2〉)∗)∗

We leave it as an exercise to show, in the same way, the undecidability for au-
tomata with a queue, for automata with two 1-turn push-down stores, and for
automata with four ≥ 0-test counters1

As shown in [Gre78], the word and emptiness problem for multi counter automata
is equivalent to the reachability problem in Petri nets which was later shown to
be decidable in [May84] and later also in [Kos84] and [Lam92]. This leads to the
question for stronger automata which still have a decidable word and emptiness
problem. In Corollary 5.3.1, we show decidability for the reachability problem
for Petri nets with only one inhibitor arc. This is equivalent to the word and
emptiness problem for a multi counter automaton with one strong counter.
However, we can still find stronger automata: We define the protocol language
for priority-multicounter-automata defined in Section 5.7 by induction as follows:
PMCA1 = (D′

1
∗c)∗, PMCAi = ((PMCAi−1tMarki(D

′
1
∗))ci)

∗.
Similarly, we define the protocol language for priority-multipushdown-automata
as follows: We start the inductive definition with PMPDA1 := D′

2
∗. For each

i > 1, we define a congruence δi by [a1,ib1,i]δi
= [λ]δi

and [w]δi
= [λ]δi

for all
w ∈PMCAi−1tMarki(D

′
1
∗). The latter means that the treatment of the symbols

a0,i and b0,i in Marki(D
′
1
∗) has no consequence for the treatment of symbols from

the previous levels; in other words: The symbol 0 can be pushed and popped from
the push-down store i at any time, but the 1 can only be pushed and popped if the
push-down stores from the previous levels are empty. This is because the symbols
a1,i and b1,i can only be treated if the word w ∈PMCAi−1tMarki(D

′
1
∗) has ended.

The i-th protocol language is now defined as PMCAi := {w | [w]δi
= [λ]δi

}.
With the same idea, we define the protocol language for restricted priority-
multipushdown-automata defined in Section 5.8 by

RPMPDA1 = { ai1w1ai2w2...ainwnbinwn+1...bi2w2n−1bi1 | ∀j < 2n wj ∈ D′
1
∗}∗,

RPMPDAi = { ai1,iw1ai2,iw2...ain,iwnbin,iwn+1...bi2,iw2n−1bi1,i |
∀j < 2n wj ∈ RPMPDAi−1 t Marki(D

′
1
∗)}∗.

1For such a counter, it is possible to check if the current value is positive. Together (shuffled)
with a weak counter it can simulate a strong counter

64 CHAPTER 3. FORMAL LANGUAGES

finite automata = regular languages
PP

PPP
�
�
�
��

���
���

{anbm | n 6= m}

{v$w | v 6= w}
PP

PPP
��
���

{anbm | n < m}
{anbm | n > m}
Q
Q
Q
QQ

CFLth(o(n))
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
B
B
B
B
B
B
B
B
B
B
B

{anbn | n ∈ N}
1-turn counter````

```̀ @@ �
�
�
�
��

�
�
�
�
�
�
�
�
�
�

{w|¬∃v w = vv}
�
�
�
�
�
�
�
�

��
��
��
���

⋃

k∈N

{(anb)k}@@ �
�
�
��

⋃

k∈N

{(anbamb)k}
@
@

�
�
�
�
�

{(anb)m}

{(w$)m | m ∈ N}

L+,−

Set
�
�
�

L+,−,del

Set with deletion

blind counter
{w | |w|a = |w|b}

A
A
A
A
A
A
A
AA

�
�
�
�
�
�
��

weak counter
ROCL D′

1
∗

B
B
B

Z
Z
Z
Z
Z
Z
Z
Z
ZZ

1-turn PDA
LIN {w$wR}

≥ 0-test counter

strong counter
OCL (D′

1
∗c)∗

Q
Q
Q
Q
QQ

�
�
�
�
�
��

BLIND

Multicounter
PBLIND = MC

A
A
A
A
A
A
AA

��
��
��
��
�

Priority-queue
�
�
�
�
�
��

PDA
CFL D′

2
∗

MC with
one strong counter

@
@
@

PMCA
�
�
�

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J

RPMPDA

B
B
B
BB

��
��
��

MCPDA ?
B
B
B
BB

��
��

��
��
��
��
��PMCPDA ?
@
@
@

�
�
�
�
��
PMPDA ?

Figure 3.2: Inclusions of classes with respect to rational transductions. For those
with a question mark it is not known whether they are recursive. We assume
v, w ∈ {a, b}∗ and n,m ∈ N.



3.1. PRELIMINARIES 65

The only difference is that the symbols a1,i and b1,i are more restricted in their
occurrence.
We define the hierarchy BLIND=

⋃

k k-BLIND with k-BLIND defined in Figure
3.1. All the other hierarchies like PBLIND, PMCA, Priority-queue, PMCPDA,
MCPDA, RPMPDA, and PMPDA are defined in the same way. Figure 3.2 gives
an overview of the inclusions among all these classes. The inclusions shown for
the hierarchies also hold for their corresponding k-levels (except {(anbamb)k} ⊆
(2k − 2)-BLIND where two counters are needed for each level).
The language {(anb)m | n,m ∈ N} cannot be recognized by an PMCA ([Rei94]
Theorem 3.2). The same proof also works for RMPDA.
As the inclusion structure of the “Trio zoo” in Figure 3.2 shows, there are endless
possibilities to consider. Not even included in the picture are the following classes:
The Nested Set automaton extends the Set automaton in [LR96] to model the
checking of correctly defined variable names in a program with subprograms
allowing locally defined variables. One can think of various combinations with
up to three ≥ 0-test counters (Decidability for two or three ≥ 0-test counters is
an open problem).
Furthermore, we conjecture that CFLth(o(n)) ≤ {v$w | v 6= w}. Observe that
the language of non-prefixes of the infinite word w = baba2ba3b.....anb... in Section
3.2.5 can be rationally transduced to even {anbm | n 6= m}.



66 CHAPTER 3. FORMAL LANGUAGES

3.2 Tree Height Hierarchy

Like in complexity theory where different measures for costs for recognizing lan-
guages are used, Book [Boo71] considered the costs of derivations of words in lan-
guages by grammars. Correspondences between the number of derivation steps
and Turing machine computations were established by Igarashi in [Iga77].

The height of a derivation-tree corresponds to the minimal number of parallel
derivation steps used by a context-free grammar. (Each of these steps can replace
an arbitrary number of variables simultaneously.) Gabarro [Gab84] considered
the space needed on the store of a push-down automaton and obtained a strict
hierarchy of classes with n1/q space for q ∈ N.

The heights of derivation trees generated by context-free grammars with regular
parallel control languages were considered in [KPU79]. Brandenburg used the
height of syntactical graphs2 as a complexity measure and showed equivalences
to complexity classes [Bra81].

Why are context-free languages with sub-linear derivation tree height interesting?
One reason is, as we will describe in Section 3.2.2, that their recognition can
be parallelized efficiently. Unfortunately, most context-free languages do not
have this property. This was shown for some of them, like {anbn | n ∈ N},
by Culik and Maurer [CM78]. They also showed that regular languages have
logarithmic tree height. Furthermore, it was conjectured [Bra81, CM78] that
context-free languages with logarithmic tree height are regular. We will disprove
this conjecture in Section 3.2.5.

By using bounded languages, we will give a more general criterion for languages
not having sub-linear derivation tree height in Theorem 3.2.2 in Section 3.2.4.

On the other hand, there are non-regular context-free languages which do not
fit into this criterion [Boa97]: Consider the infinite word w = baba2ba3b.....anb...
which is a sequence of unary encodings of increasing numbers. Let the language
L be the set of finite words which are not prefixes of w. L is context-free (the
idea is that there exists a block of letters a with an exponent different from the
number of letters b sitting at the left of the block). According to [Gol72] (see
also [Gol76]), any bounded language in the full AFL generated by L is regular.
Indeed this language has

√
n tree height as we will show in Section 3.2.5.

In Section 3.2.6, we generalize this method to various kinds of representations of
counters. We consider an infinite word w being the consecutive sequence of such a
representation of counters. Then, we define a language as a set of words which are
not prefixes of w. (Because of [AFG87] all these languages have to be inherently
ambiguous). Furthermore, we give a separation of derivation tree height classes;
this means that, for every ’reasonable’ function f between logarithmic and linear,
we can construct a context-free language with a derivation tree height of exactly
f(n). (This means it cannot be recognized with a derivation tree height of less

2Generalizations of derivation trees for arbitrary grammars



3.2. TREE HEIGHT HIERARCHY 67

than f(n).) Thus, we have a strict and dense hierarchy.
In Section 3.2.1, we show that the concept of derivation tree height corresponds
to pushdown complexity and, therefore, our result improves [Gab84].
We consider languages generated by a context-free grammar in such a way that
every word, that is in the language, has a derivation tree of height f(|x|):











J
J
J
JJ

S

x







≤ f(|x|)

A main difference to E0L and similar systems is that in a parallel derivation step

not all variables have to be replaced (this explains why
≤f(|x|)
==>
‖G

and
f(|x|)
==>
‖G

would be

the same in the following definition).

Definition 5 Let G = (V,Σ, P, S) be a context-free grammar. A parallel deriva-
tion step is defined by α1A1α2A2...αkAkαk+1 ==>

‖G
α1r1α2r2...αkrkαk+1 with Ai →

ri ∈ P and αi ∈ (V ∪ Σ)∗ for all 0 ≤ i ≤ k for some k ≥ 0.
f(|x|)
==>
‖G

denotes

f(|x|) parallel derivation steps in sequence. CFLth(f(n)) := {L ⊆ Σ∗|∃G,L =

L(G),∀x ∈ L S
f(|x|)
==>
‖G

x}.

Remark: It is easy to see that the height can be compressed by a constant factor

c by using P ′ := {A → r | A ∈ V,A
c

==>
‖G

r}. For this reason, throughout this

section, we need not care about additive and multiplicative constants. Observe
that P ′ is not anymore in Chomsky normal form which makes the O-notation
for multiplicative constants necessary for the case that we want to have G in
Chomsky normal.

Proposition 3 [CM78] REG⊆CFLth(log n).

Clearly only finite languages can be generated with sub-logarithmic tree height.

3.2.1 The connection to pushdown complexity

Definition 6 [Gab84] A language L has pushdown complexity f(n) if L is rec-
ognized by a pushdown automaton such that every w ∈ L has an accepting com-
putation with pushdown space O(f(|w|)).

By standard construction (see [HU79]) using Chomsky normal, every language
in CFLth(f(n)) has pushdown complexity f(n). However, in the other direction
the standard construction in [HU79] leads to CFLth(lin) for any (even constant)
pushdown complexity.



68 CHAPTER 3. FORMAL LANGUAGES

Lemma 3.2.1 A language L with pushdown complexity f(n) is in CFLth(f(n)+
log n).

Sketch of proof: Take the grammar G = (V,Σ, P, S) for the given pushdown au-
tomaton obtained by the standard construction in [HU79], and build the equiv-
alent grammar G′ = (V ′,Σ, P ′, S) with V ′ = V ∪ {AB|A,B ∈ V } and P ′ =
P ∪ {A 7→ AAA,AA 7→ AAAA|A ∈ V } ∪ {CA 7→ αBA|C 7→ αB ∈ P} ∪ {CA 7→
α|C 7→ αA ∈ P}. Words produced in a right recursion A

∗
==>
G′

w1A
∗

==>
G′

w1w2A
∗

==>
G′

...
∗

==>
G′

w1w2...wkA can now be produced in any balanced way via Ak
AA. Only

parts of finite length and left recursions caused by the height on the pushdown
store cannot be balanced.

Corollary 3.2.1 For f(n) ≥ log n pushdown complexity and derivation tree
height are the same and, thus, Theorem 3.2.1 in Section 3.2.3 and Theorem 3.2.3
in Section 3.2.6 improveme Theorem 6 in [Gab84].

3.2.2 The connection to parallel recognition

With the method in [GR88], context-free languages can be recognized by a
CRCW-PRAM in O(log(n)) steps. However, this method needs n6 processors
which makes it very inefficient. On the other hand, the CYK-algorithm [Kas65]
allows an easy parallelization on a CRCW-PRAM in linear time with n3 pro-
cessors3. This idea can be used to recognize languages in CFLth(f(n)) in time
O(f(n)) with n3 processors4. This means that the derivation tree height corre-
sponds to the running time of the following parallel algorithm. For every pro-
duction A → BC and every infix uv in the input word, a processor writes a 1 to

the position5 for A
∗

==> uv if the positions for B
∗

==> u and C
∗

==> v have a 1. If

w ∈ L ∈CFLth(f(n)), then S
∗

==> w will have a 1 after O(f(n)) steps.

3.2.3 Closure properties

Theorem 3.2.1 CFLth(f) is a full AFL, and closed under reversal and substi-
tution by other languages in CFLth(f).

Proof: For the closure properties of union, product, ∗, intersection with regular
languages, reversal and substitution by other languages in CFLth(f) which do
not contain λ, we can just take the standard construction in [Ber79] for context-
free languages and observe that the tree-height is only increased by a constant

3A cleverer algorithm works on a CROW-PRAM in linear time with n2 processors.
4In most cases an improvement to n2 processors is possible.
5There are n2 · |P | such positions



3.2. TREE HEIGHT HIERARCHY 69

factor. In case of substitution with a language in CFLth(f) containing λ, we
replace λ with an extra symbol which we subsequently erase using an erasing
homomorphism.

To build the grammar for h(L) for L ∈CFLth(f) and a non-erasing homomor-
phism h, we simply replace every terminal letter a by h(a). An erasing homo-
morphism could make the word significantly shorter. For that reason, we have to
make the following consideration to find a corresponding lower tree for the image:

Let e be an erasing homomorphism with |e(x)| ≤ 1 for each x ∈ Σ. From the
grammar G for L, we have to construct a constant c, such that given a word
w ∈ L, the height of the tree to generate e(w) can be bounded by ≤ f(|wG,e|) ≤
f(c|e(w)|) ≤ cf(|e(w)|), where wG,e is a shortest v ∈ L with e(v) = e(w). Let
c1 be the length of the longest word wA for all A ∈ V for which there exists a

word w′
A with A

∗
==>

G
w′

A and e(w′
A) = λ, where wA is the shortest of all such w′

A

for one fixed A. This means that the length of an infix u with A
∗

==>
G

u in the

derivation tree of wG,e with |e(u)| ≤ 1 is at most c1. Let l be the length of the
longest right side of productions in P , then we can estimate the length of an infix

u with A
∗

==>
G

u in the derivation tree of wG,e with |e(u)| ≤ 1 as ≤ c1l|V | since

each variable by minimality of wG,e only appears once on the path from A to the
letter which is not erased by e. The same estimation holds for the length of uv

with A
∗

==>
G

uBv and e(uv) = λ. By induction on |e(u)| over the tree, we conclude

that |u| ≤ 2c1l|V ||e(u)| − c1l|V | and, thus, |wG,e| ≤ 2c1l|V ||e(w)| =: c|e(w)|.
For the inverse homomorphism, a slight modification to the proof on page 31 in
[Ber79] is necessary. The problem is that there may be letters z with h(z) =
λ occurring in h−1(w) which are produced in [Ber79] by a linear part of the
grammar. This could increase the tree height making it linear. To prevent this,
we need to insert the production ω → ωω to P ′ in [Ber79] in order to be able to
produce letters z with h(z) = λ in binary trees which consume only logarithmic
tree height. Furthermore, we observe that the erasing homomorphism used for
the construction of the inverse homomorphism in [Ber79] can decrease the length
of the word only by a constant factor.

�
�
�
�
�
�
�
��

Z
Z
Z
Z
Z
Z
Z
ZZ

S































J
JJ

J
JJ

J
JJ

J
JJ

J
JJ

w ∈ h(L)

h−1(w) ∈ L�� �� �� ��@@ @@ @@ @@



70 CHAPTER 3. FORMAL LANGUAGES

3.2.4 Bounded non regular languages have linear deriva-
tion tree height

Definition 7 [Gin66]
A language L is bounded if L ⊆ w∗

1w
∗
2...w

∗
m for some w1, ..., wm ∈ Σ∗, m ≥ 1.

Theorem 3.2.2 No bounded non regular language is in CFLth(o(n)).

Proof: We first start to prove the theorem for 2-bounded6 languages. Since
CFLth(o(n)) is an AFL, we may assume, without loss of generality, L ⊂ a∗b∗. Let
G be a context-free grammar for L. Consider all variables A,B, ... which are pro-
duced on the left or right side in the path from S to the border between a’s and b’s.
The set of words producible by such a variable form a sub-language ⊆ a∗∪b∗ which
is regular. Let s be the product of all lengths of minimal loops7 of the minimal
deterministic automaton for all these languages. If we assume that L is not regu-
lar, then there must be k, k′ ≤ s such that L′ := L∩ak(as)∗bk′

(bs)∗ is not regular.
Thus, the semi-linear Parikh-image of L′ must have a period incrementing a’s and
b’s simultaneously. In other words, there is a sequence of words ak+s·p·ibk′+s·q·i ∈ L′

for all i. If we, furthermore, assume that L ∈CFLth(o(n)), there must be an i such
that ak+s·p·ibk′+s·q·i is produced with a tree where a variable producing an infinite
sub-language occurs on both sides, as shown in the following picture. This means
(as)∗ak+s·p·ibk′+s·q·i(bs)∗ ⊆ L′, thus, L′ is regular since L′ \ (as)∗ak+s·p·ibk′+s·q·i(bs)∗

only consists of words where either the number of a’s is smaller than k+s·p·i or the
number of a’s is smaller than k+s ·q ·i. This is a contradiction to the assumption.

�
�
�
�
�
�
�
�
�
�
�
�
�
��

Q
Q
Q
Q

Q
Q
Q
Q
Q
Q
Q
Q
Q
QQ

�
�
�

@
@
@

�
�
�
��

A

�
�
�

@
@
@

Q
Q
Q
QQ

B

S 





o(n)

a...
︸ ︷︷ ︸

/∈O(1) b......a
︸ ︷︷ ︸

/∈O(1) ...b

Now, we consider by induction an m-bounded language L ⊂ a∗
1a

∗
2...a

∗
m and con-

struct a non regular language L′ in the same way. If the semi-linear Parikh-
image of L′ has a period incrementing all ai’s simultaneously, and if we have
L ∈CFLth(o(n)), there must be a word ac1

1 ac2
2 ...acm

m in L′ which is produced with
a tree where a variable producing an infinite sub-language occurs in every block.
This means that we would have (as

1)
∗ac1

1 (as
2)

∗ac2
2 ...(as

m)∗acm
m ⊆ L′ and L′ would

have a m − 1-bounded non-regular projection to a sub-alphabet. If there is no

6L ⊆ w∗

1
w∗

2
for w1, w2 ∈ Σ∗

7A loop of the automaton reading the same input symbol, where every state occurs only
once



3.2. TREE HEIGHT HIERARCHY 71

period incrementing all ai’s simultaneously, the intersection with one of the lan-
guages a∗

1...a
c
i ...a

∗
m must have the non-regular part. This means that the AFL

generated by L and, thus, L′ contains a m − 1-bounded non-regular language.
This is a contradiction by induction on m.

Corollary 3.2.2 Every context-free language L generating an AFL containing a
bounded non regular language is not in CFLth(o(n)).

If we knew that every AFL generated by a non-regular unambiguous context-free
language contains a non-regular bounded language, we could proof the following:
Conjecture Every unambiguous context-free non-regular language L is not in
CFLth(o(n)).
For a more general separation result as Theorem 3.2.2, we need the following
definition:

Definition 8 Let Σ be an alphabet and a 6= b two symbols. A language L is f(n)
tail-bounded if, for every w ∈ Σ∗ and n ∈ N with wabn 6∈ L, it holds n = f(|wa|).

Lemma 3.2.2 No f(n) tail-bounded non regular language is in CFLth(o(f(n)))

Proof: Assume by the contrary G to be a context-free grammar without loss of
generality for a language L ⊆ Σ∗ab∗. Consider all variables which are produced on
the right side in the path from S to a in the derivation tree. The words producible
by such a variable form regular sub-languages in b∗. Let s be the product of all
lengths of minimal loops of the minimal deterministic automaton for all these
languages. If L is not regular, then there must be a k ≤ s such that L′ =
L ∩ Σ∗abk(bs)∗ is not regular. If L ∈CFLth(o(n)) and, thus, L′ ∈CFLth(o(n)),
there must be an infinite sub-language of b’s occurring on every but finitely
many paths. This shows that there are only finitely many wabn 6∈ L′ (having
wabn−s ∈ L′ produced by one of the finitely many paths). Therefore, we conclude
that L is co-finite in contradiction to the assumption.

3.2.5 Parallelizable non regular languages

There are non-regular languages in CFLth(o(n)):
Example [Boa97]: Let L be the set of non-prefixes of the infinite word w =
baba2ba3b.....anb.... Then, L ∈CFLth(

√
n) by the following grammar:

{S → RABabR|RABab|RbBAaR|baAR|bbR|babbR|babaaAR|AR,
A → AA|a,R → RR|a|b, B → aBa|b}
The variable R produces any string with logarithmic tree height. The variable B
produces {anban | n ∈ N}; thus, ABab produces {anbamb | n ≥ m ∈ N} which
cannot occur in w. The sentential form bBAa produces {banbam | m > n+1 ∈ N}



72 CHAPTER 3. FORMAL LANGUAGES

which also cannot occur in w. Thus, a word in L can be produced making use of
the first ’error’ in respect to w. This is illustrated in the following picture:



















J
J
J
J
J
J
J
JJ











J
J
J
JJ













J
JJ

J
JJ



 

 

 

JJ JJ JJ JJ 

















J
J
J
J
J
J
J
JJ











J
J
J
JJ













J
JJ

J
JJ



 

 

 

JJ JJ JJ JJ�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
BB

�
�
�
�
�
��

B
B
B
B
B
BB

�
�
�
��

B
B
B
BB

�
��
B
BB

��
��
��
��

��

HH
HH

HH
HH

HH
S

R R

R R R Rlog













k

babaabaaab... b aa...
︸ ︷︷ ︸

k

b aa...
︸ ︷︷ ︸

6=k+1

b...........

For a word in L, we consider the derivation using the first position where a block
has length k and the following block does not have the length k + 1. Thus, we

can estimate the length n of the word by n ≥
k∑

i=1

i which means k ∈ O(
√

n).

We now improve this by constructing an example with the smallest possible
derivation tree height, and therefore, disprove the conjecture in [Bra81, CM78].
There are non-regular languages in CFLth(log):

Example: Let L be the set of non-prefixes of the infinite word
w = b0a1b10a11b100a101b110a111b...a111100001b100010000a...bbkabR

k+1b...,
where bk ∈ {0, 1}∗ is the binary representation of k. It holds L ∈CFLth(log(n))
by a grammar which produces words containing an ’error’-part showing that the
word is not a prefix of w; this may be some part abkbv

Ra or bbR
k avb with v 6= bk+1

or some other syntactic ’error’. Since the length of the binary representations
grow only logarithmically until an ’error’ occurs, the tree-height is also logarith-
mic as shown in the following picture:



















J
J
J
J
J
J
J
JJ











J
J
J
JJ













J
JJ

J
JJ



 

 

 

JJ JJ JJ JJ 

















J
J
J
J
J
J
J
JJ











J
J
J
JJ













J
JJ

J
JJ



 

 

 

JJ JJ JJ JJ�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
BB

�
�
�
�
�
��

B
B
B
B
B
BB

�
�
�
��

B
B
B
BB

�
��
B
BB

��
��
��
��

��

HH
HH

HH
HH

HH
S

log













log

b0a1b10a11... a 10...
︸ ︷︷ ︸

bk

b ...
︸ ︷︷ ︸

6=bR
k+1

a...........



3.2. TREE HEIGHT HIERARCHY 73

3.2.6 Strictness and denseness of the hierarchy

As an important tool, we use a generalization of the representation of a counter
to define context-free complement constructible functions.

Definition 9 A function f : N → N is called context-free complement con-
structible (ccc), if there exists an infinite sequence c0, c1, ... of words called
context-free complement construction over an alphabet Σf with |ck| = f(k) and
a context-free language Lf such that ck$w ∈ Lf if and only if w 6= cR

k+1 for all
k ∈ N.

Remark: By reversing the path from S to $, we also obtain another context-free
language L′

f such that cR
k $w ∈ L′

f if and only if w 6= ck+1 for all k ∈ N.

The following property of ccc functions will help us to establish the strictness
and denseness of the hierarchy:

Theorem 3.2.3 For every monotone function g : N → N with log ≤ g ≤ lin for
which there exists a ccc function f : N → N with g(

∑k
i=1 f(i)) = f(k) for all k,

there are languages in CFLth(g(n))\CFLth(o(g(n))).

Proof: Let L be the set of non-prefixes of the infinite word
u = bc0acR

1 bc2acR
3 ...acR

n−1bcna..., with (ci) being the context-free complement con-
struction for f with a, b /∈ Σf . Then, L ∈CFLth(g(n)) by a grammar which
produces all words not starting with bc0a, and all words which have a “mistake”
later. Given such a word in L, let ck be the last block before this deviation form
u occurs. Then, the word is generated as the following picture shows:



















J
J
J
J
J
J
J
JJ











J
J
J
JJ













J
JJ

J
JJ



 

 

 

JJ JJ JJ JJ 

















J
J
J
J
J
J
J
JJ











J
J
J
JJ













J
JJ

J
JJ



 

 

 

JJ JJ JJ JJ�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
BB

�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
BB

�
�
�
�
�
��

B
B
B
B
B
BB

�
�
�
��

B
B
B
BB

�
��
B
BB

��
��
��
��

��

HH
HH

HH
HH

HH
S

log













f(k)

bc0acR
1 bc2... b ck a ...

︸ ︷︷ ︸

6=cR
k+1

b...........

The grammar produces, at the beginning and at the end, some arbitrary rest
string using a binary tree. In the middle, it produces, according to Definition
9, either bckawRb with k ∈ N and ck+1 6= w ∈ Σ∗ or acR

k bwa with k ∈ N and



74 CHAPTER 3. FORMAL LANGUAGES

ck+1 6= w ∈ Σ∗. Therefore, the length of the word is n ≥
k∑

i=1

f(i). Thus, the

height g(n) = f(k) is sufficient.
Let L′ := Lb∗ ∪ (Σf ∪ {a, b})∗ab∗ ∪ (Σf ∪ {a, b})∗b{vabn | v ∈ Σ∗

f , n 6= |v|}. Every
word wabn ∈ (Σf ∪ {a, b})∗ab∗ is in Lb∗ unless wa is a prefix of u; in this case,
wabn is in L′ if and only if the length of the last counter representation in w is not
equal to n. This can be tested within tree-height g(|wa|); thus, L′ ∈CFLth(g(n)).
The only possibility for wabn not to be in L′ is n = g′(|wa|) for a g′ ∈ Θ(g). This
means that L′ is g′(n) tail-bounded. Because of Lemma 3.2.2, L′ cannot be in
CFLth(o(g′(n))) =CFLth(o(g(n))).
More restricted than ccc is the following notion:

Definition 10 A function f : N → N is called context-free deterministic con-
structible (cdc), if there exists an infinite sequence c0, c1, ... of words over an
alphabet Σf with |ck| = f(k) such that the language {ck$c

R
k+1|k ∈ N} is determin-

istic context-free. Additionally, a finite automaton on input ck has to be able to
detect the (finite) increase from |ck| to |ck+1|.
Obviously, a cdc function is ccc.

Lemma 3.2.3 The functions 1, n and log are cdc. If f and g are cdc, then the
functions f + g and h with h−1(n) =

∑n
i=1 f−1(i) are cdc as well.

Proof: Let c1,i = 1, cn,i = 1i and clog,i = bin(i). Assume without loss of generality
Σf ∩ Σg = ∅ and d /∈ Σf ∪ Σg.
Let Σf+g = Σf ∪Σg, cf+g,i := cf,icg,i. To check if an input is in {cf+g,i$c

R
f+g,i+1|i ∈

N}, the deterministic pda starts simulating the pda for f on Σf . When a symbol
in Σg is reached, it simulates the pda for g. If this simulation accepts, it continues
simulating the pda for f on $ and the rest of the input. The increase from |cf,icg,i|
to |cf,i+1cg,i+1| is also detected by a finite automaton.
The transformation to h enables us to build roots of functions (log is fixed point
of the transformation). The idea behind the construction of the counter is to keep
a size h(i) and to simulate the counter cf,j for f inside by ch,i = dkcf,j while the
remainder is filled with d’s. This is done until the size is not anymore sufficient.
After this, the space is incremented and the simulated counter for f is started
from 0 again. This is described formally as

ch,i+1 :=

{
d|ch,i|+1−|cf,0|cf,0 if f(j + 1) > h(i)
dk+|cf,j |−|cf,j+1|cf,j+1 else

.

The condition f(j+1) > h(i) is fulfilled if and only if f(j+1)−f(j) is bigger than
the number of remaining d’s. This can be detected by a finite automaton. To
check if an input is in {ch,i$c

R
h,i+1|i ∈ N}, the deterministic pda starts by pushing

d’s. Then, it simulates the pda for f and then compares the number of following
d’s. At the same time, it also simulates the finite automaton. This allows the
pda to check whether one of the above mentioned cases for ch,i+1 is true.



3.2. TREE HEIGHT HIERARCHY 75

Lemma 3.2.4 The function 2n is ccc. If f and g are ccc, then the functions
f ∗ g and e with e(n) =

∑n
i=1 f(i) are ccc as well.

Proof: Let c2n,i = 12i

. Assume without loss of generality Σf ∩ Σg = ∅ and
d /∈ Σf ∪ Σg.

Let Σf∗g := Σf × Σg with the canonical projections π1 and π2 and cf∗g,i := w

with π1(w) = c
|cg,i|
f,i and π2(w) = h(cg,i) with h(a) := a|cf,i|. Then, we construct

analogously a context-free Lf∗g such that cf∗g,k$w ∈ Lf∗g if and only if w 6=
cR
f∗g,k+1 for all k ∈ N.

Let Σe = Σh = Σf ∪ {d} ce,i := d
Pi−1

j=1 |cf,j |cf,i. Then, we construct analogously
a context-free Le such that ce,k$w ∈ Le if and only if w 6= cR

e,k+1 for all k ∈ N.
This is done by either generating a wrong cf,i+1 or not adding |cf,i| correctly to
the number of d’s.

Lemmata 3.2.3 and 3.2.4 show that all polynomials with rational coefficient and
their multiplications with poly-logarithms are ccc. For f ranging from logarithmic
to very big polynomials, the function g with g(

∑k
i=1 f(i)) = f(k) ranges from

logarithmic to linear. If g(n) is a polynomial np/q with q > p, then a ccc function
f(n) ∈ Θ(np/(q−p)) fulfills the condition g(

∑k
i=1 f(i)) = f(k) and Theorem 3.2.3

can be applied. If g(n) is a polylogarithmic function logp/q n, we do not know how
to find an appropriate function f to apply Theorem 3.2.3 directly. However, if we
set f(n) = logp/q n, the obtained function g(n) can be estimated by log(p/q)−ε n <
g(n) < logp/q n for every ε > 0. Therefore, Theorem 3.2.3 can separate any
CFLth(logr) from CFLth(logr′) with r < r′. Since the ccc functions f are dense,
the obtained functions g are also dense between log and lin; therefore, we come
to the following conclusion.

Conclusion: The parallel context-free derivation hierarchy is strict and dense
between CFLth(log) and CFLth(lin)=CFL.

Remark: For a given grammar for a language L in CFLth(g′(n)), one might
want to decide whether L is in CFLth(g(n)). However, it is easy to see (but
difficult to express formally) that any nontrivial decision problem of this kind
is undecidable (provided corresponding ccc function f, f ′ exist). This is because
counter representations could also contain configurations of Turing machines and
the behavior of the length can change if an accepting configuration is reached.

3.2.7 Ambiguity Hierarchy

Instead of the tree height, we can also consider the degree of ambiguity. Let
amG(x) denote the number of leftmost derivations of the word x by the grammar
G. (Compare also with the definition of #CFL in Section 2.1.1.) Let, further-
more, amG(n) = max{amG(x) | |x| = n}. Now, we can define CFLam(f(n)) :=
{L ⊆ Σ∗|∃G,L = L(G),∀n amG(n) ≤ f(n)}.



76 CHAPTER 3. FORMAL LANGUAGES

The strictness of the hierarchy CFLam(k) for constant k ∈ N was shown in
[Mau68]. Languages in CFLam(O(log n)) and CFLam(O(

√
n)) were described in

[Wic00]. We can generalize this using the same representation of a counter as in
the last section.
The following property of cdc functions will help us to establish the strictness
and denseness of the hierarchy:

Theorem 3.2.4 For every monotone function g : N → N for which there exists
a cdc function f : N → N with g(

∑2k−1
i=1 f(i)) = k for all k, there are languages

in CFLam(O(g(n)))\CFLam(o(g(n))).

Proof: Let L := {ck$c
R
k+1$|k ∈ N}∗{ck$|k ∈ N}{cR

k $ck+1$|k ∈ N}∗. (For sim-
plicity, we abandon the spiral construction in [Wic00] which would have made
L linear.) Let G be the obvious grammar for L. It generates the parts in
{ck$c

R
k+1$|k ∈ N} unambiguously. The ambiguity amG(x) is k if and only if

x allows k choices for the counter representation which is not compared with
one of its neighbors. In the first of these choices, all following pairs are checked
for their consecutiveness and, in the last of these choices, all previous pairs are
checked for their consecutiveness. In the overlapping region, odd and even pairs
are checked. This means x contains 2k − 1 consecutive counter representations
and, thus, |x| ≥∑2k−1

i=1 f(i). (We may drop additive and multiplicative constants
in |x| by encoding the alphabet.) According to [Wic02], there is a language for
which this ambiguity is inherent.
Furthermore, the concatenation (with disjoint alphabet or separation marker) of a
language in CFLam(g(n)) with a language in CFLam(g′(n)) leads to a language
in CFLam(O(g(n)g′(n)))\CFLam(o(g(n)g′(n))). (This is the same idea as the
treatment of the AND-gate in the proof of Theorem 2.8.3.) From Lemma 3.2.3,

we obtain possible choices for g−1 out of n, n log n, n2, n
3
2 , n

3
2 , ... n

m+1
m for all

m ∈ N and 2n. (We drop additive and multiplicative constants for simplification.)
This means that there are infinitely many infinite sub-hierarchies; for example,
CFLam(n

m
m+1 ) or CFLam((log n)m). However, it is not sufficient to show that

there are no gaps, for example, between polylog and
√

n, or between n·polylog
and n

7
6 = n

2
3 · n

1
2 . There is, in fact, a gap between polynomial ambiguity and

exponential ambiguity as shown in [Wic99]. To show that the ambiguity hierarchy
is even finer than the tree height hierarchy, we can use the following generalization
of Theorem 3.2.4:

Theorem 3.2.5 For every monotone function g : N → N for which there exists
cdc functions f, f ′ : N → N with g(

∑2k−1
i=1 (f(i) + f ′(i)) = f ′(k) ≤ k for all k,

there are languages in CFLam(O(g(n)))\CFLam(o(g(n))). Remark: Choosing
f(i) = 2n is allowed here as it still fulfills the necessary condition for the addition.

Proof: Let L := {ck$c
R
k+1$|k ∈ N}∗L′{ck$|k ∈ N}{cR

k $ck+1$|k ∈ N}∗, where
ck = cf,kcf ′,k is the counter representation for f(i) + f ′(i) according to Lemma



3.2. TREE HEIGHT HIERARCHY 77

3.2.3 and
L′ = {cf,kcf ′,k$c

R
f ′,k+1c

R
f,k+1$|k ∈ N, |cf ′,k| < |cf ′,k+1|}.

With L′, we introduce a restriction saying that the counter representation which
is not compared with one of its neighbors must follow a pair in which the counter
representation for f ′ has just increased in its length. The number of choices is
now f ′(k) instead of k.

If we choose, for example f(i) = f ′(i) ∈ Θ(n
1
m ), we get g(n · n 1

m ) ∈ Θ(n
1
m ) and,

thus, g(n) ∈ Θ(n
1

m+1 ). This gives us arbitrary small roots as ambiguity function.
If we choose, for example f(i) = 2n and f ′(i) = log n, we get g(n) ∈ Θ(log log n).
This shows that there are infinite sub-logarithmic ambiguities. This was already
conjectured in [Wic02]. Furthermore, we could construct a counter representation
by keeping the length of the binary counter in binary as well. This yields a
g(n) ∈ Θ(log log log n). By iteratively repeating this on the length of the binary of
this length, we can get an arbitrarily iterated logarithm as an ambiguity function.



78 CHAPTER 3. FORMAL LANGUAGES



Chapter 4

Picture languages and logic

In complexity theory, we ask how much resources do we need to recognize a lan-
guage. In formal languages we ask how complicated is a machine or grammar
model to recognize or generate a grammar. Here, we classify problems or lan-
guages by their descriptive complexity. This means that we ask how “rich” must
a logic be to describe the language. In other words, how complicated is a logic
formula which is true for a word if and only if it is in the language?

There are many connections from logic to computational complexity and to for-
mal languages. For example, the class of regular languages is characterized by
monadic second order logic. The class of starfree regular languages, NP, P, NL,
L, among other examples can also be characterized by certain kinds of logic.

In this chapter, we consider the relation of complexity between these character-
izations. We will compare the size of a finite automaton recognizing a regular
language to the size of a formula in monadic second order logic describing the
regular language. Then, we will look at the power of monadic second order logic
in cases where it works on two dimensional structures (pictures). Here, we will
show that monadic second order logic is able to count (Section 4.3) and recognize
connectedness (Section 4.4).

We start with some definitions and a discussion of the meaning of the result
obtained in Chapter 5 for Petri nets in terms of logic.

4.1 Preliminaries

A vocabulary σ consists of symbols for constants and relations having a certain
arity. A structure G for σ consists of a universe U , and of the constants and
relations which are denoted by the symbols in σ. We denote as STRUCT(σ) the
set of all such structures G. If U = N, we can use 0 as constant symbol. If
U = {0, 1, ...,max}, we can use 0 and max as constant symbols. In both cases,
we can use the successor relation symbol s, where s(x, y) is true if x+1 = y. If we
consider words as structures, then we have atomic unary predicates X(i) for each

79



80 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

letter x of the alphabet which are true, if the i-1-th letter in the word is x. In
the construction of our formulas, we will use the symbols in σ and, additionally,
the relation symbol “=” and the logical connectives ∧,∨ and ¬.

If, for example, the structure G is the word abba, then G consists of U =
{0, 1, 2, 3}, 0, 3, A = {0, 3}, B = {1, 2} and s = {(0, 1), (1, 2), (2, 3)}. The for-
mula A(0) ∧ B(1) ∧ s(0, 1) is true (but 1 does not belong to the vocabulary).

4.1.1 First order logic

In the first order language L(σ), we allow the quantifiers ∃ and ∀ with variables
x, y, z, ... over the universe. A problem is a set of structures of some vocabulary
σ. For a formula φ ∈ L(σ), let MOD(φ) = {G ∈ STRUCT(σ) | G |= φ} be the
set of finite models. That means structures for which φ is true. The first order
logic (FO) is the set of all expressible problems {S|∃σ∃φ ∈ L(σ) S =MOD(φ)}.
If the problem consists only of words, then MOD(φ) is a language.

Only equipped with the successor relation, first order logic characterizes locally
testable regular languages and with the predicate “<” := {(n,m)|∃p 6= 0 m =
n + p}, it characterizes starfree regular languages.

It was shown in [BIS90], that first order formulas can be evaluated by AC0 circuits
and that FO characterizes uniform AC0 if the formula can contain the necessary
arithmetic predicates which correspond to the uniformity condition. For example,
the predicate BIT(i, j) is necessary to characterize uniform AC0. Here, BIT(i, j)
is true if the i-th bit in the binary expansion of j has a value of one. Furthermore,
adding a modular counting quantifier1 or a majority quantifier2 or a group quan-
tifier leads to characterizations of the classes ACC, TC0, and NC1 respectively.

To get a slightly higher complexity, we may consider the following stronger opera-
tor TC: Given a formula φ(x1, ..., xk, x

′
1, ..., x

′
k), then the transitive closure of φ de-

notes the smallest set S ⊂ U 2k containing all (x1, ..., xk, x1, ..., xk) for (x1, ..., xk) ∈
Uk and containing all (x1, ..., xk, x

′′
1, ..., x

′′
k) for a (x1, ..., xk, x

′
1, ..., x

′
k) ∈ S and

φ(x′
1, ..., x

′
k, x

′′
1, ..., x

′′
k). In [Imm87] and [Imm88], Immermann showed that the

complexity class NL is characterized by FO + TC and that it is possible to ex-
press PLUS in it. Because NL is closed under complement, we can either assume
that we have a FO-formula inside and one TC operator outside, or we can use
formulas where we mix FO and TC completely.

On the other hand, the satisfiability problem (in other words the emptiness prob-
lem for MOD(φ) for given φ) has a much higher complexity than the word problem
for the described languages. For a formula in FO with < in a finite universe, it
follows from [Sto74] (see also Section 4.2.2) that the complexity already becomes
non-elementary.

1(Qm,ax)φ(x) is true if the number of positions x for which φ(x) is true is equal to a mod q.
2(Mx)φ(x) is true if φ(x) is true for more than half of the possible positions x.



4.1. PRELIMINARIES 81

However, even with an infinite U = N the satisfiability problem stays decidable.
This is shown in [Büc62] in the same way by deciding the emptiness for finite
automata.

With the additional predicate PLUS(x, y, z), which is equivalent to x+y = z, and
using the universe U = N, we get the Presburger formula. These are first order
formula over (N,+). Their theory is decidable [Pre29]. It is shown in [Sch04]
that Presburger arithmetic is closed under unary counting quantifiers. Such a
quantifier ∃=xφ(y) is true if the number of values y for which φ(y) is true is equal
to x.

Now the question is the following: Which operator can be added to FO with
PLUS to obtain something stronger than Presburger arithmetic, but still keeping
the theory decidable? TC would already be too strong and make the problem un-
decidable. The operator∗Q in Section 5 corresponds to the monotone transitive
closure mTC defined as follows:

Given a formula φ(x1, ..., xk, x
′
1, ..., x

′
k), then mTC(φ) denotes the smallest set

S ⊂ N2k containing all of the following:

• (x1, ..., xk, x1, ..., xk) for (x1, ..., xk) ∈ Nk (this stands for the identity),

• (x1, ..., xk, x
′′
1, ..., x

′′
k) for (x1, ..., xk, x

′
1, ..., x

′
k) ∈ S and φ(x′

1, ..., x
′
k, x

′′
1, ..., x

′′
k)∨

(x′
1, ..., x

′
k, x

′′
1, ..., x

′′
k) ∈ S, and

• (x1 + x′′
1, ..., xk + x′′

k, x
′
1 + x′′

1, ..., x
′
k + x′′

k) for a (x1, ..., xk, x
′
1, ..., x

′
k) ∈ S and

(x′′
1, ..., x

′′
k) ∈ Nk.

Since we have no construction available to describe the complement of a mTC(φ)
formula without using the negation (as this is the case for a FO+PLUS-formula
according to [Pre29]), we have decidability for the emptiness and satisfiability only
for formulas with an FO+PLUS-formula inside and ∧,∨,∃ and mTC operators
outside (see Corollary 5.3.2).

4.1.2 Second order logic

In the second order language, we allow the quantifiers ∃ and ∀ with variables for
predicates over the universe. The class NP is characterized by existential second
order logic in [Fag75] and P is characterized with a restriction to Horn logic in
[Grä91].

In the monadic second order language, it is only allowed to use quantified pred-
icates with one argument. The regular languages are characterized by monadic
second order logic only equipped with the successor relation. As in the case of
FO with ¡, the satisfiability problem stays decidable for a finite universe and also
for an infinite U = N. However, it has non-elementary complexity in both cases
(see Section 4.2.1).



82 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

4.1.3 Picture languages

In [GRST94], pictures are defined as two-dimensional rectangular arrays of sym-
bols of a given alphabet. A set (language) of pictures is called recognizable if it is
recognized by a finite tiling system as defined in Definition 11. It was shown in
[GRST94] that a picture language is recognizable if and only if it is definable in ex-
istential monadic second-order logic, where U = {0, 1, ...,max1}×{0, 1, ...,max2},
and there is a horizontal and a vertical successor relation. In [Wil97], it was
shown that star-free picture expressions are strictly weaker than first-order logic.
The set of context-sensitive languages is characterized in [LS97a] as frontiers of
picture languages. With the same idea, a link to computational complexity is es-
tablished in [Bor03] where NP is characterized with the notion of recognizability
by padding 1-dimensional words with blanks to form an n-dimensional cube.

A comparison to other regular and context-free formalisms to describe picture
languages can be found in [Mat97, Mat98]. Characterizations of the recognizable
picture languages by automata can be found in [IN77] and [GR96] where the
authors also consider subclasses defined by a restriction from nondeterminism to
determinism or unambiguity.

In the one-dimensional case, counting (i.e. the language {anbn}) is a kind of a pro-
totype concept for non-recognizability (≡ non-regularity). However, adding one
extra dimension easily enables counting (see Section 4.3.1) for one line. Inspite
of this, it was so far conjectured that counting cannot be done for 2 dimensions
without having an extra third dimension available. In [Rei98], only a nonuniform
method for simulating a counter along a picture was found. This showed why the
attempts made to disprove Theorem 4.3.1 had failed.

We will show in chapter 4.4 that the language of pictures over {a, b}, where all oc-
curring b’s are connected, is recognizable. This solves an open problem in [Mat98].
(Connectedness is not recognizable in general [FSV95].) The technique which is
used here is generalized in the following chapter to show that mono-causal deter-
ministically recognizable languages are recognizable. The notion of deterministic
recognizability used here is stronger than the determinism in [GR96]; it has more
closure properties (for example rotation) and promises practical relevance.

Definition 11 [GRST94] A picture over Σ is a two-dimensional array of ele-
ments of Σ. The set of pictures of size (m,n) is denoted by Σm,n. A picture
language is a subset of Σ∗,∗ :=

⋃

m,n≥0 Σm,n.

For a p ∈ Σm,n, we define p̂ ∈ Σm+2,n+2,
adding a frame of symbols # 6∈ Σ.

Let Tm,n(p) be the set of all sub-pictures of p
with size (m,n).

p̂ := p

# # # # # #

# # # # # #

#
#
#
#

#
#
#
#

A picture language L ⊆ Γ∗,∗ is called local if there is a ∆ with L = {p ∈



4.2. COMPLEXITY OF MONADIC SECOND ORDER LOGIC 83

Γ∗,∗|T2,2(p̂) ⊂ ∆}. This means that we consider the set T2,2(p) of all sub-pictures
of p with size (2, 2):

A picture language L ⊆ Γ∗,∗ is called hv-local if there is a ∆ with L = {p ∈
Γ∗,∗|T1,2(p̂) ∪ T2,1(p̂) ⊂ ∆}. A picture language L ⊆ Σ∗,∗ is called recognizable if
there is a mapping π : Γ → Σ and a local language L′ ⊂ Γ∗,∗ with L = π(L′).

This means that in order to recognize if a picture lies in L, we have to find (non-
deterministically) a pre-image in the local language L′. According to [LS97b],
L is recognizable if and only if there is a mapping π : Γ → Σ and a hv-local
language L′ ⊂ Γ∗,∗ with L = π(L′). This means we can use a hv-local pre-image
language as well.

4.2 Complexity of monadic second order logic

The truth and satisfiability of a formula was shown to be decidable by the con-
struction of a finite automaton in [Büc62] (see also Theorem 12.33 of Chapter 12
in [GTW02]) where each quantifier alternation leads to an exponentiation. Can
this be accomplished more efficiently in general? This is the main motivation
for this section. We start with monadic second order logic as the construction is
easier before returning to FO.
The kind of construction used in this chapter appears in [Mat99] and [Sto74] in
connection with picture languages and regular expressions.

4.2.1 Monadic second order logic

We use a method similar to the cyclically counting method in [Mat99]. In the fol-
lowing, we recursively define a formula ϕA

n describing the language 0∗10f(n)−110∗

with a non-elementary function f defined by f(n + 1) = f(n)2f(n) and f(1) = 1.
This means a word w ∈ {0, 1}∗ is in the language if and only if ϕA

n (w) is true,
where A is a predicate such that for a position x in the word A(x) is true if and
only if wx = 1. Obviously, any automaton recognizing the language 0∗10f(n)−110∗

needs at least f(n) states. (Otherwise, a state would appear twice between the
two 1’s and allow pumping the number of 0’s between the two 1’s.)
The formula is constructed recursively over n. Let us start the inductive definition
with

ϕA
1 = ∃x(A(x) ∧ A(x + 1) ∧ ∀y(y = x ∨ y = x + 1 ∨ ¬A(y)))

describing the language 0∗110∗. The formula says that there are exactly 2 posi-
tions x and x + 1 having a value of 1.



84 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

For the recursion, we use ϕA
n to determine if two positions a and b have distance

f(n). This distance is now the length of a counter. This length is then used
to control the first and last counter with InitializeC and FinalizeC respectively,
and to control the correct sequence of counters with StartIncrement and Carry
by locally checking all corresponding positions in neighbor counters. Recursively,
we define

ϕA
n+1 = ∃x∃y( A(x) ∧ A(y) ∧ ∀z z = x ∨ z = y ∨ ¬A(z)∧

∃B∃C ∀a∀b( (∃A(ϕA
n ∧ a < b ≤ y ∧ A(a) ∧ A(b)) →

(InitializeC ∧ StartIncrement ∧ Carry ∧ FinalizeC)))

Note that the syntax allows us to reuse the variable A, which occurs under the
scope of the existential quantifier, again outside of the quantifier. This makes
it possible to define ϕA

n using only a finite number of variable-symbols. Here,
C contains blocks with consecutive counter representations, and B marks the
beginning of each block. The recursive use of the predicate A makes sure that a
and b have exactly the distance of a block length. This means a complete counter
sequence is used to admeasure the length of only one counter for the next n.

InitializeC := (a = x) → (B(a) ∧ ¬C(a) ∧ ∀c(a < c < b → (¬C(c) ∧ ¬B(c)))

makes sure that the first block contains only zeros and that B marks exactly the
beginning of the block (that is the position of the least significant bit).

StartIncrement := (B(a) ∨ B(b)) → (B(b) ∧ ¬(C(a) ↔ C(b)))

makes sure that the first (least significant) bit in each block changes each time.
It simultaneously takes care that B is continued which in turn means that B also
has a 1 at the beginning of the next block.

Carry := ((C(a) ∧ ¬C(b)) ↔ (¬C(a + 1) ↔ C(b + 1))) ∨ B(a + 1)

makes sure that a 1 changes to a 0 exactly if, in the corresponding bit in the
following block, the next bit (if it was not the last in the block) must change.

FinalizeC := (b = y) ↔ (B(a) ∧ ∀c(a ≤ c < b → C(c))

makes sure that the last block is the one containing only 1’s.

Lemma 4.2.1 The formula ϕA
n defined above has size O(n) and defines the lan-

guage {0∗10f(n)−110∗} for which a finite automaton needs at least f(n) states.

Example:
The language 0∗10204710∗ is described by ϕA

4 . Here, the existentially quantified
C contains all binary representations of numbers from 0 to 255 having length 8.
To check the correctness of C and the block-marks in B, the formula recursively



4.2. COMPLEXITY OF MONADIC SECOND ORDER LOGIC 85

uses ϕA
3 describing 0∗10710∗. In this description by ϕA

3 , the corresponding C
contains all binary representations of numbers from 0 to 3 having length 2. This
recursively uses ϕA

2 describing 0∗1010∗; the corresponding C contains just 0 and
1 finally using ϕA

1 .

A: 0...0100000000000000000000000... 000000000000000010...
C: 000000001000000001000000... 011111111111111100...
B: 100000001000000010000000... 100000001000000010...
A: 0...01000000010...
C: 0010011100...
B: 1010101010...
A: 0...01010...
C: 0100...
B: 1110...

4.2.2 First order logic with <

In the preceding section, we could concentrate on one level of recursion. This is
because the counters on lower levels were guessed and stored in an existentially
quantified predicate and, thus, hidden from higher levels. Since we have only
quantification on singletons available in first order logic, we will now need to have
all necessary information about all levels to be present in the word. Therefore, the
counters have to work cyclically as described in [Mat99] and [Sto74]. Furthermore,
each bit of a counter is followed by a counter on the next lower level containing the
position of the bit. These counters become useful because they allow to identify
corresponding positions in counters.
We use the non-elementary function g(1) = 2 and g(n + 1) = 2g(n), and the
alphabets Σk = {$k, 0k, 1k} for k ≤ n. This allow us to represent counters on
each level. Let Σ<k =

⋃k−1
i=1 Σi and Σ>k =

⋃n
i=k+1 Σi. Furthermore, we use Σ>k(x)

as abbreviation for $k+1(x) ∨ 0k+1(x) ∨ ... ∨ 1n(x) meaning that the symbol at
position x is $k+1 or 0k+1 or ... or 1n.
The representations of the counters are defined inductively starting with c1,0 :=
$101, c1,1 := $111, representing 0 and 1 on the first alphabet. Then, for exam-
ple, on the second alphabet, c2,0 := $202c1,002c1,1, c2,1 := $212c1,002c1,1, c2,2 :=
$202c1,012c1,1 and c2,3 := $212c1,012c1,1 represent the numbers from 0 to 3. On
the k-th alphabet, ck+1,0 := $k+10k+1ck,00k+1ck,1...0k+1ck,g(k)−1 represents 0 and,
in general, we have

ck+1,i := $k+1x0ck,0x1ck,1...xg(k)−1ck,g(k)−1,

where the number i with 0 ≤ i < g(k + 1) is encoded in binary as

xg(k)−1xg(k)−2...x1x0 = hk+1(bin(i))

with hk+1(0) = 0k+1 and hk+1(1) = 1k+1.



86 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

Now, we inductively define formulas ϕk. This makes sure that the counters count
cyclically until the k-th level. On the first level, we define the formula ϕ1 for the
language (Σ∗

>1c1,0Σ
∗
>1c1,1)

+Σ∗
>1 as follows:

ϕ1 := ∃x($1(x) ∧ 01(x + 1) ∧ ∀y < x Σ>1(y))∧
∀x(01(x) → ∃y > x($1(y) ∧ 11(y + 1) ∧ ∀z(x < z < y → Σ>1(z))))∧
∀x(11(x) → ∃y > x($1(y) ∧ 01(y + 1) ∧ ∀z(x < z < y → Σ>1(z)))∨

∀z > x Σ>1(z)).

Recursively for k > 1, we define the formula ϕk for the language

(Σ∗
>kck,0Σ

∗
>kck,1...Σ

∗
>kck,g(k)−1)

+Σ∗
>k

as follows: First we use the formula ϕk−1 to describe the necessary condition for
the word to contain the counters for level k−1 in the correct order. Now, we can
use these counters to identify corresponding positions in the counter on level k.
This allows us to define the equality of two counters starting on positions x and
y. To do this, we check whether the digit before each sub-counter representation
starting on position x′ in the first counter is identical to the digit before the equal
sub-counter representation starting on position y′ in the second counter:

Equalk(x, y) :=
∀ x′ > x(($k−1(x

′) ∧ ¬∃u x < u < x′ ∧ $k(u)) →
∃y′ > y( $k−1(x

′) ∧ Equalk−1(x
′, y′) ∧ ¬∃u y < u < y′ ∧ $k(u)∧

(0k(x
′ − 1) ↔ 0k(y

′ − 1)))).

Two counters are equal if the digit before equal sub-counter representations are
equal. This is because they are ordered by recursion. The induction starts with
Equal1(x, y) := (01(x + 1) ↔ 01(y + 1)))).
As follows, we define the neighbor relation Nextk(x, y) which checks the increment
of the contained number by one going from the counter starting on position y to
the counter starting on position x: The first (least significant) bit always changes
(line 2). For every, but the first sub-counter starting on position x′ (line 3), there
is a corresponding sub-counter starting on position y′ such that both sub-counters
represent the same number and y′ is in the second counter (line 4). The previous
bits, followed by sub-counters on the position x′′ and y′′ in line 5 such that there is
no other sub-counter on position u described in line 6 or 7 between them, causes
a change of the bit if and only if it changes from 1k to 0k (causing a carry as
described in line 8):

Nextk(x, y) :=
(0k(x + 1) ↔ 1k(y + 1))∧
∀ x′((x + 2 < x′ < y ∧ $k−1(x

′)) →
∃y′ > y ($k−1(y

′) ∧ Equalk−1(x
′, y′) ∧ ¬∃u y < u < y′ ∧ $k(u)∧

∃ x′′ < x′, y′′ < y′($k−1(x
′′) ∧ $k−1(y

′′)∧



4.2. COMPLEXITY OF MONADIC SECOND ORDER LOGIC 87

¬∃u x′′ < u < x′ ∧ $k−1(u)∧
¬∃u y′′ < u < y′ ∧ $k−1(u)∧
((0k(x

′ − 1) ↔ 1k(y
′ − 1)) ↔ (1k(x

′′ − 1) ∧ 0k(y
′′ − 1)))))).

Initializek(x) := $k(x) ∧ ∃y > x($k(x) ∧ ¬∃z(x < z < y ∧ (1k(z) ∨ $k(z))))

makes sure that the counter starting on position x is zero.

The formula ϕk first uses recursion (line 1) to ensure the correctness of the coun-
ters on level k − 1. The first counter has only zeros (line 2). Furthermore, the
first and only the first sub-counter of every counter also contains only zeros (line
3). In this way, we can be sure that each number is only represented once by
a sub-counter making the choice of y′ in Equalk(x, y) and Nextk(x, y) unique.
Every counter starting on position x ends at some position y. At this point,
one of the following two statements must be true: Either there is a following
counter starting on position z and having the next binary number (line 4-6), or
this counter starting on position x is the last counter and consists of only 1’s
(line 7-8). Furthermore, as a necessary condition for the above, every digit of the
counter must be followed by a sub-counter (line 9):

ϕk := ϕk−1∧
∃x(Initializek(x) ∧ ∀y < x Σ>k(y))∧
∀x($k(x) ↔ Initializek−1(x + 2))∧
∀x($k(x) → (∃y > x( (∀u(x < u ≤ y → (Σ<k(u) ∨ 0k(u) ∨ 1k(u)))∧

∃z > y( $k(z) ∧ Nextk(x, z)∧
∀u(y < u < z → Σ>k(u))))∨

(∀u(x < u ≤ y → (Σ<k(u) ∨ 1k(u)))∧
∀u > y Σ>k(u)))))∧

∀x((0k(x) ∨ 1k(x)) → $k−1(x + 1)).

The length of the formula Equalk grows linear with k. Therefore, the length of
the formula Nextk also grows linear with k. Thus, the length of ϕn is in O(n2). (If
we count the representation of a variable indexed by n as having length log n, we
even have O(n2 log n). ) On the other hand, a finite automaton recognizing the
language described by ϕn needs at least one state for each of the g(n) counters.
This means that we have a sequence of formulas ϕn where the complexity of
translating them to finite automata grows non elementary.

Lemma 4.2.2 The formula ϕn defined above has size O(n2 log n) and defines the
language (Σ∗

>ncn,0Σ
∗
>ncn,1...Σ

∗
>ncn,g(n)−1)

+Σ∗
>n for which a finite automaton needs

at least g(n) states.



88 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

4.2.3 Simulation of a Turing machine by logic

Remark: It holds
⋃

c

DTIME(g(cn)) =
⋃

c

NSPACE(g(cn)) for g defined as

above. This is because even a single increment in the input size already allows
an exponential increase in time to simulate the NSPACE-machine.

Theorem 4.2.1 Satisfiability of a formula in first order logic with < is complete
for
⋃

c

DSPACE(g(cn)) under polynomial time reductions.

Proof: For containment in the class see Chapter 12 in [GTW02] where the formula
is translated to a finite automaton. The worst case for one step of recursion in
this translation is an exponential blowup. This occurs when the automaton is
made deterministic in order to translate negation by recognizing the complement.

To show hardness, we use the following reduction: Let L be recognized by a
deterministic one-tape Turing machine M = (Σ, Q, δ, b, q0, qf) using g(cn) space
with the blank symbol b ∈ Σ. A word w = w1w2 · · ·wn is accepted by M if
there is a sequence w′ = $C0$C1$ · · · $Cf of configurations over Σ∪ (Σ×Q)∪{$}
with the initial configuration C0 = (w1, q0)w2w3 · · ·wnb · · · b, a final configuration
Cf starting with (b, qf ) (w.l.o.g M moves to the beginning, when it accepts,),
|$Ci| = g(m) with m := cn for i ≤ f and Ci ⇒M Ci+1 for i < f . Since the
k-th symbol in $Ci+1 depends only on the k − 1-th, k-th, and k + 1-th symbol,
we can construct a first order formula ϕδ(x, y, z, y′) expressing that the symbol
∈ Σ ∪ (Σ × Q) ∪ {$} at position y′ is the correct consequence of (x, y, z) in the
previous configuration (respecting the separation marker $). Here y′ corresponds
to position y in the previous configuration.
Assume, for example, that (q, a)(x) and d(y) and δ(q, a) = (q′, e, R). This means
that the machine is in state q on the symbol a and the consequence of that is, it
enters state q′, writes a e and goes right. Then, ϕδ(x, y, z, y′) is true if and only
if (q′, d)(y′). This means that in the following configuration the machine is in
state q′ on symbol d. Another example would be (q, a)(y) and δ(q, a) = (q′, e, R).
Then, ϕδ(x, y, z, y′) is true if and only if e(y′). This means that an e was written
by the machine before it has moved away and the e remains in the following
configuration.
Since δ is finite, ϕδ is a finite formula as well.
Now we extend the construction in the previous section in the following way: Let
Σm+1 := Σ ∪ (Σ × Q) ∪ {$} and Σ>k =

⋃m+1
i=k+1 Σi. Instead of describing

w′ = $w′
2w

′
3 · · ·w′

g(m)$ · · ·w′
t·g(m),

which would not enable the identification of corresponding positions, we describe

w′′ = $cm,0w
′
2cm,1w

′
3cm,2 · · ·w′

g(m)cm,g(m)−1$cm,0 · · ·w′
t·g(m)cm,g(m)−1,



4.2. COMPLEXITY OF MONADIC SECOND ORDER LOGIC 89

where each symbol is followed by a counter containing its position. This is done
by the formula

ϕM(w) := ϕm ∧ $(1) ∧ InitializeCw∧
∀x($(x) ↔ Initializem(x + 1))∧
∀x(Σm+1(x) ↔ $m(x + 1))∧
∀x, y, z( (Σm+1(x) ∧ Σm+1(y) ∧ Σm+1(z)∧

¬∃u(x < u < z ∧ u 6= y ∧ (Σm+1(u)) →
(∃y′ > z( Equalm(y + 1, y′ + 1) ∧ ϕδ(x, y, z, y′)∧

¬∃u(z < u < y′ ∧ Equalm(y + 1, u)))∨
(¬∃y′ > z(Equalm(y + 1, y′ + 1))∧
($(y) → (b, qf )(z)))).

Here, line 2 says that the separation marker $ is exactly at those positions which
are followed by the counter representation cm,0. Line 3 says that each symbol of
the configuration is followed by a counter. Line 4 says that for all triples x, y, z
of symbols of a configuration, which are (line 5) subsequent in the configuration
(this means that there are only symbols of the counter in-between), there is (line
6) a position y′ followed by the same counter as y and the symbol on position y′ is
determined by δ. Line 7 makes sure that it is indeed the following configuration.
The alternative of line 8 is that there is no following configuration and (line 9)
the current configuration is a final configuration Cf . Line 1 makes sure that the
counters work in the correct way according to the previous section and the first
configuration is $C0. This is expressed by

InitializeCw := ∃ x1 < x2 < ... < xn < y
( (w1, q0)(x1) ∧ w2(x2) ∧ w3(x3) ∧ ...wn(xn) ∧ $(y)∧
∀u < y(∃i u = xi ∨ Σ≤m(u) ∨ (b(u) ∧ xn < u)))

where line 1 and 2 define the positions occupied by the input symbols and line
3 says that all other symbols are either symbols of the counter or blank sym-
bols filling the tape after the input w (This excludes the $). Thus, the size of
InitializeCw is linear. According to the previous section, the formula ϕm and,
therefore, also ϕM(w) has a size of O(m2 log m) = O(n2 log n) and can on input w
be written in polynomial time. The machine M accepts w if and only if ϕM(w) is
satisfiable. �

Corollary 4.2.1 Satisfiability of a formula in first order logic with < is in no
elementary space-bounded complexity class.

We can take the formula ϕM(w) from the proof of Theorem 4.2.1 and construct

∃s1, ..., sl (¬∃x, i, j (i < j < l ∧ si(x) = sj(x)) ∧ ϕM(w))

where {s1, ..., sl} := Σ≤n+1 are all symbols, which can occur in w′′. The formula
is true if and only if ϕM(w)) is satisfiable. From this, we draw the following
conclusion:



90 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

Corollary 4.2.2 The truth of formulas in (W)MSO is complete for the com-
plexity class

⋃

c

DSPACE(g(cn)) under polynomial time reduction. Therefore, the

language of true formulas in (W)MSO (as well as the language of satisfiable
formulas in (W)MSO) is contained in no elementary space-bounded complexity
class.



4.3. RECOGNIZING #A = #B PICTURES 91

4.3 Recognizing #a = #b pictures

Let L be the set of pictures over {a, b}, where the number of a’s is equal to the
number of b’s. We want to start here with a negative statement; under which
circumstances is L not recognizable. This follows easily if we use the following
necessary condition for recognizability, reflecting that, at most, an exponential
amount of information can get from one half of the picture to another:

Lemma 4.3.1 [Mat98] Let L ⊆ Γ∗,∗ be recognizable and (Mn ⊆ Γn,∗ × Γn,∗) be
sets of pairs with ∀n,∀(l, r) ∈ Mn lr ∈ L and
∀(l, r) 6= (l′, r′) ∈ Mn lr′ 6∈ L or l′r 6∈ L.
Then |Mn| ∈ 2O(n). lr = l r







n

Considering pictures where the width is f(n) 6∈ 2O(n) for the height n, we can
find f(n) pairs (l1, r1), (l2, r2), ..., (lf(n), rf(n)), such that li has i more a’s as b’s,
and ri has i more b’s as a’s for all i ≤ f(n). Thus, liri is in L, but all the lirj with
i 6= j have a different number of a’s and b’s and are, thus, not in L. Assuming
recognizability leads with Lemma 4.3.1 to a contradiction with f(n) 6∈ 2O(n).
Therefore, we get the following:

Corollary 4.3.1 The language of pictures over {a, b}, where the number of a’s
is equal to the number of b’s (and where sizes (n,m) might occur which do not
follow the restriction m ≤ f(n) or n ≤ f(m) for a function f ∈ 2O(n)) is not
recognizable.

To formulate the main result (Theorem 4.3.1) of this section, we need the follow-
ing definition:

Definition 12 The picture language L= (respectively Lc
=) is the set of pictures

over {a, b} (respectively {a, b, c}), where the number of a’s is equal to the number
of b’s and having a size (n,m), with m ≤ 2n and n ≤ 2m.

Remark: We could as well use any other constant base k instead of 2. This
means that there is no gap to Corollary 4.3.1.

Theorem 4.3.1 The languages L= and Lc
= are recognizable.

The next section will show how easy it is if we only have to count the difference
of a’s and b’s in the bottom line. The problem which arises in the general case
is that the counter is not able to accept simple increments at any local position.
Section 4.3.2 reduces to the problem of counting only a’s and b’s in odd columns
and rows.



92 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

In order to overcome this problem, the essential idea of the proof of Theorem
4.3.1 is to construct some ’counting flow’ which has small constant capacity at
each connection leading from one position to its neighbor. The connections have
different orders in powers of 4. For example, a flow of 7 in a connection of order
4i represents a total flow of 7 · 4i. Similar to the counter used in [Für82], the
number of occurrences of a connection with order 4i is exponentially decreasing
with i. Since the order cannot be known on the local level (the alphabet but
not the order is finite), some ’skeleton structure’ must describe a hierarchy of
orders. At each position, this ’skeleton structure’ has to provide the information
about whether some counted value can be transferred from one order to the next.
For example, when a row having the order 4i crosses a column having the order
4i+1, the flow in the row may be decreased by 4 and simultaneously the flow
in the column is increased by 1. In this way, the total flow is preserved. This
skeleton-language will be described in Section 4.3.3. Section 4.3.4 describes the
counting flow for squares of the power of 2 using a variation of the Hilbert-curve.
Section 4.3.5 shows the generalization to exponentially many appended squares
by combining the techniques of Sections 2 and 4 and shows the generalization to
odd cases by folding the picture.

4.3.1 Simple counting for one line

This section can be viewed as an exercise for Section 4.3.4. Here, we consider the
language of pictures over Σ = {a, b, c} with an equal number of a’s and b’s at the
rightmost column and the rest filled with c’s (See for example, π(p) below).
We use a local pre-image language describing a flow. It is defined over the alpha-
bet Γ = {−1, 0, 1}4, where the numbers in (l, r, u, d) describe the flow going out of
the position to the left, the right, up and down. In the graphical representation,
we describe this by arrows. The sources of the flow correspond to the a’s which
is described by π((1, 0, 0, 0)) = π( �) = a. Analogously, the b’s are the sinks
which is described by π((−1, 0, 0, 0)) = π(- ) = b. Everywhere else, the flow has
to be continued. This is expressed by π((l, r, u, d)) = c if 2l + r + u + d = 0.
The main point is that the flow to the left side has the double order. This means
that flows from the rightmost column to the second rightmost column and flows
within the second rightmost column have order 1. In general, flows between the
i-th rightmost column and the i + 1-th rightmost column, and flows within the
i + 1-th rightmost column have the order 2i−1. For example, we may use the
pre-image p̂ = in Figure 4.1 as the counting flow for π(p̂) =.
Although there might be several possible pre-images, one of them can be obtained
in the following way: For a and b, there is only one possible pre-image. The pre-
image (l, r, u, d) for c is chosen by taking r := l′ for the right neighbor (l′, , , )
and u := d′ for the upper neighbor (, , , d′) (u := 0 if the upper neighbor is #).
If r + u = 2 (respectively −2), let l := −1 (resp 1) and d := 0. If r + u = 1
(respectively −1), let d := −1 (resp 1) and l := 0; else d := l := 0.



4.3. RECOGNIZING #A = #B PICTURES 93

p̂ =

# # # # # # # # #
# �?�

# �?��?�

# ?? �?�

# �?��?��?�

# ?? -
6
-

# ?? �6�

# ?? -
6
-

# ??-
6
--6-

# ?? 66
-
6
-

# -?--6--6-

# # # # # # # # # #
#
#
#
#
#
#
#
#
#
#
#

π(p̂) =

# # # # # # # # #
# c c c c c c c a
# c c c c c c c a
# c c c c c c c a
# c c c c c c c a
# c c c c c c c b
# c c c c c c c a
# c c c c c c c b
# c c c c c c c b
# c c c c c c c b
# c c c c c c c b
# # # # # # # # # #

#
#
#
#
#
#
#
#
#
#
#

Figure 4.1: Example for a flow counting for one line

In this way, the flow from one row down to the next row corresponds to the binary
representation of the difference in the number of a’s and b’s so far. A flow to the
left corresponds to a carry-bit.
The formal definition for ∆ is

∆ := {
#
γ | γ = (l, r, 0, d)} ∪ {

γ
# | γ = (l, r, u, 0)}

∪ {#γ | γ = (0, r, u, d)} ∪ {γ # | γ = (l, 0, 0, 0), l ∈ {1,−1}}

∪ {
δ
γ | δ = (l, r, u, d), γ = (l′, r′, d, d′)}

∪ { δ γ | δ = (l, r, u, d), γ = (r, r′, u′, d′)}.

Remark: We could as well use Γ = {1 − k, ..., k − 1}4 and π((l, r, u, d)) = c for
k · l + r + u + d = 0 to be able to treat pictures of size (n,m) with m ≤ kn.

4.3.2 Reduction to odd positions

We view a mapping e : Σ 7→ Σi,j
e as lifted to map a picture of size (m,n) over Σ

to a picture of size (im, jn) over Σe.

Lemma 4.3.2 A picture language L over Σ is recognizable if e(L) is recognizable
and e is injective.

Proof: Let e(L) be recognizable by a mapping πe : Γe 7→ Σe and a tiling ∆e ⊆
Γ2,2

e . Construct Γ := {g ∈ Γi,j
e | ∃s ∈ Σ e(s) = πe(g)}, π : Γ 7→ Σ with

π(g) = s for e(s) = πe(g) (e injective) and ∆ := {p ∈ (Γe ∪ {#})2i,2j | p ∈

(Γ∪ {#})2,2, T2,2(p) ⊆ ∆e ∪ {
##
##}} where, for simplicity, we identify # with the

picture of size (i, j) consisting only of #.

We use e : {a, b, c} 7→ {a, b, c, d}2,2 with e(x) =
x d
d d for x ∈ {a, b, c}. In order to

show that Lc
= and, thus, L= = Lc

=∩{a, b}∗,∗ is recognizable, it remains to show in



94 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

Lemma 4.3.6 that e(Lc
=) is recognizable. This means that for LF in Lemma 4.3.4,

we only have to care about a’s and b’s on positions with a odd row and column

number by intersecting LF with the recognizable language {
x d
d d | x ∈ {a, b, c}}∗,∗.

4.3.3 The skeleton for squares of the power of 2

The skeleton describes a square, where each corner is surrounded by a square of
half the size. The skeleton is described as a hv-local language LS over the al-
phabet ΣS = { , , , , • , • , • , • , ·, ··, :, ∨ , ∧ , <, >, ∨ , ∧ , <, >, , ∨ ,
∧ , , <, >}. Because of the last section, we are particularly interested in the
intersection LS ∩ LR := {p1, p2, ...} (see Figure 4.2) with the recognizable lan-

guage LR = {
x y
z w | x ∈ { , , , }, y, z, w ∈ { • , • , • , • , ·, ··, :, ∨ , ∧ , <,

>, ∨ , ∧ , < , >, , ∨ , ∧ , , <, >}}∗,∗.
We define LS using ∆S := T1,2(p̂4) ∪ T2,1(p̂4) ∪ { : . , . , ∨ . , ∧ . ,
..
. , . ,

>
. ,

<
. ,

.
>,

.

,

.
<,

∧
<,

<
∨ ,

∧
∧ , <,

∨
<,

∨
<,

<
,
<
∧ ,

<
∧ ,

. , . ∨ , . ∧ , < ∧ , ∧ >, < <, ∧ , > ∧ , > ∧ , ∧ , ∧ <, ∧ <}.
First, we will show by induction that for every i, a picture pi of size (2i, 2i) is in
LS ∩ LR:

Consider p3 as the base of induction and p4 as an example for a step of induction.
Except from the right and lower edge where the picture meets the #’s of the
frame, ∆S has all the symmetries of a square. The upper left quarter of pi+1

is exactly pi. Furthermore, the 3 sub-pictures of size (2i − 1, 2i − 1), starting
with pi+1(1, 2

i + 1) = , pi+1(2
i + 1, 1) = and pi+1(2

i + 1, 2i + 1) = , are
rotations of the sub-picture of size (2i − 1, 2i − 1), starting with pi(1, 1) =
around pi+1(2

i, 2i) = • . Now, ∆S allows us to continue the 2i-th row after •
with ’s until the > at the column with the only ∨ at the lower edge of the
upper right sub-picture. From now on, continue with > ’s until the ∨ at the last
column which had .’s so far and continues with :’s until the • in the lower right
corner. (Column 2i and last row analogously).

The opposite direction says that for every i, exactly one picture pi of size (2i, 2i)
is in LS ∩ LR. This follows (considering the only possibility for the right and
lower edge) from the following lemma:

Lemma 4.3.3 For every picture p ∈ LS ∩ LR and for every i > 1, r, c ≥ 0,
the sub-picture q of size (2i − 1, 2i − 1) starting at p(c2i + 1, r2i + 1) has the
following shape at the outside: The upper row is periodically filled by q(t, 1) =
(respectively ∨ , , ·) if tMod4 = 1 (respectively 2,3,0) and t < 2i. The same
holds in a symmetric manner after 90o-rotations. Two exceptions to this are the
following:



4.3. RECOGNIZING #A = #B PICTURES 95

p̂1 =

# #

∨
> •
# ##

#

#

#

#

#

#

#

,

p̂2 =

# # # #

∨
> •

.

> ∨
∨

. >

:
.. •

# # # ##

#

#

#

#

#

#

#

#

#

#

#

, p̂3 =

# # # # # # # # #

# ∨ . ∨ .

# > • > ∨ < • < .

# ∨ : ∨ .

# . > .. • > > ∨
# ∧ ∧ :

# > • > ∨ < • < :

# ∧ ∨ ∧ :

# . . . > .. .. .. •
# # # # # # # # # #

#

#

#

#

#

#

#

#

#

p̂4 =

# # # # # # # # # # # # # # # # # #

# ∨ . ∨ .

# > • > ∨ < • < .

# ∨ : ∨ .

# . > .. • > > ∨
# ∧ ∧ :

# > • > ∨ < • < :

# ∧ ∨ ∧ :

# . . . > .. .. .. •
# ∨ ∧ ∨
# > • > ∧ < • <

# ∨ ∨
# . > .. • > > ∨
# ∧ : ∧ ∨
# > • > ∧ < • < ∨
# ∧ . ∧ ∨
# . . . . . . . >

∨ . ∨ . #

> • > ∨ < • < . #

∨ : ∨ . #

< < • .. < . . #

∧ ∧ . #

> • > ∨ < • < . #

∧ ∨ ∧ . #

> > > > ∨ #

∨ ∧ ∨ : #

> • > ∧ < • < : #

∨ ∨ : #

< < • .. < . : #

∧ : ∧ : #

> • > ∧ < • < : #

∧ . ∧ : #
.. .. .. .. .. .. .. • #

# # # # # # # # # # # # # # # # # # .

Figure 4.2: The first 4 examples in LS ∩ LR



96 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

1. For even (respectively odd) r, we have q(2i−1, 2i − 1) = ∨ (respectively
q(2i−1, 1) = ∧ ) if i > 2 and q(2i−1, 2i−1) = ∨ (respectively q(2i−1, 1) = ∧ )
if i = 2.

2. For even (respectively odd) c, we have q(2i − 1, 2i−1) = > (respectively
q(1, 2i−1) = <) if i > 2 and q(2i−1, 2i−1) = > (respectively q(1, 2i−1) = <)
if i = 2.

A Java program3 demonstrates that, in most cases, the symbol is determined by
its left and upper neighbors; a wrong choice in the remaining cases will sooner or
later result in an unsolvable case at another position. The program is interactive
and could help the reader to understand the following proof.
Proof: For each induction step we need the the following additional Claim C:

All left neighbors of q(1, j) with 1 ≤ j < 2i are in {#, ·, :, , ∨ , ∧}
with the only exception that the left neighbor of q(1, 2i−1) is in {∧ , ∧ ,
∨ , ∨ , >} if c is odd. Analogously, all upper neighbors of q(j, 1) with
1 ≤ j < 2i are in {#, ·, ··, , < , >} with the only exception that the
upper neighbor of q(2i−1, 1) is in {<, <, >, >, ∨} if r is odd.

Base of induction for i = 2: Assume, furthermore, by induction on r and c, that
Claim C holds (The neighbors are # for c = 0 respectively r = 0). Due to LR

we have q(1, 1) ∈ { , , , }. If q(1, 1) = , we would, by ∆S, require the
left neighbor to be in {∨ , ∧}. If q(1, 1) ∈ { , }, we would by ∆S, require
the upper neighbor to be in {<, <, >, >}. This shows that q(1, 1) = is
the only remaining possibility for a position with both odd coordinates. As a
consequence, considering the upper neighbor, q(2, 1) = ∨ (respectively = ∧ )
if r is even (respectively odd) and q(1, 2) = > (respectively = < ) if c is even
(respectively odd). For each of the 4 combinations, q(2, 2) is one of the 4 possible
symbols • , • , • or • , where the two lines in the symbol of q(2, 2) point to
the exceptions of the outside shape. Furthermore, q(3, 1) = , q(1, 3) = .
Thus, one of the 4 combinations of q(2, 3) = ∧ (respectively = ∨ ) if r is odd
(respectively even) and q(3, 2) = < (respectively = > ) if c is odd (respectively
even) and q(3, 3) = .
Right neighbors of q(3, 1) = , q(3, 2) = < and q(3, 3) = must be in {·, :
, , ∨ , ∧} which proves Claim C for c + 1 if c is odd. If c is even, the right
neighbor of q(3, 2) = > is in {∧ , ∧ , ∨ , ∨ , >} which proves Claim C for c + 1.
In the same way, we prove Claim C for r + 1.
Step from i to i + 1: Assume furthermore, by induction on r and c, that Claim
C holds for i + 1. (The neighbors are # for c = 0 respectively r = 0). By
induction on i, we have that each of the 4 sub i-pictures of the i + 1-sub-picture
q has its exceptional side hidden inside q. Since q(1, 2i − 1) = , considering

3Available at http://www-fs.informatik.uni-tuebingen.de/∼reinhard/picgen.html



4.3. RECOGNIZING #A = #B PICTURES 97

the possible left neighbors leads to q(1, 2i) = · if i + 1 is even, respectively
q(1, 2i) ∈ {>, <} if i + 1 is odd. The periodical contents of the rows 2i − 1
and 2i + 1 only allows us to continue row 2i with the same symbol until column
2i−1, where q(2i−1, 2i) ∈ {>, >, <, <}. This allows us only the combination
q(1, 2i) = ... = q(2i−1 − 1, 2i) = · and q(2i−1, 2i) = > if i + 1 is even, respectively,
q(1, 2i) = ... = q(2i−1 − 1, 2i) = < and q(2i−1, 2i) = < if i + 1 is odd, which
has to be continued with q(2i−1 + 1, 2i) = ... = q(2i − 1, 2i) = ··, respectively, .
Depending on the analogous column 2i, we get q(2i, 2i) ∈ { • , • }, respectively,
q(2i, 2i) ∈ { • , • } and, further, have to continue with q(2i + 1, 2i) = ... =
q(2i +2i−1 − 1, 2i) = , respectively, ··, q(2i +2i−1, 2i) = > , respectively, < and
with q(2i + 2i−1 + 1, 2i) = ... = q(2i+1 − 1, 2i) = > if i + 1 is even, respectively,
· if i + 1 is odd. Together with the analogous column 2i, this completes the
description of q.
The right neighbor of q(2i+1−1, 2i) = > (respectively ·) must be in in {∧ , ∧ , ∨ ,
∨ , >} if c is even, respectively {·, :, , ∨ , ∧} if c is odd which proves Claim C
for c + 1. In the same way, we prove Claim C for r + 1.

4.3.4 The counting flow for squares of the power of 2

Lemma 4.3.4 e(Lc
=) ∩⋃i Σ

2i,2i

is recognizable.

Proof: We define a language LF in the following and show e(Lc
=) ∩ ⋃i Σ

2i,2i

=
LF ∩ e({a, b, c, }∗,∗). We give each flow from one cell to its neighbor a capacity
from -9 to 9 by defining ΣF := ΣS ×{−9,−8, ..., 9}4. Furthermore, we allow only
those symbols (x, l, r, u, d) ∈ Σ fulfilling:
π(x, l, r, u, d) := a if x ∈ { , , , } ∧ l + r + u + d = 1,
π(x, l, r, u, d) := b if x ∈ { , , , } ∧ l + r + u + d = −1,
π(x, l, r, u, d) := c if x ∈ { , , , } ∧ l + r + u + d = 0,
π(x, l, r, u, d) := d if x ∈ { • , • , • , • } ∧ l + r + u + d = 0,
or x ∈ {·, ··, :, , ∨ , ∧ , , <, >} ∧ l = −r ∧ u = −d,
or x ∈ {∨ , ∧ , ∨ , ∧} ∧ l + r + 4u + 4d = 0,
or x ∈ {<, >, <, >} ∧ 4l + 4r + u + d = 0. The tiling

∆F := {
f
g |

f1
g1 ∈ ∆S, f = (f1, l, r, u, d), g = (g1, l

′, r′,−d, d′)}
∪ { f g | f1 g1 ∈ ∆S, f = (f1, l, r, u, d), g = (g1,−r, r′, u′, d′)}

takes care of the continuation of the flow (additionally, we have the tiles with #

having flow 0). Here the tile f g is depicted as
f1l r
u

d
g1-r r′
u′

d′ illustrating that the
flow r going out of f in the right direction is the same as going in g from the left.
The symbols , , , allow sources and sinks of the flow; they only occur in
odd rows and columns and, therefore, have the order 1. The symbols • , • , • , •



98 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

occur where the flow in the column and the row have the same order. The symbols
·, ··, :, , ∨ , ∧ , , <, > occur where the flow in the column and the row have a
completely different order. The symbols ∨ , ∧ , ∨ , ∧ , <, >, <, > occur where
a rectangle or its elongation meets a rectangle of half the size. This means that
a carry of the counter can take place here. Examples are

π(
-1 3

-6

5 ) = a, π(
•-2 5
-6

3 ) = d, π(
:-2 2
-4

4 ) = d, π(
>-4 5
-1

-3 ) = d.
In general, for any j and i, the 2i−1 + j · 2i -th row, respectively, column have the
order 4i (if they are in the picture). The symbols in { , , , , • , • , • , • }
occur where a 2i−1 + j · 2i -th row crosses a 2i−1 + k · 2i -th column having
the same order. The symbols in {∨ , ∧ , ∨ , ∧} occur where a 2i−1 + j · 2i -th
row crosses a 2i + k · 2i+1 -th column having the fourfold order (<, >, <, >

vice versa). Thus, from the existence of a flow, it follows that the number of
sources and sinks (a’s and b’s) must be equal. A picture in e({a, b, c, }∗,∗) has
its pre-images in LR and, thus, Lemma 4.3.3 makes sure that the projection to
the first component in the 5-tuples has the correct structure. This means that
LF ∩ e({a, b, c, }∗,∗) ⊆ e(Lc

=) ∩⋃i Σ
2i,2i

.
For the other direction, we have to show that for any picture of size (2i, 2i) with
an equal number of sources and sinks (without loss of generality on positions on
odd rows and columns), we can construct at least one corresponding flow:
Here we use the Hilbert-curve, where each corner point (2i−1 +jx ·2i, 2i−1 +jy ·2i)
of the curve having order 4i is surrounded by 4 corner points (2i−1 + jx · 2i ±
2i−2, 2i−1 + jy · 2i ± 2i−2) of the curve having order 4i−1 (see also [NRS97]).

A curve of each order uses 3 lines of a square and then one elongation line to
get to the next square. In this way, at least one of the 3 lines crosses the curve
of the next higher order. (If it crosses it a second time, we ignore the second
crossing in the following consideration.) Now, we construct the flow along the
curve according to the following rules: If a flow of more than 3 (respectively
less than -3) crosses a flow of the next higher order or if a flow of more than
0 (respectively less than 0) crosses a negative (respectively positive) flow of the
next higher order, it is decreased (respectively increased) by 4 and the flow of
the next higher order is increased (respectively decreased) by one.



4.3. RECOGNIZING #A = #B PICTURES 99

We may assume by induction that a curve has a flow ∈ [−6, 6] as it enters a
square. After crossing the curve of the next lower order for at most 3 times,
(which could bring the flow for example to -9 or 9), it will cross the curve of
the next higher order, therefore, bringing the flow to [−5, 5]. Since we have to
consider 4 crossings in the square, the first condition of the rule makes sure that
the curve also leaves the square with a flow between -6 and 6. In this way, it never
exceeds its capacity. The second condition of the rule makes sure that a small
total flow will find itself represented in curves with low order. This is important
towards the end of the picture.
Example: In the sub-picture π(p) in Figure 4.3, the difference of a’s and b’s is
2. Assume for example that the difference of a’s and b’s above π(p) is 16=4·3+4.
This is represented by a flow of 3 with order 4 entering the following pre-image
p from above at column 2, together with a flow of 4 with order 1 entering the
following pre-image p from above at column 1. As a result of adding 2 within p,
the total difference of 18=16+2 is represented by a flow of 1 with order 16, and
a flow of 2 with order 1 leaving p to the right side.

p =

# 3
-4

∨-3 3
-3

3
-3

2
∧ 3

-4
∨-3 3 -3 2

# > •
-3

3
>
-2

2
∧ <

4

-4
• <

# -3
4

∨3 -3
-3

3
3

-2
-3

4
∨3 1
-1

-1
2

# .
-4

4
>
-3

3
.. • > 1

1

-5
>-1 1
-2

2

#
-4

5
∧
-3

3
4

-3
:-4 4 -4

5
∧
5

-5

-2

1

# >
-5

5
• 3
-3

>-3 4
3

-7
∧-4 4 <-4 5

-5

1
•-5
5

<
-1

1

# 6
-5

∧-6 6 -6
7

.
-1

∧
-1

π(p) = e





b b
a a

b b
a a

a a
a a

a b
b b#

#
#
#



 =

# b d b d b d b
# d d d d d d d
# a d a d a d a
# d d d d d d d
# a d a d a d b
# d d d d d d d
# a d a d b d b

Figure 4.3: Example for a counting flow p for a sub-picture π(p) along a Hilbert-
curve (last line of d’s omitted).



100 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

4.3.5 The generalization to exponentially many appended
squares

Lemma 4.3.5 e(Lc
=) ∩⋃i,j Σj2i,2i

is recognizable.

Proof: Adding the tiles # ,
>
# ,

>
# ,

∧
# ,

<
# ,

<
# and

•
# to ∆S allows skeleton-pictures

of size (j2i, 2i) for any j > 0.

The counting flow described in the previous section can be continued from one
square to the next, as the following picture illustrates:

But what can we do with a flow (of order 4i) reaching the bottom line? The idea
is to combine the method with the method of Section 4.3.1. Therefore, we use
Σe := ΣF × {−1, 0, 1}4 as a new alphabet and we design ∆e in such way that a
transfer of the flow from one system to the other is allowed only at the symbols •
and • which occur at the bottom line. The r-th row (from the bottom) can now
have flows of the order 4i · 2r−1. This allows us to represent numbers up to 4i · 22i

and, thus, recognize pictures of size (j2i, 2i) for any 0 < j < 22i

(respectively k2i

)
with the same number of a’s and b’s.

Lemma 4.3.6 e(Lc
=) is recognizable.

Proof: For the general case of pictures of size (m,n), where we assume without
loss of generality m > n, we choose the smallest i with 2i ≥ n and the smallest j
with j2i ≥ m. A picture of size (j2i, 2i), which was recognized with the method
described so far in Lemma 4.3.5, can be folded twice. Since 2n > 2i and 2m > j2i,
we can do this in such a way that we get the size (m,n). This folding can be
simulated by using an alphabet Σg := Σ4

e, where the first layer corresponds to the
picture, and the other 3 layers may contain the simulated border which consists
of # and extensions of the picture by using only c’s and d’s. These extensions
may contain parts of the flow in the pre-image (having no sinks and sources). ∆g

simulates ∆e on each layer by additionally connecting layer 1 with 4 and 2 with
3 at the top border and 1 with 2 and 3 with 4 at the right border.



4.3. RECOGNIZING #A = #B PICTURES 101

2i

︷ ︸︸ ︷
2i

︷ ︸︸ ︷

︸ ︷︷ ︸

n

m













2i

Remark: In the same way, we can further generalize this counting method to
n-dimensional recognizable ’picture’-languages by folding L= into n dimensions.
This method is described in [Bor03].

4.3.6 Outlook

It remains open to find a deterministic counting method on pictures. Obviously,
this cannot be done using the deterministic version of on-line tessalation accep-
tors used in [IN77] as a model, since the automaton cannot handle the number
occurring in the last line. But, a good candidate is the notion of deterministic
recognizability in Section 4.4.1 At least in the case of squares of the power of 2, a
construction of the skeleton along the Hilbert-curve should be possible. However,
it will be difficult working out the details in this case.



102 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

4.4 Connectedness in a Planar Grid

An interesting question for picture recognition is, whether an object is ’in one
piece’. This means that the subgraph of the grid, which is induced by those
positions containing the letter (representing the special color of the object), is
connected.

Theorem 4.4.1 The language of pictures over {a, b}, in which all occurring b’s
are connected, is recognizable.

Proof: As shown in [GRST94], the set of recognizable languages is closed under
concatenation. Therefore, it suffices to show that the language of pictures pr over
{a, b}, in which all occurring b’s are connected and one of them touches the left
side, is recognizable. Then, we can concatenate with the language of pictures pl

consisting only of a’s. The result is the language of pictures plpr which is the
language described in the theorem.

The idea is that the b’s are connected if and only if they can be organized as
a tree being rooted at the lowest b on the left side. (All a’s under this b are
distinguished from the other a’s.) Here, π and ∆ are constructed in a way such
that every g in Γ with π(g) = b encodes the direction to the parent node. To
achieve this, ∆ has to contain tiles having, for example, the form

# ar

# #
,

# ar

# ar
,

# b
?

# ar
,

b�

b
6

,...

but contain no tiles of the form

b
?

b
6

,

b
?

b�

b -
b
6

,

b
?

a
,

b - a

,...

which would either complete a cycle or not connect to parent nodes.

However, the following picture shows that it is not so easy: A problem of this
naive approach is that cycles could exist independently from the root.



4.4. CONNECTEDNESS IN A PLANAR GRID 103

# # # # # # # # #

# a b
?

b� a a b
?

a #

# b
?

b� a a b - b - b
?

#

# ar
b
6 b� a

b
6 a b

?
#

# ar a
b
6 a

b
6 b� b� #

# ar a
b
6 a a

b
6 a #

# # # # # # # # #

To solve this problem, we additionally encode tentacles into each cell. While these
tentacles can occur at the lower and the right side, they must occur at the lower
right corner. (This means we interpret one cell as a two-dimensional structure
of four cells like embedding a grid into a grid with double resolution similar to
Lemma 4.3.2.) These tentacles also have to build trees which in turn can have
their roots at any # or ar. Furthermore, we do not allow a tentacle crossing a
connection of the tree of b’s. Each lower right side of a cell must be a tentacle
part and needs a way to a # or ar. Since the b’s cannot have a cycle around
such a spot, they cannot have a cycle at all. In the same way, we have to avoid
cycles in a tentacle tree. Therefore, we also organize the a’s in subtrees which are
rooted to the tree of b’s. This means that the tree of b’s and a’s and the tentacle
trees completely intrude the spaces between the other tree and, therefore, avoid
any cycle.
We distinguish 4 kinds of symbols in the alphabet Γ concerning the possibilities
for the upper right and the lower left corner. Here is an example for each of these
kinds (four of the fourth kind):

a�

� , -

a
?

, -a
6

, �
a
6

, -
a�

, ?

a -

, ?

b�

,...

The first kind allows 2 possible parent directions for the a (the other 2 directions
would cross the tentacle) and 4 possible parent directions for the tentacle. This
leads to 8 possible combinations. The second kind allows 4 possible parent direc-
tions for the a and 2 possible parent directions for the tentacle. This again leads
to 8 possible combinations. The third and fourth kind allow 3 possible parent
directions for the a and 3 possible parent directions for the tentacle. This leads
to 9 possible combinations. Therefore, we have 34 elements for a and the same
number for b; including ar we have a total of |Γ| = 69.
Our tiling ∆ allows neighboring cells if tentacles have a parent direction pointing
to a tentacle, # or ar. Furthermore, b’s must have a parent direction pointing to
a b or downward to an ar, and a’s must have a parent direction pointing to an a
or a b. For example (only half of a tile is shown):



104 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

# # # # # # # # #

#
�
a -

-

b
? -

b�

-
a� a� 6 6b

? -

a
? #

#
?

b
? -

b� a� 6
�
a -

-
b -

?

b -

-

b
? #

# ar

?
b
6 6b�

�
a -

�
b
6 a�

� -

b
? #

# ar

?
a
6

-
b
6

-
b�

?

b�

-
b�

-
b�

#

# ar

?
a
6

?
b
6

?

a�

?
a�

?
b
6

?

a�
#

# # # # # # # # #

Figure 4.4: An example for tree of a’s and b’s with tentacle trees

-
a�

b
6 6

, -
a�

#
,

ar b
6

� ,

?

b�

?

b�

, ?

a�

?

a�

, ?

b�

?

a�

, ...

However, ∆ does not allow tiles containing for example

?

a�

?

b�

, or ?
b�

?

a�

.

The picture p̂ could, for example, look like in Figure 4.4.

4.4.1 The Recognition of a Picture as a Deterministic
Process

To recognize a given picture p, can be viewed as a process of finding a picture p′

over Γ in the local language with π(p′) = p. One major feature for recognizable
languages is that this process is nondeterministic.
For practical applications, however, we would like to have an appropriate deter-
ministic process starting with a given picture p over Σ and ending with the local
p′ over Γ. The intermediate configurations are pictures over Σ∪Γ. One step is a
replacement of an s ∈ Σ by a g ∈ Γ with s = π(g) which can be performed only
if it is locally the only possible choice. This means formally:



4.4. CONNECTEDNESS IN A PLANAR GRID 105

Definition 13 Let Σ ∩ Γ = ∅, π : Γ → Σ and ∆ ⊆ (Γ ∪ {#})1,2 ∪ (Γ ∪ {#})2,1,
which means we consider two kinds of tiles

(We conjecture that using 2 × 2-tiles would make non recognizable picture lan-
guages deterministically recognizable): Extend ∆ to ∆′ =

∆ ∪







s
r ,

s
f ,

g

r , q o , q d , e o

∣
∣
∣
∣
∣
∣
∣

g
f , e d ∈ ∆, s = π(g),
r = π(f), q = π(e), o = π(d)







by also allowing the image symbols in the tiling.
For two intermediate configurations p, p′ ∈ (Σ ∪ Γ ∪ {#})m,n with n,m > 0, we
allow a replacement step p ==>

(∆,π)
p′, if for all i ≤ m, j ≤ n, either p(i, j) = p′(i, j)

did not change, or the following three conditions hold:

1. p(i, j) = π(p′(i, j)) is replaced by its pre-image and

2. all of the 4 tiles

p(i, j-1)

p′(i, j)

,

p′(i, j)

p(i, j+1)

,

p(i-1, j) p′(i, j)

and

p′(i, j)p(i+1, j)

which contain this p′(i, j) are in ∆′, and

3. the choice of p′(i, j) was ’forced’. This means that there is no other g 6=
p′(i, j) in Γ with p(i, j) = π(g) such that replacing p(i, j) in p by g would
result in each of the 4 tiles which contain this g is in ∆′.

If the choice of p′(i, j) was forced, even if 3 of the neighbors were in Σ (or regarded
as their image of π), then the replacement step p ==>

m(∆,π)
p′ is called mono-causal.

The accepted language is Ld(∆, π) := {p ∈ Σ∗,∗|p̂ ∗
==>
(∆,π)

p′ ∈ (Γ ∪ {#})∗,∗}. and,

analogously, Lmd(∆, π) := {p ∈ Σ∗,∗|p̂ ∗
==>

m(∆,π)
p′ ∈ (Γ ∪ {#})∗,∗}. A picture lan-

guage L ⊆ Σ∗,∗ is called deterministically recognizable if there are ∆, π with
L = Ld(∆, π) and, analogously, is called mono-causal deterministically recogniz-
able if L = Lmd(∆, π).

Clearly Lmd(∆, π) ⊆ Ld(∆, π) ⊆ L(∆, π). Furthermore, it is easy to see that, if
we regard possible replacements as voluntarily, ==>

(∆,π)
is confluent on pictures in



106 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

Ld(∆, π) and their intermediate configurations. (However, even if the generated
picture p′ ∈ Γ is unambiguous, this does not mean that a deterministically rec-
ognizable language is unambiguously recognizable in the sense of [GR96] since
the simulation of order of replacements might be ambiguous.) This gives us a
simple algorithm to simulate the process in the following way: Each time a cell
is replaced, we add those neighbors of the cell to a queue which are now forced
to be replaced and not already in the queue.

Corollary 4.4.1 Deterministically recognizable picture languages can be accepted
in linear time.

As an exercise for the following Theorem 4.4.2 we show:

Lemma 4.4.1 The language of pictures over {a, b}, in which all occurring b’s
are connected to the bottom line, is mono-causal deterministically recognizable.

Proof: The language is Ld(∆, π) for π(xi) = x and ∆ =







bc

# , # bi , bi bi , bi # ,
ac bi , bi ac ,

#

bi ,

bi

bi ,

ac

bi ,

bi

ac

ac

# ,
#
ac ,

ac

ac , ac # , #ac , ac ac

∣
∣
∣
∣
∣
∣
∣
∣
∣

i ∈ {c, u}







.

Clearly, a’s can only be replaced by ac. The b’s could possibly be bc or bu. In the
first step, only the b’s at the bottom line can be replaced by bc since bu cannot
occur there. Then, in the following steps, b’s which are neighbors of an bc can only
be replaced by bc since a bu cannot occur beside a bc. In this way, all connected
b’s are replaced by bc.

Theorem 4.4.2 The language of pictures over {a, b}, in which all occurring b’s
are connected, is (mono-causal) deterministically recognizable.

Proof: The language is Ld(∆, π) for π(xi) = x and ∆ =







asr

# , # asr ,
asr asr ,

asr # ,

asl

asr ,
asl # ,

asl asl , # asl ,

asr

asl ,
#
asl,

#
asr,

bc
# ,

bc
asr,

bc
asl,asrbc , bcasl, # bc , bc # ,

#
bi ,

bi

bi , bi bi ,
bi
ac , bi ac ,

ac

bi , ac bi ,
bi
al ,

al

bi , al bi ,
bi
ar ,

ar

bi , bi ar ,
#
ai ,

ai

ai ,
ac

# ,

ar

# , # al , al ac , ac ac , ac ar , ar # ,

al

asr,

ac

asr,

ar

asl,

ac

asl,
br
# , # bl , br # ,

bl
asr,

br
asl

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

i ∈ {l, c, r}







.



4.4. CONNECTEDNESS IN A PLANAR GRID 107

The deterministic process starts in the lower left corner. If there is an a, then
asr is the only possible choice here since al cannot occur over # and ac, and ar

cannot occur right of #. Then, the right neighbor can only be asr since no other
ai can be right of an asr. This continues along the bottom line. Then, the process
proceeds in the lower right corner. If there is an a then, asl is the only possible
choice here since ar cannot occur over asr and ac, and al cannot occur left of #.
Analogously, the second line becomes asl. This continues in snakelike manner
producing asr on the way right, and asl on the way left until the first b is found.
This b is then forced to become a bc since neither bl nor br can be left of asl or
right of asr. Consequently, all connected b’s must become bc, and all remaining
a’s become al, ar or ac depending on their position.

# # # # # # # # #

# al ac ac bc bc bc ar #

# bc bc bc bc ac bc ar #

# al bc ac bc bc bc ar #

# al ac ac bc ac ac ar #

# asr asr bc bc ac ac ar #

# asl asl asl asl asl asl asl #

# asr asr asr asr asr asr asr #

# # # # # # # # #

# # # # # # # # #

# al ac ac bc ac b ar #

# b ac bc bc ac b ar #

# al bc ac bc ac b ar #

# al ac ac bc ac ac ar #

# asr asr bc bc ac ac ar #

# asl asl asl asl asl asl asl #

# asr asr asr asr asr asr asr #

# # # # # # # # #

As shown in the right picture, in situations where the b’s are not connected, some
of the individual b’s cannot be determined to bc, bl or br and the process stops.
Note that the tiling is not mono-causal since an a left of a bc can only become a
ac if the a under that a became an ac or asr (and not an asl); however, this could
be made mono-causal by introducing two more bi-symbols for the first b.
The fact that Lmd(∆, π) and L(∆, π) might be different makes the following
theorem non trivial:

Theorem 4.4.3 Every mono-causal deterministically recognizable language is
recognizable.

Proof: (Sketch) The idea is a generalization of the tentacle method in the proof
of Theorem 4.4.1. The tree, which was used there, corresponds to the order of
the replacements in Theorem 4.4.2 where a b was replaced by bc if the ’parent’ b
had beforehand been replaced by bc. Every cell contains encoded tentacles, like in
Theorem 4.4.2, and contains, additionally, the images of the 4 neighbors (which
is checked by the tiling) and a third pointer. These third pointers use the same
ways (but not the same direction) as the causal pointers and connect all cells to a
forest rooted to #’s. This together with the tentacle forest guarantees the cycle
freeness. In this way, the tilings simulate the mono-causal replacement.
Conjecture Every deterministically recognizable language is recognizable.



108 CHAPTER 4. PICTURE LANGUAGES AND LOGIC

What changes in the general case is that a combined effect of up to 4 neighbors can
force one cell to be replaced. This means that instead of a tree we need a planar
directed acyclic graph to simulate the order of replacements in a deterministic
process.
Open problem Are the deterministically recognizable languages closed under
complement?



Chapter 5

Reachability in Petri nets with
Inhibitor arcs

5.1 Introduction and Preliminaries

The reachability problem is decidable for Petri nets without inhibitor arcs. This
was proven in [May84], and later in [Kos84] and [Lam92]. (See also [Reu90] and
[PW03].) On the other hand, the reachability problem is undecidable for Petri
nets with two inhibitor arcs. This follows from [Min71]. The problem, whether
the reachability problem is decidable for Petri nets with one inhibitor arc, was
first brought up in [KLM89] and remained open up till now.

An important method is the use of semilinear sets which are defined using the
operators +, ∗, ∪ over finite sets of vectors (multisets). Semilinear sets are the so-
lutions of Presburger formula, where Presburger arithmetic is the first order logic
over the natural numbers and the addition operator. Presburger arithmetic is
decidable, and semilinear sets are closed under ∩ and complement [GS65],[ES69].

However, the reachability relation for a Petri net is, in general, not semilinear.
For that reason, the basic idea of this paper is to replace + and ∗ by the suitable
operators ◦Q and ∗Q. Using these operators, we will then be able to express a
reachability relation as the sequence of relations. This is much like the transitive
closure used in [Imm87] to characterize NL with first order logic, or considered
more generally in [Avr03].

However, applying the transitive closure operation to Presburger arithmetic, im-
mediately leads to undecidable problems. For this reason, the important principle
of monotonicity in the reachability relation of Petri nets is used to restrict the
idea of the transitive closure. In other words, the operator ∗Q is a monotone
transitive closure and we consider the following three steps:

1. One application of∗Q already allows us to express the reachability problem
in a Petri net without inhibitor arcs (Corollary 5.2.1).

109



110 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

Section 5.2.2 Inhib. arc Sect. 5.2.1 Reachability Sect. 5.1.1 ◦Q, ∗QXXXXXXz ?
Corollary 5.2.1

?

�����������)
Lemmata 5.2.1 and 5.2.2

?

�����������������������9
Lemma 5.2.3XXXXXz

�������������
Section 5.3 Expressions����)

Section 5.3.1 Condition T
?

Section 5.3.2 Size
��	

Lemma 5.3.1

�
�
�
�
���

Lemma 5.3.2
?

6

Lemma 5.3.4

@
@
@
@
@
@R
Lemma 5.3.3

HHHHHHHHHHHHj
Lemma 5.4.1

��	
Corollary 5.4.1

?

@
@
@@R

XXXXXXXXXXXXXXz

A
A
AAU

HHHHHHHj

�
�
��	

A
A
AAU ��	 @@R

Sect. 5.4 S. 5.4.1 S. 5.4.2 S. 5.4.3 S. 5.4.4 S. 5.4.5
@@R ? ��	

����
����)

�����9
Theorem 5.3.1 Normal-form for ExpressionsXXXXXz

Corollary 5.3.1 Decidability for one inhibitor arc
@
@@R
Corollary 5.3.2 Decidability for logic with mTC

?

���������������

?
Theorem 5.6.1

@@R

C
C
C
CCW

Corollary 5.6.1 Decidability
?

Theorem 5.7.1 Priority multicounter automata

XXXXXXXz
Theorem 5.8.1

Figure 5.1: Map of dependencies in this chapter



5.1. INTRODUCTION AND PRELIMINARIES 111

2. A second application of∗Q (containing the first one in a nested way) allows
us to express the reachability problem in a Petri net with one inhibitor arc
(Lemma 5.2.3).

3. Arbitrary nested applications of ∗Q allow us to express the reachability
problem in a Petri net for which there exists an ordering of the places such
that a place has an inhibitor arc to all those transitions which have an
inhibitor arc from a preceding place (Theorem 5.6.1).

In Section 5.3, we use expressions consisting of the operators ∪, ◦Q and ∗Q on
sets of multisets in a special form. (Lemmata 5.3.4 and 5.3.3 show that we can
bring every such expression in this form.) This introduces the idea of a nested
Petri net as follows:
The firing behavior of a complex (nested) transition is linked to firing sequences
in inner Petri nets by a semilinear relation. This is unlike the structured nets
described in [CK86]. The connection between these inner Petri nets corresponds
to the chain of vector addition systems used in [Kos84] and it is described by the
same semilinear relation. The main difference to the structure of the proofs in
[Kos84] and [Lam92] is that states are not anymore necessary since their function
is actually fulfilled (Section 5.4.4) by the nestedness of expressions. This is much
like a regular expression replacing a finite automaton.
Furthermore, we define a condition (normal form T in Section 5.3.1 corresponding
to the property Θ in [Kos84]) which allows us to check the emptiness of the
expressed set of multisets. In Section 5.3.2, we will define a size of the expressions
leading to a Noetherian order. In Section 5.4, we will construct an algorithm for
finding an equivalent expression which fulfills condition T . Each step of the
algorithm constructs an equivalent expression which is smaller with respect to
the defined size.
This allows us to decide the expressed reachability problem. Finally, Sections 5.7
and 5.8 will describe the conclusions for emptiness problems for automata.
An overview over the dependencies in this chapter is given in Figure 5.1.

5.1.1 Multisets

For the sake of a flexible description, we use multi-sets instead of vectors. A
multi-set over B is a function in NB.
We might write a multiset f ∈ NB as a set {b 7→ f(b) | b ∈ B}, as a table

[
b1

f(b1)
, b2

f(b2)
, ..., bn

f(bn)

]

or as an n-ary vector








f(b1)
f(b2)

...
f(bn)








. For the latter, we have to

assume an ordering on B = {b1, b2, ..., bn} (without relevance to the contents),
and in the first two descriptions, we only need to write those b’s with f(b) > 0.
Although we do not a priori limit the size of B, we only use multisets for a finite



112 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

B in this paper. For multisets, we use the variables c,d, e, f ,g,h,m,n, r, s,x,y,
and for sets of multisets, we use the capitals E,L,M,N,R and Id (the latter will
denote the identity for the operator ◦Q to be defined).
For A ⊆ B, we regard functions in NA ⊆ NB as extended to zero for undefined
values. This allows us to add any two multisets f ∈ NA and g ∈ NB and obtain a
multiset in (f + g) ∈ NA∪B with (f + g)(x) = f(x) + g(x) in the same way as we
would add the corresponding vectors assuming an ordering on A∪B. The neutral
element for addition is ∅ with ∅(x) = 0 for all x. It holds NA ∩ NB = NA∩B. We
define sgn(f) := {a | f(a) > 0} and sgn(M) :=

⋃

f∈M

sgn(f).

The restriction f |A of a multi-set f ∈ NB to A is

f |A (b) := f(b) if b ∈ A else f |A (b) := 0.

This means f |A:= {b 7→ f(b) | b ∈ A} . The complement operator is f |A:= {b 7→
f(b) | b 6∈ A} , thus f = f |A +f |A.
For a finite set M = {m1, ...,mk} ⊆ NA of multi-sets,

M∗ := {a1m1 + ... + akmk| ∀i ≤ k ai ∈ N}

is the set of all linear combinations generated by M. More generally, by M0 :=
{∅} and Mi+1 := Mi + M, we can define M∗ :=

⋃

i M
i.

New operator on multisets

For an unambiguous1 and injective binary relation Q, we define the operator ◦Q

on two sets of Multisets M and N as

N◦QM :=
{

n |π1(Q) +m |π2(Q)

∣
∣
∣n ∈ N,m ∈ M,∀(a, b) ∈ Q n(a) = m(b)

}

.

This means if n and m “match” according to Q, then the values for an a ∈
π1(Q) = {a|(a, b) ∈ Q} in n and the values for a b ∈ π2(Q) = {b|(a, b) ∈ Q} in
m are “used up against each other” and the rest is added. For example,
{



3
6
1



,





2
5
2





}

◦{(b1,b2)}

{



8
3
1



,





7
2
2



,





5
2
3





}

=

{



8
6
2



,





7
5
4



,





5
5
5





}

or {



3
6
1



,





2
5
2





}

◦{(b3,b3)}

{



8
3
1



,





7
2
2



,





5
2
3





}

=

{(
11
9

)

,
(

9
7

)}

The latter example shows that the dimension is necessarily reduced (b3 is used
up on both sides) if π1(Q)∩ π2(Q) is not empty. If π1(Q) and π2(Q) are disjoint,
we define IdQ := {{a 7→ 1, b 7→ 1} | (a, b) ∈ Q}∗ which is the neutral element

1A binary Q is unambiguous if Q−1 is injective.



5.1. INTRODUCTION AND PRELIMINARIES 113

for ◦Q. Obviously, it holds N◦∅M = N + M which makes + with the neutral
element Id∅ = {∅} a special case of the ◦Q operator.

Furthermore, for Q with π1(Q) and π2(Q) disjoint, we define ∗Q(M) as the

closure of M ∪ IdQ under ◦Q and the addition ◦∅. In other words, ∗0

Q(M) :=

IdQ, ∗i+1

Q (M) := ∗i

Q(M)◦Q(M + IdQ) and ∗Q(M) :=
⋃

i∗i

Q(M) . Again,∗∅(M) = M∗ is a special case.
Remark: Adding IdQ is a crucial point: It corresponds to the monotonicity in
Petri nets. Without this, deciding emptiness for the expressions would become
undecidable.

Properties of the new operators

Obviously, it holds N◦QM = M◦Q−1N. Furthermore, we can express the inter-
section of N,M ⊆ NA by N◦Q′L◦Q′′M = N ∩ M with Q′ := {(a, a′) | a ∈ A},
Q′′ := {(a′′, a) | a ∈ A} and L := {{a 7→ 1, a′ 7→ 1, a′′ 7→ 1} | a ∈ A}∗.
Note here that, in general, N◦Q′L◦Q′′M can only be written without brackets
because π1(Q

′′)∪(sgn(M)\π2(Q
′′)) and π2(Q

′)∪(sgn(N)\π1(Q
′)) are disjoint. If,

additionally, π2(Q
′′) and sgn(N) are disjoint and sgn(M) and π1(Q

′)) are disjoint,
then N◦Q′L◦Q′′M = L◦Q′−1∪Q′′(M + N).

Semilinearity

The class of semilinear sets is the smallest class of sets of multisets containing all
finite sets of multisets and being closed under ∪,+ and ∗. The semilinear sets
are also closed under ∩, as shown in [GS65] and [ES69].
The operator ◦Q preserves semilinearity: Assume N and M are semilinear sets
over A, then

N′ := {f ′ | ∃f ∈ N ∀a ∈ π1(Q) f ′(a′) = f(a) ∧ f ′(a) = 0 and
∀a /∈ π1(Q) f ′(a) = f(a)},

M′ := {f ′ | ∃f ∈ M ∀a ∈ π2(Q) f ′(a′) = f(a) ∧ f ′(a) = 0 and
∀a /∈ π2(Q) f ′(a) = f(a)} and

E′
Q := {{a′ 7→ 1, b′ 7→ 1}, {c 7→ 1} | (a, b) ∈ Q, c ∈ A}∗

= {f | ∀(a, b) ∈ Q f(a′) = f(b′)}

are as well semilinear sets over the set A ∪ π1(Q)′ ∪ π1(Q)′ which is extended by
new elements. Thus, N◦QM = ((N′ + M′) ∩ E′

Q) |π1(Q)′∪π1(Q)′ is semilinear.

On the other hand,∗Q does not preserve semilinearity as the following example

shows: Let M :=





1
0
0



+





0
1
2





∗

, then ∗{(b3,b2)}(M) =

{



a
b
c





∣
∣
∣
∣
∣
c ≤ b2a

}

which

is not semilinear.



114 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

5.2 The reachability relation for Petri nets

5.2.1 The reachability relation for Petri nets without in-
hibitor arcs

We describe a Petri net as the triple N = (P, T,W ) with the places P , the
transitions T and the weight function W ∈ NP×T∪T×P . A transition t ∈ T can
fire from a marking m ∈ NP to a marking m′ ∈ NP , denoted by m[t〉m′, if

m − W (., t) = m′ − W (t, .) ∈ NP .

A firing sequence w = t1...tn ∈ T ∗ can fire from m0 to mn, denoted by m0[w〉mn,
if m1, ...mn−1 exist with m0[t1〉m1[t2〉...[tn〉mn. The reachability problem is to
decide for a given net N with start- and end markings m0,me ∈ NP , if there is
a w ∈ T ∗ with m0[w〉me.
Let P+ := {p+ | p ∈ P} and P− := {p− | p ∈ P} be copies of the places and
P̂ := {(p+, p−) | p ∈ P}. For any multiset, m we define the corresponding copies
m− := {p− 7→ m(p) | p ∈ P} and m+ := {p+ 7→ m(p) | p ∈ P}. Then, we can
define the reachability relation for a transition t as

R(t) :=
{
m− + m′+

∣
∣m[t〉m′

}

=
{

r ∈ NP+∪P−
∣
∣
∣ ∀p ∈ P r(p−) − W (p, t) = r(p+) − W (t, p) ∈ N

}

and the reachability relation for a set of transitions T as R(T ) :=
⋃

t∈T

R(t).

The important property of monotonicity means that whenever m[w〉m′, then also
(m + n)[w〉(m′ + n) for any n ∈ NP . This corresponds to adding IdP := IdP̂

and R(t) can be written as the linear set R(t) = ct + IdP using ct with ct(p
−) =

W (p, t) and ct(p
+) = W (t, p) for all p ∈ P . The reachability relation for the

concatenation of two firing sequences is described by the operator ◦P := ◦P̂

and the iteration is done by ∗P := ∗P̂ . We define the reachability relation of

the petri net N as R(N) := R(T ∗) := ∗P (R(T )). The reachability problem
formulates as (m−

0 + m+
e ) ∈ R(N).

Corollary 5.2.1 There is a firing sequence w ∈ T ∗ with m0[w〉me in N if and
only if

m+
0 ◦PR(N)◦Pm−

e = (m−
0 + m+

e )◦AR(N) = {∅}
for A := {(p−, p−), (p+, p+) | p ∈ P}. In the other case (m−

0 + m+
e )◦AR(N) = ∅.



5.2. THE REACHABILITY RELATION FOR PETRI NETS 115

Example:
Consider the following Petri net:

p2��
��

t1

t2

p1��
��

� 2

6

-
2

3

?

We have R(t1) = {p−2 7→ 1, p+
1 7→ 2}+ IdP and R(t2) = {p−1 7→ 3, p+

2 7→ 2}+ IdP ;
thus, R(T ) = {{p−2 7→ 1, p+

1 7→ 2}, {p−1 7→ 3, p+
2 7→ 2}} + IdP . From this, we get

R(t1t2) = R(t1)◦PR(t2) =
[

p−2
1

, p−1
1

, p+
2
2

]

+ IdP ,

R((t1t2)
∗) =

[
p−2
1

, p+
2
1

]

+
[

p−1
1

, p+
2
1

]∗

+ IdP ,

R(t2t1) = R(t2)◦PR(t1) =
[

p−1
3

, p+
2
1

, p+
1
2

]

+ IdP ,

R((t2t1)
∗) =

[
p−1
2

, p+
1
2

]

+
[

p−1
1

, p+
2
1

]∗

+ IdP ,

R(t2t1t1) =
[

p−1
3

, p+
1
4

]

+ IdP ,

R((t2t1t1)
∗) =

[
p−1
3

, p+
1
3

]

+
[

p+
1
1

]∗

+ IdP ,

R((t1t1t2)
∗) =

[
p−2
2

, p+
2
2

]

+
[

p+
1
1

]∗

+ IdP ,

R((t1t2t1)
∗) =

[
p−2
1

, p+
2
1

, p−1
1

, p+
2
1

]

+
[

p+
1
1

]∗

+ IdP ,

...

This yields R((P, {t1, t2})) = R(T ∗) =∗P

({[
p−2
1

, p+
1
2

]

,
[

p−1
3

, p+
2
2

]})

=

{[
p−2
1

, p+
1
2

]

,
[

p−1
3

, p+
2
2

]}∗

+ IdP ∪
{[

p−2
1

, p+
2
1

]

,
[

p−1
2

, p+
1
2

]}

+
{[

p−1
1

, p+
2
1

]

,
[

p−2
1

, p+
1
2

]

,
[

p−1
3

, p+
2
2

]}∗

+ IdP ∪
{[

p−1
3

, p+
1
3

]

,
[

p−2
2

, p+
2
2

]

,
[

p−2
1

, p+
2
1

, p−1
1

, p+
2
1

]

,
[

p−1
3

, p+
2
2

]

,
[

p−2
2

, p+
1
2

, p+
2
1

]

,
[

p−1
1

, p−2
1

, p+
1
3

]

,
[

p−2
2

, p+
1
4

]}

+
{[

p−2
1

, p+
1
2

]

,
[

p−1
3

, p+
2
2

]

,
[

p−1
1

, p+
2
1

]

,
[

p+
1
1

]

,
[

p−2
1

]}∗

+ IdP



116 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

5.2.2 Petri nets with inhibitor arcs

An inhibitor arc from a place to a transition means that the transition can only
fire if no token is on that place. We describe such a Petri net as the 6-tuple
(P, T,W, I,m0,me) with the places P , the transitions T , the weight function
W ∈ NP×T∪T×P , the inhibitor arcs I ⊆ P × T and, the start and end markings
m0,me ∈ NP . We will denote an inhibitor arc in the pictures by ————• .

A transition t ∈ T can fire from a marking m ∈ NP to a marking m′ ∈ NP ,
denoted by m[t〉m′ if

m − W (., t) = m′ − W (t, .) ∈ NP and ∀p ∈ P (p, t) ∈ I → m(p) = 0.

A firing sequence w = t1...tn ∈ T ∗ can fire from m0 to mn, denoted by m0[w〉mn,
if there exist intermediate markings m1, ...mn−1 with m0[t1〉m1[t2〉...[tn〉mn.

The reachability problem for a Petri net (P, T,W, I,m0,me) is to decide, whether
there exists a w ∈ T ∗ with m0[w〉me.

In the following two lemmata, we restrict the cases for which we have to regard
the reachability problem. The aim of the first lemma is to make the reacha-
bility problem symmetric, that means the reachability problem is the same for
(P, T,W−1, I,me,m0) with W−1 := {(x, y) | (y, x) ∈ W}:

Lemma 5.2.1 Each Petri net (P, T,W, I,m0,me) can be changed in such a way
that the condition ∀p ∈ P, t ∈ T (p, t) ∈ I → W (t, p) = 0 holds without changing
the inhibitor arcs or the reachability problem.

Proof: Consider a transition t ∈ T such that there exists a p ∈ P with (p, t) ∈ I
and W (t, p) = x > 0. This is depicted by

p��
��

t•
� x

We add a new transition t′ in T ′ := T ∪ {t′} and two new places p′ and p′′ in
P ′ := P ∪ {p′, p′′}. Furthermore, we put an additional token on p′′ in the start-
marking m′

0 := m0 + {p′′ 7→ 1} and the end-marking m′
e := me + {p′′ 7→ 1}. Set

W ′(t′, .) := W (t, .) + {p′′ 7→ 1} which means that all the arcs from the transition
t and an arc to p′′ are now arcs from the transition t′. An arc from p′′ to t is then
added, which means W ′(., t) := W (., t) + {p′′ 7→ 1}. Set W ′(t, .) := W ′(., t′) :=
{p′ 7→ 1}, W ′(ta, .) := W (ta, .) + {p′′ 7→ 1} and W ′(., ta) := W (., ta) + {p′′ 7→ 1}
for every ta ∈ T \ {t}.



5.2. THE REACHABILITY RELATION FOR PETRI NETS 117

p��
��

t

p′��
��

t′ p′′��
��

ta

•
?

x

?

-

HH
HH

HHY

HH
HH

HHY

HH
HH

HHYHHHHHHj

There will always be exactly one token on either p′ or p′′. If t fires, then no token
is on p′′ and so t′ is the only transition which can fire. The firing of tt′ (together)
has the same effect on the net as the firing of t before the change; hence, the
reachability problem remains the same.
A general aim of the decision algorithm explained below is to reduce the number
of places and transitions and, therefore, transfer the information to a structural
description. However, in the next lemma we do a step in the opposite direction
in order to make the description of the reachability relation easier.

Lemma 5.2.2 Each Petri net (P, T,W, I,m0,me) can be changed in a way such
that the condition ∀p ∈ P, t ∈ T (p, t) ∈ I → m0(p) = me(p) = 0 holds by chang-
ing neither the inhibitor arcs, the condition in Lemma 5.2.1 nor the reachability
problem.

Proof: We add two new transitions t and t′ in T ′ := T ∪ {t, t′}, and three new
places p, p′ and p′′ in P ′ := P ∪ {p, p′, p′′}. Set W ′(t, .) := m0 + {p′ 7→ 1},
W ′(., t′) := me + {p′ 7→ 1}, W ′(., t) := {p 7→ 1}, W ′(t′, .) := {p′′ 7→ 1}, m′

0 :=
{p 7→ 1} and m′

e := {p′′ 7→ 1}. For every ta ∈ T , we set W ′(ta, .) := W (ta, .) +
{p′ 7→ 1} and W ′(., ta) := W (., ta) + {p′ 7→ 1}. This prevents a firing before t
and after t′. Therefore, t is the first and t′ is the last transition to fire, but they
can only fire once. Obviously, the reachability problem from the marking after
the firing of t to the marking before the firing of t′ is the same as before.

5.2.3 The reachability relation for Petri nets with one in-
hibitor arc

Let us begin with a Petri-net (P, T,W, {(p1, t̂)},m0,me) with only one inhibitor
arc (p1, t̂) having the property of lemmata 5.2.1 and 5.2.2. As in the case of
no inhibitor arcs, we can describe the reachability relation for firing sequences
w ∈ (T \{t̂})∗ by R1 = R((P, T \{t̂},W )) =∗P (R(T \{t̂})). In R2 = R1∩{r ∈
NP−,P+ | r(p−1 ) = r(p+

1 ) = 0}, we restrict to those firing sequences starting and
ending with markings without tokens on p1. The alternative of using t̂ is added
in R3 = R2 ∪ R(t̂) and R4 = ∗P\{p1}(R3) iterates these parts. Generalizing
Corollary 5.2.1 we get the following:



118 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

Lemma 5.2.3 Given a Petri-net (P, T,W, {(p1, t̂)},m0,me) with only one in-
hibitor arc (p1, t̂) having the property of lemmata 5.2.1 and 5.2.2, then there is a
firing sequence w ∈ T ∗ with m0[w〉me if and only if

m+
0 ◦P\{p1}R4◦P\{p1}m

−
e = (m−

0 + m+
e )◦AR4 = {∅}

A := {(p−, p−), (p+, p+) | p ∈ P \ {p1}}. In the other case (m−
0 + m+

e )◦AR4 = ∅

Proof: A firing sequence w ∈ T ∗ can be decomposed in minimal firing sequences
w1...wk = w having the property m0[w1〉m1[w2〉...[wk〉mk with mk = me such
that mi(p1) = 0 for all i ≤ k.
Each wi is either equal to t̂ or in (T \ {t̂})∗. This holds since the occurrence of
t̂ in a wi with |wi| > 1 would mean that, at some time during the firing of wi,
there is no token on p1, and thus, wi would not be minimal.
If wi ∈ (T \{t̂})∗ then m−

i−1+m+
i ∈ R1. Then from mi−1(p1) = 0 and mi(p1) = 0

it follows that m−
i−1 + m+

i ∈ R2 and m−
i−1 + m+

i ∈ R3. Otherwise, if wi = t̂, we
also have m−

i−1 + m+
i in R3.

Concatenating all with the operator ∗P\{p1} leads to m−
0 + m+

e is in R4, which
means (m−

0 + m+
e )◦AR4 = {∅}.

The other direction follows simply by composing firing sequences.

Example:
Consider the Petri net

p2��
��

t7

t̂

p1��
��

p3��
��

t8

?

� �5 7

6

- -
3 2

•

with the start marking {p2 7→ 4, p3 7→ 2} and the end marking {p2 7→ 4, p3 7→ 3}.
We have R(t7) = {p−2 7→ 1, p+

1 7→ 3}+ IdP , R(t8) = {p−1 7→ 2, p+
3 7→ 1}+ IdP and

R(t̂) = {p−3 7→ 7, p+
2 7→ 5} + IdP\{p1}. This yields

R1 = R((P, {t7, t8})) =∗P

({[
p−2
1

,
p+

1

3

]

,

[
p−1
2

,
p+

3

1

]})

=

{[
p−2
1

, p+
1
3

]

,
[

p−1
2

, p+
3
1

]

,
[

p−2
1

, p+
1
1

, p+
3
1

]

,
[

p−2
1

, p−1
1

, p+
3
2

]

,
[

p−2
2

, p+
1
2

, p+
3
2

]

,
[

p−2
2

, p+
3
3

]}∗

+ IdP

and R2 = R1◦{(p−1 ,x),(p+
1 ,y)}{∅} =

{[
p−2
2

, p+
3
3

]}∗

+ Id{p2,p3}.

We can cut the firing sequences in (t7 + t8 + t̂)∗ = ((t7 + t8)
∗ + t̂)∗ into parts

in (t7 + t8)
∗ and t̂ all starting and ending with no token on p1. This yields

R3 = R2 ∪ R(t̂) and R4 =∗{p2,p3}(R3) =
{[

p−2
2

, p+
3
3

]

,
[

p−3
7

, p+
2
5

]

,
[

p−2
2

, p−3
4

, p+
2
5

]

,
[

p−2
4

, p−3
1

, p+
2
5

]

,
[

p−3
7

, p+
2
3

, p+
3
3

]

,
[

p−3
7

, p+
2
1

, p+
3
6

]

, ...,
[

p−2
4

, p−3
2

, p+
3
8

]

,
[

p−2
5

, p−3
1

, p+
2
1

, p+
3
7

]

,
[

p−3
6

, p+
2
4

, p+
3
3

]

,
[

p−2
4

, p−3
2

, p+
2
4

, p+
3
3

]}∗

+ Id{p2,p3}.



5.3. NESTED PETRI NETS AS NORMAL FORM FOR EXPRESSIONS 119

Expression Carrier set

T C(T ) =
⋃

T .1.b

?

6

t ∈ T {ct} ∪ Γt ⊆ N
PPPPPi






C(t) = P−
T ∪ P+

T ∪ {wct
, wg, ...}

C(Ni) = C(Ti) =
⋃

6Ni ∈ Kt Ti T .1.b

?

PPPPPi






C(t′) = P−
Ti
∪ P+

Ti
∪ {wct′

, w′
g, ...}

...

t′ ∈ Ti {ct′} ∪ Γt′ ⊆ N

Figure 5.2: An overview over the expressions and their carrier sets.

5.3 Nested Petri Nets as normal form for ex-

pressions

We now use the variables t, T,N as expressions for transitions, sets of transitions
and sub-nets.
For an expression e, we will always define a carrier set C(e) ⊇ sgn(R(e))}. The
function R was in the previous section giving the reachability relation R(e) ⊆
NC(e) for an expression e of the form t, N or T . Now, we use R as the evaluation
function for an expression where the expression operators∗P ,◦Q,∪ and +, and
the additional operator ∩ will always be defined on expressions such that they
commute with R.
Let the expression for an elementary transition have the form t = Lt, where Lt is
an expression for the linear set Lt = R(Lt) = ct + Γ∗

t described by a (constant)
multiset ct and a finite set of (period) multisets Γt. For example, in Sections
5.2.1 and 5.2.3, we have Γt = {{p− 7→ 1, p+ 7→ 1} | p ∈ P} leading to Γ∗

t = IdP .
We have C(t) := P− ∪ P+ ∪ sgn({ct} ∪ Γt).
Let the expression for sets of transitions be T = t1 ∪ t2... ∪ tl for expressions for
transitions ti ∈ T , and the expression for a sub-net with places PT and transitions
T be N =∗PT

(T ). Let C(N) := C(T ) :=
⋃

t∈T C(t).
Let the expression for a generalized transition have the form t = Lt ◦QA

Kt, where
Lt again expresses a linear set, and Kt is a set of sub-nets and interpreted as
expression Kt =

∑

Ni∈Kt

Ni where the C(Ni) are pairwise disjoint.

Using QA := {(a, a) | a ∈ A} with A =
⋃

Ni∈Kt
C(Ni), we define C(t) := {a |

(ct +
∑

g∈Γt

g)(a) > 0} \ A. This means that the behavior of t is mainly described

by the linear set ct + Γ∗
t but it is additionally controlled by the reachability in

the sub-nets Ni.

For example, the relation R2 = R1 ∩
{

r ∈ NP−,P+
∣
∣
∣ r(p−1 ) = r(p+

1 ) = 0
}

form



120 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

Section 5.2.3 can be written as R2 = tp1(N) using Lemma 5.3.4 for N with
R1 = R(N). Furthermore, th in Theorem 5.6.1 has the desired normal form for
expressions. Also, the reachability questions for a complete net are formulated as
the control for a subnet in (m−

0 +m+
e )◦AR(N) in Corollary 5.2.1, (m−

0 +m+
e )◦AR4

in Lemma 5.2.3, and in (m−
0 + m+

e )◦A∗PTg−1
(Tg−1) in Theorem 5.6.1 which

already have this normal form for expressions but the behavior on the outside is
trivial (∅ or {∅}).
In the following, we will start with the expression T = {t} by keeping in mind
that, according to Lemma 5.2.3, R(T ) = R(t) = {∅} if there is a firing sequence
w ∈ T ∗ with m0[w〉me. Otherwise R(T ) = R(t) = ∅ if there is not.

Example (continued):
We identify t7 = {p̂−2 7→ 1, p̂+

1 7→ 3} + Id{p̂1,p̂2,p̂3}, t8 = {p̂−1 7→ 2, p̂+
3 7→ 1} +

Id{p̂1,p̂2,p̂3} and t̂ = {p−3 7→ 7, p+
2 7→ 5} + Id{p2,p3}. This yields the expressions

T1 = t7 ∪ t8 and N1 = ∗{p̂1,p̂2,p̂3}(T1). On the next level, we get the generalized
transition t2 =
(

∅ +
{[

p−2
1

, p̂−2
1

]

,
[

p−3
1

, p̂−3
1

]

,
[

p+
2
1

, p̂+
2
1

]

,
[

p+
3
1

, p̂+
3
1

]}∗)◦{(p̂−2 ,p̂−2 ),(p̂−3 ,p̂−3 ),(p̂+
2 ,p̂+

2 ),(p̂+
3 ,p̂+

3 )}N1,

which we visualize as '

&

$

%
p̂2��

��
t7 p̂1��

��

p̂3��
��

t8

?

6

- -
3 2

t2 =

T2 = t2 ∪ t̂ and N2 =∗{p2,p3}(T2). On the top level, we get

T3 = t3 =
[

p−2
4

, p−3
2

, p+
2
4

, p+
3
3

]

◦{(p−2 ,p−2 ),(p−3 ,p−3 )}N2,

which we visualize as follows:'

&

$

%
p2��

��

t2 p3��
��

t̂

��
��
��

��
��
��1

2

J
J
J
JĴ

4

6

y

-
z

?

7

�
5

J
J
J
JĴ

3

��
��
��
��
��
��1

4



5.3. NESTED PETRI NETS AS NORMAL FORM FOR EXPRESSIONS 121

5.3.1 The property T
In order to decide the emptiness problem for expressions, we want to establish a
normal form T , which corresponds to the condition Θ in [Kos84]:

Definition 14 An expression T has the property T if ∀t ∈ T,∀Ni =∗PTi
(Ti) ∈

Kt the following conditions hold:

1. In recursive manner, Ti has

(a) the property T , and

(b) For all t′ ∈ Ti it holds ∀g ∈ {ct′} ∪ Γt′ ∃wg ∈ C(t′) g(wg) = 1,
∀g′ ∈ ⋃

t′∈Ti

{ct′} ∪ Γt′ \ {g} g′(wg) = 0.

This condition says that the number of times where g is used is exactly
the number of occurrence of the witness (place) wg.

2. ∀g ∈ {ct} ∪ Γt,∀p ∈ PTi
g(p−) − ind(g)(p−) = g(p+) − ind(g)(p+), where

ind(g) :=
∑

t′∈Ti,g′∈{ct′}∪Γt′

g(wg′)g′

describes the indirect effect of g using the property about the witness places
in Condition 1 in the recursion for Ti. This property says that g(wg′)
is exactly the number of times that g′ is used. Thus, ind(g) contains a
quantitative information about the firing sequences which are allowed by g.
The condition says that (disregarding the real control by the sub-net Ni) the
quantitative information is consistent with the expected control.

3. ∀w ∈ C(Ni) \ (P+
Ti

∪ P−
Ti

) Σ
g∈Γt

g(w) > 0. This condition says that each

witness appears in a period and, thus, the use of each interior transition
and period is unlimited.

4. There are multisets ∃m+,m− ∈ R(Ni) with ∀p ∈ PTi

m+ |P−
Ti

∈ (ct + Γ∗
t ) |P−

Ti

∧((∀g ∈ Γt g(p−) = 0) → m+(p+) > m+(p−))∧

m− |P+
Ti

∈ (ct + Γ∗
t ) |P+

Ti

∧((∀g ∈ Γt g(p+) = 0) → m−(p−) > m−(p+)).

This condition says that there is a firing sequence in the sub-net Ni quantita-
tively described by m+. This firing sequence starts with a marking available
by ct + Γ∗

t and increases all those places which cannot be increased by Γt.

5. ct |C(t)∈ R(t). This condition says that transition t can fire without the use
of one of its periods in Γt.



122 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

Theorem 5.3.1 For every expression T , we can effectively construct a T ′ with
R(T ) = R(T ′) such that T ′ has property T .

Corollary 5.3.1 The reachability problem for a Petri net with one inhibitor arc
is decidable.

Proof: According to Lemma 5.2.3, we can construct an expression T where
R(T ) = {∅} (and is not empty) if and only if there is a firing sequence w ∈ T ∗

with m0[w〉me. Then, we construct T ′ according to Theorem 5.3.1. According
to Condition 5 of property T , R(T ) = R(T ′) is empty if and only if T ′ = ∅.

5.3.2 The size of an expression

In Section 5.4, we describe a decision algorithm which reduces expressions not
having the property T described in Subsection 5.3.1 in every step. To prove its
termination, we have to define an ordering on a size S which is Noetherian and
decreasing in every step of the algorithm:
A list (tuple, respectively) is smaller than another if the first i elements are equal
and the i + 1’th element is smaller (or not existing). A multiset m is smaller
than a multiset m′ if there is an e with m(e) < m′(e) and m(e′) = m′(e′) for all
e′ > e. (Thus multisets may as well be interpreted as a descending ordered list
using lexicographic order.)
The smallest size is S(∅). Accordingly, if T = ∅ then T trivially has the property
T .
The size S(T ) =

∑

t∈T

{S(t) 7→ 1} is a multiset of all sizes S(t) with t ∈ T . The

size of t is S(t) := (S(Kt), b2, b5 + |Γt|). Here, bi = 0 if Condition T .i is fulfilled,
and bi = 1 otherwise. The size S(Kt) =

∑

Ni∈Kt

{S(Ni) 7→ 1} of a set of nets is a

multiset of the sizes S(Ni) of the nets Ni ∈ Kt. The size of a net is

S(Ni) := (sm + {|PTi
| 7→ 1}, S(Ti), b1b, |C(Ni)|)

with sm := max{s | ∃g, f, b2, b
′
1b, e, s

′ s′((s,g, b′1b, f)) > 0, S(Ti)((s
′, b2, e)) > 0}.

In other words, the first component is a multiset in NN which is obtained by taking
the maximal of such multisets of all first components in the size of a subnet of
one of the transitions in Ti (respectively ∅ if none exists) and adding the current
number of places. The second component contains the recursion. The reason
for this complicated construction comes from Section 5.4.4 where the recursion-
depth increases but the size has to decrease. Furthermore, this causes S(Ni) to
be greater than the size of its occurring subnets. This is also necessary in parts
where the algorithm works recursively since it follows that S(Kt′) < S(Kt) for
all t′ contained one or more levels deeper in Kt.
Example (continued):
S(t7) = S(t8) = (∅, 0, 3), S(T1) = {(∅, 0, 3) 7→ 2},



5.3. NESTED PETRI NETS AS NORMAL FORM FOR EXPRESSIONS 123

S(N1) = ({3 7→ 1}, {(∅, 0, 3) 7→ 2}, 1, 6), S(t2) = ({S(N1) 7→ 1}, 1, 4),
S(T2) = {S(t′2) 7→ 1, (∅, 0, 2) 7→ 1}, S(N2) = ({3 7→ 1, 2 7→ 1}, S(T2), 1, 4).

Lemma 5.3.1 The ordering on S defined above is Noetherian

Proof: As shown in [DM79], the set of descending ordered lists of elements of a
Noetherian ordered set is again Noetherian. The first components of the quadru-
ples S(N) are descending lists of natural numbers and, thus, Noetherian.
Assume by contradiction that x is the smallest first component such that there
is an infinite descending sequence of quadruples

S(N) = (x,y1, b
′
1, n1), (x,y2, b

′
2, n2), ....

In all quadruples appearing in all lists in all triples appearing in any yi, the
first component must always be smaller than x and, therefore, their order must
be Noetherian. Thus, the lists which are the first components of the triples are
also ordered Noetherian. Since the other components are natural numbers, the
triples and the yi’s are also ordered Noetherian. Since the first component x
must remain constant, and the third and forth components are natural numbers,
we get a contradiction; thus, S(T ) is Noetherian.

5.3.3 Additional operators working on expressions

The following lemma is used to restrict the semilinear part in a transition t as it
will be needed to establish the property T .2

Lemma 5.3.2 Let t = Lt ◦Q Kt be an expressions for a transition and L be (an
expression for) a semi linear set. Then, we can construct an expression T ′ := t|L
(with R(T ′) = (R(Lt) ∩ R(L)) ◦Q R(Kt)) where the occurring sizes S(t′) with
t′ ∈ T ′ increase relatively to S(t) only in the last position in the triple.

Proof: Using Presburger arithmetic [GS65],[ES69], we can calculate for every
t ∈ T the semi-linear set

Lt ∩ L =:
l⋃

j=1

Lj

resulting in finitely many linear sets Lj, and define T ′ := {t1, ...tl} with tj =
Lj ◦Q Kt.
The following two lemmata allow us to bring every expression into the normal
form as nested Petri nets:

Lemma 5.3.3 Let T and T ′ be expressions for sets of transitions, and Q be a
relation. Then, we can construct an expression T ′′ := T ◦Q T ′ (with R(T ′′) =
R(T ) ◦Q R(T ′)) where the occurring sizes S(t) increase only in the last position
in the triple and sum up in the first position.



124 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

Proof: We may assume that
⋃

t∈T

⋃

N∈Kt

C(N),
⋃

t∈T ′

⋃

N∈Kt

C(N) and π1(Q)∪π2(Q) are

pairwise disjoint (otherwise replace elements by copies). We define

T ′′ := {t1, ...tr | t ∈ T, t′ ∈ T ′,∀j ≤ r Ktj = Kt ∪ Kt′ , Lt ◦Q Lt′ =:
r⋃

l=1

Ltl}

using Presburger arithmetics. It holds R(T ) ◦Q R(T ′) =
⋃

t∈T,t′∈T ′

R(t) ◦Q R(t′) =

⋃

t∈T,t∈T ′

((Lt ◦Qt
(R(N1) + ...)) ◦Q (Lt′ ◦Qt′

(R(N ′
1) + ...))) =

⋃

t∈T,t∈T ′

((R(N1) + ...) ◦Q−1
t

Lt ◦Q Lt′ ◦Qt′
(R(N ′

1) + ...)) =
⋃

t∈T,t∈T ′

(Lt ◦Q Lt′) ◦Qt∪Qt′
(R(N1) + ... + R(N ′

1) + ...) = R(T ′′)

with Qt =
⋃

Ni∈Kt

QC(Ni) and Qt′ =
⋃

N ′
i∈Kt′

QC(N ′
i)

since π1(Qt) ∪ π2(Qt), π1(Qt′) ∪

π2(Qt′) and π1(Q) ∪ π2(Q) are pairwise disjoint. (see Subsection 5.1.1.)

Lemma 5.3.4 Let N be an expression for a subnet. Then, we can construct an
equivalent expression for a transition t(N) with R(t(N)) = R(N) and tP ′(N)
with R(tP ′(N)) = {m ∈ R(N) | ∀p ∈ P ′ m(p−) = m(p+) = 0}.

Proof: Define t(N) by ct(N) := ctP ′ (N) := ∅, Γt(N) := {{q 7→ 1, q̂ 7→ 1} | q ∈
C(N)} and Kt(N) := {N̂} where N̂ is the result of replacing all occurrences of

some q ∈ C(N) in N by q̂. This means that we make the C(N̂) disjoint to
C(t(N)).
The restriction of places in P ′ to 0 is done by ΓtP ′ (N) := {m ∈ Γt(N) | ∀p ∈
P ′ m(p−) = m(p+) = 0}.
For the first order formulas with PLUS and mTC defined at the end of Section
4.1.1, we can conclude the following:

Corollary 5.3.2 The emptiness and satisfiability is decidable for formulas with
an FO+PLUS-formula inside and ∧,∨,∃ and mTC operators outside.

Proof: We can express linear sets by a t and, thus, semilinear sets by a T . Now,
observe that the operators work on expressions of the form T as follows: We can
express ∧ corresponding to ∩ with ◦Q (see Section 5.1.1) and apply Lemma 5.3.3.
For ∨ this follows simply from T being already a union. The existential quantifier
is done by removing the element (thus, releasing the control from the outside) and
the operator mTC is done by using Lemma 5.3.4. Then we construct T ′ according
to Theorem 5.3.1. According to Condition 5 of property T , R(T ) = R(T ′) is
empty if and only if T ′ = ∅.



5.4. THE MAIN ALGORITHM ESTABLISHING PROPERTY T 125

5.4 The main algorithm establishing property T
The idea of the algorithm is to reduce T if one of the conditions is not fulfilled. For
Condition 2, Presburger arithmetics is used to transfer the implicit quantitative
restriction by the witness places to the explicit restriction of the transitions.
Condition 3 ensures that all quantitative controls are unlimited. Condition 4
ensures that all places are unlimited. A covering graph construction deciding
Condition 4 uses the algorithm recursively (like for Condition 1) for every step.
Here, the current marking of a node is being included as a restriction to the
semilinear set. Limited places are deleted at the cost of a larger structure. This
larger structure, however, contains parts which are generated by restricting parts.
This restriction might cause them to loose the property T reached by a previous
recursive step. However, as we will see because of their smaller size, the property
T can be established again and the whole algorithm will still terminate.
Proof:(of Theorem 5.3.1)
The expression T ′ in the Theorem is computed by the following algorithm where
the details are explained in the subsections:

function reacheq(T ):
begin

repeat
i:= 1
while i≤5 and ∀t ∈ T,∀N ∈ Kt Condition T .i fulfilled

do i:=i+1 od
if i=6 then return T

else T :=T ′ for T ′ according to subsection 5.4.i fi
until i=6

end reacheq

in each step S(T ) decreases (S(reacheq(T )) < S(T ) if T 6= reacheq(T )); due to
Lemma 5.3.1 the algorithm terminates.
The following table shows how the size S(t) can change during the steps of Chap-
ter 5.4:

S(t)
S(Ni)

S(t′) for t′ ∈ Ti

sm + {|PTi
| 7→ 1} S(Kt′) b2 b5 + |Γt′ | b1b |C(Ni)| b2 b5 + |Γt|

5.4.1 - - - - ↓ ↑ ↑ -
5.4.2 - - - - - - ↓ ↑
5.4.3 - - - - - ↓ ↑ ↑
5.4.4 ↓ ↑ ↑ ↑ ↑ ↑ ↑ ↑
5.4.5 - - - - - - - ↓



126 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

5.4.1 Condition 1 Recursion and introducing witnesses

Let Condition 1 be not fulfilled by Ti; let T ′
i := reacheq(Ti), which terminates by

induction since S(Ti) < S(T ).
For all tj ∈ T ′

i let Gj be the set of all g ∈ {ctj} ∪ Γtj not having a witness. Add
{wg′ | g ∈ Gj} to C(t′j) := C(tj) ∪ {wg′ | g ∈ Gj} by replacing the g’s in Gj by
g′ := g + {wg′ 7→ 1} in

T ′′
i :=

{

t′j
∣
∣Γt′j

= Γtj \ Gj ∪ {g′ | g ∈ Gj \ {ct}
}

and ct′j
:= ctj if ctj /∈ Gj.

Now, we set t′ := Lt′ ◦QA′ Kt′ with Kt′ = Kt \ {Ni} ∪ {N ′′
i }, N ′′

i = ∗PT ′′
i

(T ′′
i ),

A′ = A ∪ C(N ′′
i ) and Γt′ := Γt ∪ {{w 7→ 1} | w ∈ C(N ′′

i ) \ C(Ni)}, and let
T ′ := T \ {t} ∪ {t′}. Since R(Ti) = R(T ′′

i ) |C(Ti), we have R(Ni) = R(N ′′
i ) |C(Ti);

thus, R(t) = R(t′); thus, R(T ) = R(T ′).
Since S(tj) = S(t′j) for all tj ∈ T ′

i , the size S(T ′′
i ) = S(T ′

i ) remains unchanged.
The only increase was |C(N ′′

i )| ≥ |C(Ni)| but but we have either S(T ′′
i ) = S(T ′

i ) <
S(Ti), or in case T ′

i = Ti, we have now b1b = 0. From that follows that S(N ′′
i ) <

S(Ni); thus, S(t′) < S(t) and S(T ′) < S(T ).
Example (continued):
Since the expression T1 does not fulfill Condition 1, we add the two witnesses
wct′

7
and wct′

8
. For simplicity, we omit the witnesses for the periods for IdP in the

elementary transitions. So we replace t7 and t8 by t′7 = {p̂−2 7→ 1, p̂+
1 7→ 3, wct′7

7→
1} + Idp̂1,p̂2,p̂3 and t′8 = {p̂−1 7→ 2, p̂+

3 7→ 1, wct′8
7→ 1} + Idp̂1,p̂2,p̂3 . This yields the

expressions T ′′
1 = t′7 ∪ t′8 and N ′′

1 = ∗{p̂1,p̂2,p̂3}(T
′′
1 ). On the next level, we get

t′2 = (∅ + {{p−2 7→ 1, p̂−2 7→ 1}, {p−3 7→ 1, p̂−3 7→ 1}, {p+
2 7→ 1, p̂+

2 7→ 1}, {p+
3 7→

1, p̂+
3 7→ 1}, {wct′7

7→ 1}, {wct′8
7→ 1}}∗),◦{(p̂−2 ,p̂−2 ),(p̂−3 ,p̂−3 ),(p̂+

2 ,p̂+
2 ),(p̂+

3 ,p̂+
3 )}N

′′
1 for the

generalized transition and T ′
2 = t′2 ∪ t̂.

The new sizes are now S(t′7) = S(t′8) = (∅, 0, 3) = S(t7),
S(T ′′

1 ) = {(∅, 0, 3) 7→ 2} = S(T1),
S(N ′′

1 ) = ({3 7→ 1}, {(∅, 0, 3) 7→ 2}, 0, 8) < S(N1),
S(t′2) = ({S(N ′′

1 ) 7→ 1}, 1, 6) < S(t2),
S(T ′

2) = {S(t′2) 7→ 1, (∅, 0, 2) 7→ 1} < S(T2).

5.4.2 Condition 2 Quantitative consistency

Let Condition 2 be not fulfilled by Ti. The set L :=
{

g ∈ NCL

∣
∣ ∀p ∈

⋃

Ni∈Kt

PTi
g(p−) − ind(g)(p−) = g(p+) − ind(g)(p+)

}

on the carrier set CL = C(t)∪ ⋃

Ni∈Kt

C(Ni) is a Presburger set. Since R(t) ⊆ L|C(t)

follows from the definition of R(t) and the function ind, we can set T ′ := T \



5.4. THE MAIN ALGORITHM ESTABLISHING PROPERTY T 127

{t} ∪ t|L using Lemma 5.3.2. In other words, we have cut something away which
could not have been in R(T ) anyway.
Since b2 is now 0 for each tj ∈ t|L and S(Ktj) remains the same as S(Kt),
according to Lemma 5.3.2, it holds S(T ′) < S(T ).

Example (continued):
We see that t′2 does not fulfill Condition 2 when we look at the resulting equation

g(p̂−)−g(wct′
7
)ct′7

(p̂−)−g(wct′
8
)ct′8

(p̂−) = g(p̂+)−g(wct′
7
)ct′7

(p̂+)−g(wct′
8
)ct′8

(p̂+)

for all p ∈ P characterizing L. This is equivalent to the following three equations:
2g(wct′8

) = 3g(wct′7
), g(p̂−2 ) − g(wct′7

) = g(p̂+
2 ), g(p̂−3 ) = g(p̂+

3 ) − g(wct′8
). Their

solutions are described by the linear set Lt′′2
= Lt′2

∩ L =

∅ +

{[
p−2
1

,
p̂−2
1

,
p+

2

1
,
p̂+

2

1

]

,

[
p−3
1

,
p̂−3
1

,
p+

3

1
,
p̂+

3

1

]

,

[
wct′7

2
,
wct′8

3
,
p−2
2

,
p̂−2
2

,
p−3
3

,
p̂−3
3

]}∗

and yield t′′2 = Lt′′2
◦{(a,a)|a∈{p̂−2 ,p̂+

2 ,p̂−3 ,p̂+
3 }}N

′′
1 with S(t′′2) = ({S(N ′′

1 ) 7→ 1}, 0, 3) <

S(t′2). Since T ′′
2 = t′′2 ∪ t̂ fulfills the remaining properties, we can continue one

level higher.
Adding the witnesses leads to Lt′′′2

=

∅ +
{[

p−2
1

, p̂−2
1

, p+
2
1

, p̂+
2
1

, w1

1

]

,
[

p−3
1

, p̂−3
1

, p+
3
1

, p̂+
3
1

, w2

1

]

,
[

wc
t′
7

2
,

wc
t′
8

3
, p−2

2
, p̂−2

2
, p−3

3
, p̂−3

3
, w3

1

]}∗

(we omit the witness for ∅.) with S(t′′′2 ) = S(t′′2) = ({S(N ′′
1 ) 7→ 1}, 0, 3).

Defining T ′′′
2 = t′′′2 ∪ t̂′ with S(T ′′′

2 ) = S(T ′′
2 ) and N ′′′

2 = ∗{p̂1,p̂2,p̂3}(T
′′′
2 ) with

S(N ′′′
2 ) = ({3 7→ 1, 2 7→ 1}, S(T ′′′

2 ), 0, 8) < S(N ′′
2 ) = ({3 7→ 1, 2 7→ 1}, S(T ′′′

2 ), 1, 4)
we get

t′3 =
([

p−2
4

, p−3
2

, p+
2
4

, p+
3
3

]

+
{[

w1

1

]
,
[

w2

1

]
,
[

w3

1

]
,
[wc

t̂′

1

]}∗
)

◦{(a,a)|a∈{p−2 ,p+
2 ,p−3 ,p+

3 }}N
′′′
2 .

Establishing Condition 2 leads to

t′′3 =
([

p−2
4

, p−3
2

, p+
2
4

, p+
3
3

, w3

5
,

wc
t̂′

2

]

+
{[

w1

1

]
,
[

w2

1

]}∗
)

◦{(a,a)|a∈{p−2 ,p+
2 ,p−3 ,p+

3 }}N
′′′
2 .

5.4.3 Condition 3 Elimination of witnesses

Let Condition 3 be not fulfilled by witness w ∈ C(Ni) \ (P+
Ti
∪ P−

Ti
). This means

that we can replace Ni by some expression T̂ with R(T̂ ) = R(Ni)◦(w,w)ct|w since
for all m ∈ Lt, we have m(w) = ct(w). Then, we can replace in

T ′ := T \ {t} ∪ (Lt |{w} ◦Q\QC(Ni)
(Kt \ {Ni}))◦QC(Ni)\{w}

T̂

the transition t = Lt◦QKt by all those sets of transitions which result from

using Lemma 5.3.3 (because T̂ is not a net). This means that Ni is removed



128 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

and the equivalent T̂ is plugged in at the same range; thus, R(t) = R(Lt) |{w}

◦Q\{w}(R(Kt \ {Ni}) + R(T̂ )).

To create T̂ =
⋃

γ

Tγ , we consider every possible combination γ (including the order

of the summands) of ct(w) =
lγ∑

m=1

gm(w) with gm ∈ ctm + {g ∈ Γtm | g(w) > 0}∗,
gm(w) > 0 and tm ∈ Ti and build t′m with Lt′m = gm |{w} +{g ∈ Γtm | g(w) = 0}∗
and Kt′m := Ktm . The expressions t′m describe the parts in which w was used. In

N ′
i =∗PT ′

i

(T ′
i ) with T ′

i :=

{t′′′ | t′′ ∈ Ti, ct′′ = ct′′′ ,Kt′′′ = Kt′′ , ct′′(w) = 0,Γt′′′ = {g ∈ Γt′′ | g(w) = 0}},

we filter out everything which affects w; thus, C(N ′
i) = C(T ′

i ) = C(Ti) \ {w} and
R(N ′

i) = {m ∈ R(Ni) | m(w) = 0}. Then, using Lemma 5.3.4, we construct
t(N ′

i) which has now the property R(t(N ′
i)) = {m ∈ R(Ni)|m(w) = 0}. Now,

we define

Tγ = t(N ′
i) ◦PT ′

i

t′1 ◦PT ′
i

t(N ′
i) ◦PT ′

i

t′2 ◦Pti
... ◦PT ′

i

t′lγ ◦PT ′
i

t(N ′
i)

again using Lemma 5.3.3.
It holds S(Kt′) < S(Kt) for every new t′ in T ′ because of S(N ′

i) < S(Ni). This
in turn follows from |C(T ′

i )| = |C(Ti)| − 1 and S(N) < S(Ni) for all N ∈ Ktm ,
and m ≤ lγ for all γ.
It holds S(T ′) < S(T ) since S(t′) < S(t) for every t′.

Example: Consider t with ct =
[

w
2
, p−

4
, p+

5

]

, ∀g ∈ Γt g(w) = 0, Kt = {∗{p}(v ∪
tj)}, and ctj =

[
w
1
, p−

6
, p+

7
, q−

8
, q+

9

]

, Ktj = {∗{q}(u)}.'

&

$

%

'

&

$

%
p��

��

q��
��

v

u
��
��
��
��
��
��1

- -@
@
@
@I �

�
�
��	

��
��* HHHHj

2

4 5

6 7

8 9

Then t′ is defined such that ct′ =
[

p−0
4

, p+
0
6

, q−1
8

, q+
1
9

, p−1
7

, p+
1
6

, q−2
8

, q+
2
9

, p−2
7

, p+
2
5

]

, further-

more,
[

p−1
1

, p+
0
1

]

,
[

p−2
1

, p+
1
1

]

∈ Γt′ and

Kt = {∗{p0}(v0),∗{q1}(u1),∗{p1}(v1),∗{q2}(u2),∗{p2}(v2)}, where pi, qi, vi and
ui are replacements caused by disjointness condition in Lemma 5.3.3.



5.4. THE MAIN ALGORITHM ESTABLISHING PROPERTY T 129'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

p0 q1 p1 q2 p2��
��

��
��

��
��

��
��

��
��

v0 v1 v2u1 u2

��* ��* ��* ��* ��*HHj HHj HHj HHj HHj
4 56+x 6+y8 89 97+x 7+y

The variables x and y illustrate the effect of the periods in Γt′ which originate
from the (omitted) periods of tj.

5.4.4 Condition 4 Elimination of bounded places

Condition 4 is decidable by two covering graph constructions for every i working
as follows: Every node in the covering graph CG(i,+) (CG(i,−), respectively ) has a

marking from (N∪{ω})P−
Ti ((N∪{ω})P+

Ti , respectively ). The root of the covering
graph CG(i,+) has the marking ct |P−

Ti

+ω{p−|∃g∈Γg(p−)>0}.

For a node in CG(i,+) marked with m, we construct T ′
i with R(T ′

i ) = {g ∈ R(Ti) |
g |P−

Ti

≤ m} using Lemma 5.3.2 as T ′
i := {t′|{g∈Lt′ | g|

P
−
Ti

≤m} | t′ ∈ Ti}. This restricts

the allowed multisets to those which are possible starting with the limited marking
m. All Kt′ with t′ ∈ T ′

i appear in the subnet Ni in t (unchanged by Lemma 5.3.2).
For all N ′ ∈ Kt′ , we have S(N ′) < S(Ni) since the first component in S(Ni) is
{|PTi

| 7→ 1} plus the maximum of everything one level deeper. Therefore, we
have S(Kt′) < S(Kt) for all t′ ∈ T ′

i and, thus, S(T ′
i ) < S(T ). This allows us to

compute T ′′
i := reacheq(T ′

i ) recursively.

For every t′′ ∈ T ′′
i , (since we know from Condition T .5 that ct′′ alone can fire),

we add a new node

m′ := m − ct′′ |P−
Ti

+{p− 7→ (ct′′(p
+) + ω Σ

g∈Γt′′

g(p+)) | p ∈ PTi
}

to the covering graph CG(i,+). According to Corollary 5.4.1, there is no limit
for the number of appearances of the multi-sets in Γt′′ in firing sequences. This
allows us to label those places p− with ω where g(p+) > 0 for a g ∈ Γt′′ .

If m′ > m′′ for an m′′ on the path from the root to m, then we set m′ :=
m′ +ω(m′−m′′). This is because we can lift the marking of those places p− with
(m′ − m′′)(p−) > 0 by repeating the firing sequence corresponding to the path
from m′′ to m′ arbitrarily many times.

If m′ ≤ m′′ ∈ Path(m′), then we need not calculate the successors of m′ since
we already had better chances at m′′.

According to [Dic13], there are only finite sets of incomparable multi-sets over a
finite set P−

Ti
. It, therefore, follows that every path must terminate.



130 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

If for all i a node marked with ω
P−

Ti is in CG(i,+) and, analogously, a node marked

with ωP+
Ti is in CG(i,−), then the Condition 4 is fulfilled. Otherwise, we can

calculate without loss of generality

k := min
σ∈{+,−}

max
path⊆CG(i,σ)

min
p∈PTi

max
m∈path

m(pσ)

This means that in every path in CG(i,+) or CG(i,−), there is a place p such that
on this path there are never more than k tokens on p− or p+ respectively.
Now, we can replace in T ′ := T \ {t}∪ ⋃

p∈PTi

U(p) the transition t by all those sets

of transitions U(p), described in the following sub section, which are generated
by restricting t in such a way that, in the subnet Ni, there can never be more
than k tokens on p.
In order to show that S(T ′) < S(T ) we have to show that each S(t′) < S(t) for
every t′ in every U(p).

Elimination of places

As in the construction of a regular expression from a finite automaton having the
states 0, ...k, we define for all l, j, h ≤ k an expression T l−1

j,h describing correspond-
ing firing sequences with the following property: They start with a marking m0

with m0(p) = j, end with a marking m1 with m1(p) = h, and meanwhile the num-
ber tokens on p is always less than l. This allows us to remove the place p since its
information is no longer necessary. Therefore, we have PT l−1

j,h
= P ′

Ti
:= PTi

\ {p}).
For an inductive definition, we start with the case of an immediate success where
there is no ’meanwhile’: This means

T−1
j,h = Ti◦{(p−,p−),(p+,p+)}{{p− 7→ j, p+ 7→ h}}

is constructed using Lemma 5.3.3. (We can write {{p− 7→ j, p+ 7→ h}} as {tj,h}
with ctj,h

= {p− 7→ j, p+ 7→ h} and Γtj,h
= Ktj,h

= ∅.) Recursively, we define

T l
l,l := {t(N l−1

l,l )} := {t(∗P ′
Ti

(T l−1
l,l ))}

using Lemma 5.3.4. Then with Lemma 5.3.3, we construct

T l
l,h = T l

l,l◦P ′
Ti

T l−1
l,h for h 6= l,

T l
j,l = T l−1

j,l ◦P ′
Ti

T l
l,l for j 6= l, and

T l
j,h = T l−1

j,l ◦P ′
Ti

T l
l,l◦P ′

Ti
T l−1

l,h ∪ T l−1
j,h for h 6= l ∧ j 6= l.

Now we define

U(p) = (Lt |{p−,p+} ◦Q\QC(Ni)
(Kt \ {Ni}))◦Q

C(Ni)\{p−,p+}
T k

ct(p−),ct(p+)



5.4. THE MAIN ALGORITHM ESTABLISHING PROPERTY T 131

using Lemma 5.3.3. We have S(N ′) < S(Ni) for every N ′ ∈ Kt′ with t′ ∈
T k

ct(p−),ct(p+) because for the corresponding first components s′ and si of the 4-

tuples, we have s′(|P ′
Ti
|) = si(|P ′

Ti
|) + k + 1 but s′(|PTi

|) = si(|PTi
|) − 1 (It holds

|P ′
Ti
| = |PTi

| − 1). Thus, S(t′′) < S(t) for every t′′ ∈ U(p).

Example: Let t = (c + Γ∗)◦{p}∪P∗{p}∪P (Ni) with c(p−) = 1, Ni = v ∪ w ∪ tj
and tj = (cj + Γ∗

j)◦{q}∪Q∗{q}∪Q(u) with cj(p
+) = 1, cj(q

−) = 8 and cj(q
+) = 9

look like

'

&

$

%

'

&

$

%
p��

��

q��
��

v

u

w

-

@
@R

�
�
�
��	

��
��* HHHHj8 9

and k = 1. Furthermore, we assume no other occurrence of p in any other
constant or period. This means that the firing sequences are restricted to the
regular expression ((wv∗tj)+v)∗wv∗. This corresponds to T−1

0,0 and T−1
1,1 to consist

only of a copy of v, T−1
1,0 only of a copy of w and T−1

0,1 only of a copy of tj .

We get T 0
0,0 = t(∗P (T−1

0,0 )), T 0
1,1 = T−1

1,0◦PT 0
0,0◦P T−1

0,1 ∪ T−1
1,1 ; in the end every

new transition t′ in (c + Γ∗) |{p−,p+} ◦Q
C(Ni)\{p−,p+}

T 1
1,0 with T 1

1,0 = T 1
1,1◦PT 0

1,0 =

t(∗P (T 0
1,1))◦P T−1

1,0◦P T 0
0,0 now looks like

'

&

$

%
T−1

1,1

T−1
1,0

T−1
1,0

�

�

�

�

�

�

�

�
T−1

0,0
T−1

0,0

'

&

$

%

q��
��

u

��* HHj
8 9



132 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

In Section 5.5, we will show that we can build up firing sequences which com-
pensate the ’odd’ firing sequences from condition 4, from the constant, and from
the ’odd’ indirect firing sequences in order to find a ct fulfilling condition 5:

Lemma 5.4.1 If the conditions 1 - 4 hold for t, then it holds

∀f ∈
∑

g∈Γt

g+Γ∗
t∀e ∈ (Γt∪−Γt)

∗∃k ≥ 2
{
(ct + kf) |C(t), (ct + kf + e) |C(t)

}
⊆ R(t)

The proof is in the following section. From this immediately follows:

Corollary 5.4.1 If the conditions 1 - 4 hold for t, then it holds

∀f ∈
∑

g∈Γt

g + Γ∗
t∃k ≥ 2 (ct + kf) |C(t)∈ R(t)

5.4.5 Condition 5 Making the constant firing

If Condition 5 is not fulfilled for t then, according to Corollary 5.4.1, for f =
∑

g∈Γ

g,

there exists a (smallest) k such that (c + kf) |C(t)∈ R(t). So we decompose Lt

such that R(Lt) = R(Lt + kf) ∪ ⋃

g∈Γ

⋃

j≤k

R(ct + jg + (Γt \ {g})∗). Set

T ′ := T \ {t} ∪ {t′ | Kt′ = Kt,Γ
′
t = Γt ∧ ct′ = ct + kf)}

∪ {t′ | ∃j ≤ k,g ∈ Γ Γ′
t = Γt \ {g}) ∧ ct′ = ct + jg)}.

Since Conditions 1 and 2 are not affected, b2 and S(Kt) do not change. The size
S(t′) is smaller than S(t) since b5 is now zero respectively |Γ \ {g}| < |Γ|; thus,
it holds S(T ′) < S(T ).

5.5 Building up compensating firing sequences

Proof:(of Lemma 5.4.1) Given f ∈ ∑

g∈Γt

g + Γ∗
t and e ∈ (Γt ∪ −Γt)

∗, we have to

find a k ≥ 2 such that
{
(ct + kf) |C(t), (ct + kf + e) |C(t)

}
⊆ R(t).

For an elementary transition t with Kt = ∅, we have R(t) = ct+Γ∗
t and the state-

ment is easily fulfilled by choosing a sufficiently large k compensating negative
components in e.
Induction step: For every Ni ∈ Kt, we consider m+,m− ∈ R(Ni) according to
Condition T .4 and define d := −m+ − m−. For every Ni ∈ Kt and for every
tj ∈ Ti, let

fj :=
∑

g∈Γtj

f(wg)g, ej :=
∑

g∈Γtj

e(wg)g, hj :=
∑

g∈Γtj

ct(wg)g, dj :=
∑

g∈Γtj

d(wg)g.



5.5. BUILDING UP COMPENSATING FIRING SEQUENCES 133

Since, according to Condition T .3, f(wg) > 0 for every g ∈ Γtj , we have fj ∈
∑

g∈Γtj

g + Γ∗
tj
. This means fj fulfills the condition for f one level deeper.

By Condition T .1 and by applying the lemma by induction, for sub-transitions
tj of t three times for e as ej,hj or dj and for f as fj, there exist kj , k

′
j , k

′′
j ≥ 2

with
(ctj + kjfj) |C(tj), (ctj + kjfj + ej) |C(tj),
(ctj + k′

jfj) |C(tj), (ctj + k′
jfj + hj) |C(tj),

(ctj + k′′
j fj) |C(tj), (ctj + k′′

j fj + dj) |C(tj)∈ R(tj).
(1)

From Condition T .4, it follows that there exists a sufficiently large h ≥ 1 with
hf + e ∈ ∑

g∈Γt

g + Γ∗
t , such that for all i and j

∀p ∈ PTi
∆+(p) := hf(p−) − m+(p−) + m+(p+) ≥ 1 ∧
∆−(p) := hf(p+) + m−(p−) − m−(p+) ≥ 1,

(2)

h = njkj = n′
jk

′
j = n′′

j k
′′
j for some nj, n

′
j , n

′′
j ,

lj := nj(kjf(wctj
) − 1) + e(wctj

) > 0,

n′
j(k

′
jf(wctj

) − 1) + ct(wctj
) > 0 and

n′′
j (k

′′
j f(wctj

) − 1) + d(wctj
) > 0

(3)

since f(wctj
) > 0. Now, according to Condition T .5 and equation (1), we have

ind(hf) |C(tj) =
∑

g∈{ctj
}∪Γtj

hf(wg)g |C(tj)

= njkj

(

f(wctj
)ctj +

∑

g∈Γtj

f(wg)g

)

|C(tj)

= nj

(

(kjf(wctj
) − 1)ctj + (ctj + kjfj)

)

|C(tj)∈ R(tj)
∗.

(4)

The same holds (because of equation (3)) for

ind(hf + e) |C(tj)=
∑

g∈{ctj
}∪Γtj

(hf + e)(wg)g |C(tj) =

(

nj((kjf(wctj
) − 1)ctj + (ctj + kjfj)) + e(wctj

)ctj + ej

)

|C(tj) =
(
ljctj + (nj − 1)(ctj + kjfj) + (ctj + kjfj + ej)

)
|C(tj) ∈ R(tj)

∗.

(5)

Analogously, we have ind(hf + ct) |C(tj)∈ R(tj)
∗ and ind(hf + d) |C(tj)∈ R(tj)

∗,
and by combining all transitions in Ti (like those in equations (4) and (5) ), we
get

ind(2hf + ct) |C(Ti), ind(2hf + ct + e) |C(Ti),∆ ∈ R(Ni).

for ∆ := ind(hf) |C(Ti) +d. (It holds ∀p ∈ PTi
∆+(p)−∆(p−) = ∆−(p)−∆(p+).)

Now, we will show that for every β ∈ ct+Γ∗
t with ind(β) |C(Ti)∈ R(Ni), there exists



134 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

β + lhf |P−
Ti

•
m+

•
m+

• · · · •m+

•

ind(β)

•

∆

•

∆

• · · · •

∆

•

m−

•

m−

• · · · •

m−

•

m1 m2 ml ml+1 ml+2 ml+3 m2l+1m2l+2m2l+3 m3l+1

β + lhf |P+
Ti

︸ ︷︷ ︸

l

︸ ︷︷ ︸

l

︸ ︷︷ ︸

l

Figure 5.3: The concatenation of 3l+1 paths in Ni.

a sufficiently large l ≥ 0 such that there are mµ ∈ R(Ni) for all 1 ≤ µ ≤ 3l + 1
fulfilling the following conditions:
It holds for all 1 ≤ µ ≤ l and all p ∈ PTi

mµ(p−) = β(p−) + (l − µ + 1)hf(p−) + (µ − 1)∆+(p)
mµ(p+) = β(p−) + (l − µ)hf(p−) + µ∆+(p)

ml+1(p
−) = β(p−) + l∆+(p)

ml+1(p
+) = β(p+) + l∆+(p)

ml+1+µ(p
−) = β(p+) + (l − µ + 1)∆+(p) + (µ − 1)∆−(p)

ml+1+µ(p
+) = β(p+) + (l − µ)∆+(p) + µ∆−(p)

m2l+1+µ(p
−) = β(p+) + (l − µ + 1)∆−(p) + (µ − 1)hf(p+)

m2l+1+µ(p
+) = β(p+) + (l − µ)∆−(p) + µhf(p+).

Since, according to equation (2), ∆+(p) > 0 and hf(p−) ≥ 0, it holds mµ−m+ ∈
IdPTi

for a sufficiently large l. Together with m+ ∈ R(Ni), according to Condition
T .4, it follows that mµ ∈ m+ + IdPTi

⊆ R(Ni) for all 1 ≤ µ ≤ l and, analogously,
m2l+1+µ ∈ m− + IdPTi

⊆ R(Ni). According to Condition T .2, it holds ml+1 ∈
ind(β) |C(Ti) +IdPTi

⊆ R(Ni) and, analogously, ml+1+µ ∈ ∆ + IdPTi
⊆ R(Ni).

Since mµ(p+) = mµ+1(p
−) for all 1 ≤ µ ≤ 3l and all p ∈ PTi

, we can concatenate
all the mµ’s to one m ∈ R(Ni) with ind(β + lhf) |C(Ti)∈ m + IdPTi

⊆ R(Ni) and
m |P−

Ti
∪P+

Ti

= (β + lhf) |P−
Ti

∪P+
Ti

; thus,

(β + lhf) |C(t)∈ ct + Γ∗
t ◦QA

∑

Ni∈Kt

R(Ni) = R(t)

for A =
⋃

Ni∈Kt
C(Ni). For k := 2h + lh and β = 2hf + ct or β = 2hf + ct + e we

get (ct + kf) |C(t), (ct + kf + e) |C(t)∈ R(t).



5.6. THE REACHABILITY RELATION WITH INHIBITOR ARCS 135

Example:
Consider a transition t, where Kt

contains only the following sub-net:

p2��
��

t1

t3

p1��
��

p3��
��

t2

?

� �3

6

- -
2

?

9

6
7

This means ct1 =
[

p−2
1

, w1

1
, p+

1
1

]

, ct2 =
[

p−1
2

, w2

1
, p+

3
1

]

, ct3 =
[

p−1
9

, p−3
1

, w3

1
, p+

1
7

, p+
2
3

]

and

Kt1 = Kt2 = Kt3 = ∅. Let, furthermore, Γt = {g1,g2} with

g1 =
[

p−2
2

, w1

2
, w2

1
, p+

3
1

]

, g2 =
[

p−2
1

, w1

4
, w2

1
, w3

1

]

, ct =
[

p−3
1

, w1

2
, w3

1
, p+

2
1

]

.

Comparing ind(ct) =
[

p−1
9

, p−2
2

, p−3
1

, w1

2
, w3

1
, p+

1
9

, p+
2
3

]

with ct, we can see that Condi-

tion T .2 is fulfilled, but ct does not provide enough tokens on p1 to allow the
firing of t3. We choose

f = g1 + g2 =
[

p−2
3

, w1

6
, w2

2
, w3

1
, p+

3
2

]

,

m+ =
[

p−2
3

, w1

3
, w2

1
, p+

1
1

, p+
3
1

]

,

m− =
[

p−1
1

, p−2
1

, w1

1
, w2

1
, p+

3
2

]

and h = 2 is large enough for ∆+ =
[

p1

1
, p2

3
, p3

1

]
and ∆− =

[
p1

1
, p2

1
, p3

1

]
. Looking

at

β = ct + 2hf =
[

p−2
6

, p−3
1

, w1

14
, w2

4
, w3

3
, p+

2
1

, p+
3
2

]

and

ind(β) =
[

p−1
35

, p−2
14

, p−3
3

, w1

14
, w2

4
, w3

3
, p+

1
35

, p+
2
9

, p+
3
4

]

we can see that l = 35 is sufficient. This also suffices for ∆ = ind(hf)−m+−m− =
[

p−1
25

, p−2
8

, p−3
2

, w1

8
, w2

2
, w3

2
, p+

1
25

, p+
2
6

, p+
3
1

]

.

This means for k = 2h + lh = 74 we get (ct + 74(g1 + g2))|C(t) ∈ R(t).

5.6 The reachability relation for Petri nets with

inhibitor arcs

Now, we generalize Lemma 5.2.3 by using the operators ∪,◦Q and∗Q over finite
sets of multisets in a nested way. This allows us to express the reachability
problem in a Petri net for which there exists an ordering of the places such that
a place has an inhibitor arc to all those transitions which have an inhibitor arc
from a preceding place:



136 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

Theorem 5.6.1 In a Petri-net (P, T,W, I,m0,me) with

∃g ∈ NP
+ ∀p, p′ ∈ P g(p) ≤ g(p′) → (∀t ∈ T (p′, t) ∈ I → (p, t) ∈ I),

we can construct an expression Tg such that there is a firing sequence w ∈ T ∗

with m0[w〉me if and only if R(Tg) is (= {∅} and) not empty.

With Theorem 5.3.1 we derive the following:

Corollary 5.6.1 The reachability problem for a Petri net (P, T,W, I,m0,me)
with

∃g ∈ NP
+ ∀p, p′ ∈ P g(p) ≤ g(p′) → (∀t ∈ T (p′, t) ∈ I → (p, t) ∈ I),

is decidable.

Proof: (of Theorem 5.6.1) Let the Petri-net again have the properties of lemmata
5.2.1 and 5.2.2. Let PTh

= {p | g(p) ≥ h} be the places accessible on level h; this
level can only represent markings having no token on a place p with g(p) < h.
The innermost expression T1 is given by

T1 := {t | t ∈ T, ∀p ∈ P (p, t) 6∈ I}

describing transitions having no inhibitor arc. In general, the expression Th on
level h > 1 is given by

Th := {th} ∪ {t | t ∈ T,∀p ∈ P g(p) ≥ h → (p, t) 6∈ I ∧
∀p ∈ P g(p) < h → W (p, t) = W (t, p) = 0 }

with th = tP\PTh
({∗PTh−1

(Th−1)}) in accordance with Lemma 5.3.4.

On the top level g = max{g(p) | p ∈ P} + 1, we have

Tg := {tg} := {(m−
0 + m+

e )◦A∗PTg−1
(Tg−1)}

with A := {(p−, p−), (p+, p+) | p ∈ P}.
Now, we have to show that ∃w ∈ T ∗ m0[w〉me if and only if R(Tg) 6= ∅:
The firing sequence w can be decomposed in minimal firing sequences w1...wl

having the property m0[w1〉m1[w2〉...[wl〉mk = me such that mi(p) = 0 for all
i ≤ l and p with g(p) < g − 1.
In a general induction step for h < g−1, we are given a firing sequence m′

0[w
′〉m′

e.
It starts and ends with a marking without a token on a place p with g(p) ≤ h.
However, intermediately there is always a token on a place p with g(p) ≤ h in
the markings. This sequence w′ can be decomposed into minimal firing sequences
w1...wk having the property m′

0[w1〉m′
1[w2〉...[wk〉m′

k = m′
e such that m′

i(p) = 0



5.6. THE REACHABILITY RELATION WITH INHIBITOR ARCS 137

for all i ≤ k and p with g(p) < h. Thus, for all 1 < i < k, there is a p with
g(p) = h and m′

i(p) > 0.
If wi = ti ∈ T then W (p, ti) = W (ti, p) = 0 for all p with g(p) < h and (p, ti) 6∈ I
for all p with g(p) ≥ h. Thus, ti ∈ Th with Kti = ∅; therefore,

m′
i−1

− + m′
i
+ = {p− 7→ m′

i−1(p), p+ 7→ m′
i(p) | p ∈ P} ∈ R(Th).

(For h = 1, this is the only case, and this starts the induction.) Otherwise, by
minimality of wi, there is always a token on a place p with g(p) < h in the
intermediate markings. Thus, by induction over h, it holds

m′
i−1

−
+ m′

i
+ ∈ R(∗PTh−1

(Th−1)) = R(th) ⊆ R(Th)

as well. This means m′
0
− +m′

e
+ ∈ R(∗PTh

(Th)), which completes the induction.

On the top level, by concatenation of all m′
i−1

− +m′
i
+ ∈ R(∗PTg−1

(Tg−1)) for all
1 ≤ i ≤ g, we analogously, get

(m−
0 + m+

e ) ∈ R(∗PTg−1
(Tg−1)); thus, ∅ ∈ R(Tg).

The other direction again follows simply by composing firing sequences.



138 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

Example: The start marking {p3 7→ 3, p4 7→ 2} and the end marking {p4 7→ 27}
of the Petri net

p3��
��

t6

p4��
�� t7

t9

p1��
��

p2��
��

t8

?

BBM 3

��
��
��
��
��*

-
XXX

XXX
XXXy

5

���������9

� 2

-
2

XXXXXXXXXz2

•��
��
��
���

•"
""

""
""
""
"

• BBN5

�

with the function g with g(p1) = 1, g(p2) = 2 and g(p3) = g(p4) = 3 leads to

T1 =

{[
p−4
3

,
p+

1

2
,
p+

3

1

]

,

[
p−1
1

,
p−3
1

,
p+

2

2
,
p+

4

1

]}

+ IdP .

This enables the firing sequence w = t6t7t7 from
[

p3

1
, p4

3

]
to
[

p2

4
, p4

2

]
on the inner-

most level as
[

p−3
1

, p−4
3

, p+
2
4

, p+
4
2

]

∈ R(∗PT1
(T1)) = R(t2) ⊆ R(T2). Together with

[
p−2
5

, p+
3
2

]

∈ R(T2) for t8, we get the firing sequence w′ = (w)(w)t8(w)t8(w)t8(w)t8

from
[

p3

2
, p4

7

]
to
[

p3

5
, p4

2

]
on the next level as

[
p−3
2

, p−4
7

, p+
3
5

, p+
4
2

]

∈ R(∗PT2
(T2)) =

R(t3) ⊆ R(T3). Together with
[

p−3
1

, p+
4
5

]

∈ R(T3) for t9, this enables the firing se-

quence w′′ = t9(w
′)t59 from

[
p3

3
, p4

2

]
to
[

p4

27

]
on the following level as

[
p−3
3

, p−4
2

, p+
4

27

]

∈
R(∗PT3

(T3)) = R(t4) = R(T4).

'

&

$

%

�
�
��2

@
@
@R3

�
�
�� @

@
@
@
@R

27

t9

p′′3��
��

p′′4��
��

6

6
5

'

&

$

%

t8

p′3��
��

p′4��
��

p′2��
��
?5

?2

'

&

$

%
p3��

��

t6

p4��
��

t7

p1��
��

p2��
��?

BBM 3

��
��
�*

�

-
2

?2

?



5.7. PRIORITY-MULTICOUNTER-AUTOMATA 139

5.7 Priority-Multicounter-Automata

We define a priority-multicounter-automaton by a restrictive zero-test according
to an order of the counters in the following way: the first counter can be tested
for zero at any time; the second counter can only be tested for zero simulta-
neously with the first counter; any further counter can only be tested for zero
simultaneously with all preceding counters. Formally, this reads as follows:
A priority-multicounter-automaton is a one-way automaton described by the 6-
tuple

A = (k, Z, Σ, δ, z0, E)

with the set of states Z, the input alphabet Σ, the transition relation

δ ⊆ (Z × (Σ ∪ {λ}) × {0 . . . k}) × (Z × {−1, 0, 1}k),

initial state z0, the accepting states E ⊆ Z, the set of configurations CA =
Z × Σ∗ × Nk, the initial configuration σA(x) = 〈z0, x, 0, ..., 0

︸ ︷︷ ︸

k

〉 and configuration

transition relation

〈z, ax, n1, ..., nk〉 |
A

〈z′, x, n1 + i1, ..., nk + ik〉

if and only if z, z′ ∈ Z, a ∈ Σ ∪ {λ}, 〈(z, a, j), (z′, i1, ...ik)〉 ∈ δ, ∀i ≤ j ni = 0.
The language recognized by an priority-multicounter-automaton A is L(A) =
{w | ∃ze ∈ E ∃n1, ..., nk ∈ N 〈z0, w, 0, ..., 0〉 | ∗

A
〈ze, λ, n1, ..., nk〉. A priority-

multicounter-automaton can be changed in such a way that it has only one ac-
cepting state ze and that all counters are empty while accepting. Thus, L(A) =
{w | 〈z0, w, 0, ..., 0〉 | ∗

A
〈ze, λ, 0, ..., 0〉}.

Using Theorem 5.6.1, we show that the emptiness problem of the accepted lan-
guage is decidable for priority-multicounter-automata. The same holds for the
halting problem by constructing an automaton which contains its input in the
states.

Theorem 5.7.1 The emptiness problem for priority-multicounter-automata is
decidable.

Proof: Given A we construct a Petri net (P, T,W, I,m0,m1) with the places
P := {1...k} ∪ Z, the transitions T = δ, the weights W with
W (z, ((z′, a, j), (z′′, V ))) := 1 if z = z′ else := 0;
W (((z′, a, j), (z′′, V )), z) := 1 if z = z′′ else := 0;
W (i, ((z′, a, j), (z′′, V ))) := 1 if V (i) = −1 else := 0; and
W (((z′, a, j), (z′′, V )), i) := 1 if V (i) = 1 else := 0;
the inhibitor arcs I := {(i, ((z′, a, j), (z′′, V ))) | i ≤ j}, the start marking m0 :=
{z0 7→ 1}, and the end marking m1 := {ze 7→ 1} which is reachable from m0 if



140 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

and only if L(A) 6= ∅. According to Corollary 5.3.1 with g(i) = i for i ≤ k and
g(z) = k + 1 for z ∈ Z, this is decidable.
The classes k-PMC of languages accepted by a priority-multicounter-automaton
with k > 0 counters (and also their union) are incomparable to the class LIN of
linear languages and it holds (k-1)-PMC ( k-PMC. This is because

{an1ban2 ...bank+1$ank+1b...an2ban1 | ∀i ≤ k + 1 ni ∈ N} 6∈ k−PMC.

This can be shown by constructing T fulfilling property T and, then, by using
Lemma 5.4.1 to find two different words in the language where the automaton has
the same configuration reading $. With the same argument, this also holds for the
classes k-BLIND and k-PBLIND in [Gre78]. Furthermore, {(anb)m | n,m ∈ N}
cannot be accepted by a priority-multicounter-automaton.

5.8 Restricted Priority- Multipushdown- Auto-

mata

We define a priority-multipushdown-automaton by a different treatment of one
of the two pushdown symbols according to an order of the pushdown stores in
the following way: let the pushdown alphabet be {0, 1}. A 0 can be pushed
to and popped from every pushdown store independently, but a 1 can only be
pushed to or popped from a pushdown store if all pushdown stores with a lower
order are empty. Furthermore, the restriction requires that if a 1 is popped from
a pushdown store, then a 1 cannot be pushed anymore to this store until it is
empty.

Theorem 5.8.1 The emptiness problem for restricted priority-multipushdown-
automata is decidable.

This generalizes the result in [JKLP90] that LIN%D′
1
∗ (the class of languages

generated by linear grammar and deletion of semi Dyck words) is recursive. We
conjecture that decidability still holds in the unrestricted case but, even in the
special case of a pushdown automaton with additional weak counters (without
zero-test), this is still an open problem.

5.8.1 Folding pushdown-stores into a nested Petri net

Formally, a restricted priority-multipushdown-automaton is a one-way automaton
described by the 6-tuple

A = (k, Z, Σ, δ, z0, E)



5.8. RESTRICTED PRIORITY- MULTIPUSHDOWN- AUTOMATA 141

with the set of states Z = Z ′ × {↑, ↓}k, the input alphabet Σ, the transition
relation

δ ⊆ (Z × (Σ ∪ {λ}) × {0 . . . k} × {λ, 0, 1}k) × (Z × {λ, 0, 1}k),

initial state z0, the accepting states E ⊆ Z, the set of configurations CA =
Z ×Σ∗× ({0, 1}∗)k, the initial configuration σA(x) = 〈z0, x, 0k〉 and configuration
transition relation

〈z, ax,g1d1, ...,gkdk〉 |
A

〈z′, x,g1i1, ...,gkik〉

if and only if z, z′ ∈ Z, a ∈ Σ ∪ {λ}, 〈(z, a, j, d1, ..., dk), (z
′, i1, ...ik)〉 ∈ δ,

z = (z′′, a1, ..., ak), z′ = (z′′′, a′
1, ..., a

′
k), aj =↑ ∨a′

j =↓, and

∀i < j gi = λ ∧
∀i > j di 6= 1 ∧ ii 6= 1 ∧ ai = a′

i ∧
∀i ≤ k(ai =↓ ∨di 6= 1) ∧ (a′

i =↑ ∨ii 6= 1).

Furthermore, the condition dj 6= 0 ∧ ij 6= 0 can be established by creating an
intermediate state and a smaller j in the second transition.
Proof:(of Theorem 5.8.1) Given A, which has without loss of generality, only one
accepting configuration with all push-down stores empty and Σ = ∅, we add |Z ′|
push-down stores playing the role of the states (Only one of them has a zero
and the others are empty.). This allows us to set Z = {↑, ↓}k. Here, the end
state becomes the last push-down store and the start state the second last; thus,
without loss of generality the last 3 push-down stores never contain a 1. Then,
we construct a nested Petri net on 2k − 3 levels as follows:
Let Ph := {pi | h < i ≤ k} and P ′

h := {pi, p
′
i | h < i ≤ k}. The innermost

expression T0 is

T0 := {t | Kt = Γt = ∅ ∧ ∃〈(z, λ, 0, d1, ..., dk), (z, i1, ...ik)〉 ∈ δ ∧
∀i ≤ k (ct(p

−
i ) = 1 ↔ di = 0) ∧ (ct(p

+
i ) = 1 ↔ ii = 0) }

which corresponds to pushing and popping only zeros. The net N0 =∗P0(T0) is
used twice in

t1 = t(N0)◦{(p+
0 ,p−0

′
),(p−0 ,p+

0

′
)}

(t(N0) ◦A{{p−i 7→ 1, p+
i
′ 7→ 1}{p+

j 7→ 1, p−j
′ 7→ 1} | 0 < i ≤ k ≥ j}∗)

with A := {(p−, p−), (p+, p+) | p ∈ P0}. This corresponds to a sequence pushing
zeros on the first push-down store and a later sequence (on P ′

0) popping the same

number of zeros from the first push-down store. In general, net N2h =∗Ph
(T2h)

is used twice in t2h+1 =

t(N2h) ◦{(p+
h

,p−
h

′
),(p−

h
,p+

h

′
)}

(t(N2h)◦A{{p−i 7→ 1, p+
i
′ 7→ 1}{p+

i 7→ 1, p−i
′ 7→ 1} | h < i ≤ k, h ≤ j ≤ k}∗)



142 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

with A := {(p−, p−), (p+, p+) | p ∈ Ph}. This corresponds to a sequence pushing
zeros on the h + 1-st push-down store and a later sequence (on P ′

h) popping the
same number of zeros from the first push-down store. This is used in T2h−1 :=
{t2h−1} ∪

{ t | Kt = Γt = ∅ ∧
∃〈(z, λ, h, d1, ..., dk), (z, i1, ...ik)〉 ∈ δ ∧
∃〈(z′, λ, h, d′

1, ..., d
′
k), (z

′, i′1, ...i
′
k)〉 ∈ δ ∧

ih = d′
h = 1 ∧ i′h = dh = λ ∧

∀h < i ≤ k (ct(p
−
i ) = 1 ↔ di = 0) ∧ (ct(p

+
i ) = 1 ↔ ii = 0) ∧

∀h < i ≤ k (ct(p
+
i
′
) = 1 ↔ di = 0) ∧ (ct(p

−
i
′
) = 1 ↔ ii = 0) },

which corresponds to pushing (respectively later simulated on P ′
h popping) a one

on the h-th push-down store.
Sequences in the net N2h−1 = ∗P ′

h−1
(T2h−1) correspond to ”folding” a pushing

and a popping sequence together where the sequence on P ′ has reverse order. It
appears in

t2h = t(N2h−1)◦A{{p+
i 7→ 1, p+

i
′ 7→ 1}{p−i

′ 7→ 1, p+
h 7→ 1} | h < i ≤ k}∗)

with A := {(p+, p+), (p+′
, p+′

), (p−
′
, p−

′
) | p ∈ Ph}. This matching of p+

i and
p+

i
′
corresponds to the moment where the h-th push-down store switches from

pushing to popping.
This is used in T2h := {t2h} ∪

{ t | Kt = Γt = ∅ ∧
∃〈(z, λ, h + 1, d1, ..., dk), (z

′, i1, ...ik)〉 ∈ δ ∧
z = (a1, ..., ah−1, ↓, ah+1, ..., ak), z

′ = (a′
1, ..., a

′
h−1, ↑, ah+1, ..., ak), ∧

∀h < i ≤ k (ct(p
−
i ) = 1 ↔ di = 0) ∧ (ct(p

+
i ) = 1 ↔ ii = 0) ∧

∀h < i ≤ k (ct(p
+
i
′
) = 1 ↔ di = 0) ∧ (ct(p

−
i
′
) = 1 ↔ ii = 0) }

which allows concatenating with the 0-test of the h-th push-down store in the
net N2h =∗Ph

(T2h). On the top level 2k − 4, we have T2k−4 := {t2k−4} with

t2k−4 = {p−k−1 7→ 1, p+
k 7→ 1}◦AN2k−5

with A := {(p−, p−), (p+, p+) | p ∈ P ′
h}.

Now, if we have a sequence w ∈ δ∗ of transitions of A leading from the start
configuration to an end configuration, then 1’s are only pushed or popped from
the first k − 3 push-down stores. We have to show that {p−k−1 7→ 1, p+

k 7→ 1} ∈
R(N2k−5) in order to obtain R(T2k−4) = {∅}.
By induction over h, we consider w ∈ {〈(z, λ, j, d1, ..., dk), (z

′, i1, ...ik)〉 ∈ δ | j ≤
h}∗ to be a sequence of transitions of A such that,

• in the corresponding sequence of configurations 1’s are only pushed or
popped from the first h push-down stores and



5.9. ALTERNATIVE PROOF OF LEMMA 5.4.1 143

• they are empty in the first and the last configuration.

In this case, according to the definition, the direction of ah cannot be changed
from ↓ to ↑. Thus, w can be decomposed into v1t1v2t2...vnwn...s2w2s1w1 = w
such that t1 (s1, respectively) with i < n is a transition in δ with j = h and
ij = 1 (dj = 1, respectively); and the vi and wi are sequences of transitions in δ∗

where no 1 is pushed or popped to the h’th push-down store.
Each of the vi or wi can be decomposed into minimal sequences w′

1t
′
1w

′
2t

′
2...w

′
m.

Here, each is starting and ending with the first h−1 push-down stores empty and
the t′i are those transitions where the push-down store number h − 1 is switched
from popping to pushing; that means aj =↑ ∧a′

j =↓. The w′
i now have the same

property as w with h := h − 1.
For h = 0 a sequence w ∈ {〈(z, λ, 0, d1, ..., dk), (z

′, i1, ...ik)〉 ∈ δ}∗ corresponds to
an element in R(N0).
By induction, we assume that, for every w′

i, we have a corresponding element in
R(N2h−1) and, thus, in R(t2h). Furthermore, for every t′i, we have a corresponding
element in R(T2h). Thus, for every vi and wi, we have corresponding elements in
R(N2h) which, together, yield a corresponding element in R(t2h+1). Furthermore,
for every pair ti, si, we have a corresponding element in R(T2h+1). Thus, for w,
we have a corresponding path in R(N2h+1). This completes the induction.
In the other direction, if R(T2k−4) 6= ∅, composing the corresponding transitions
in the appropriate way leads from the start to the end configuration.

5.9 Alternative proof of Lemma 5.4.1

Definition 15 An expression T has the property T ′ if T has the property T in
which Condition T .4 is replaced by the following Condition T .4’: ∀p ∈ (P+

Ti
∪

P−
Ti

) Σ
g∈Γt

g(p) > 0.

Remark: T .4’ and T .3 together mean ∀a ∈ C(Ni) Σ
g∈Γt

g(a) > 0.

Lemma 5.9.1 If the conditions T .1 - T .4 hold for t, then we can construct a t′

with R(t′) = R(t) such that conditions T .1 - T .4’ hold for t′ and the size only
increases in the last component.

Proof: It follows from Condition T .4 that there exists a sufficiently large h ∈ Γ∗
t

such that for all i

∀p ∈ PTi
d(p−) := h(p−) − m+(p−) + m+(p+) ≥ 1 ∧
d(p+) := h(p+) + m−(p−) − m−(p+) ≥ 1 ∧
(ct + h)(p−) ≥ m+(p−) ∧ (ct + h)(p+) ≥ m−(p+),

and, additionally, according to Condition T .3,

∀w ∈ C(Ni) \ (P+
Ti
∪ P−

Ti
) d(w) := h(w) − m+(w) − m−(w) ≥ 1.

otherwise ∀a ∈ C(t) d(a) := h(a)



144 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

Now, we can define t′ with Kt′ = Kt, ct′ = ct and Γt′ = Γt ∪ {d}. Conditions 1
and 3 remain unchanged. Condition 2 still holds because for all p ∈ PTi

d(p−) − ind(d)(p−) =
h(p−) − m+(p−) + m+(p+) − (ind(h)(p−) − ind(m+)(p−) − ind(m−)(p−)) =

h(p−) − ind(h)(p−) + ind(m+)(p+) + ind(m−)(p−) =
h(p+) − ind(h)(p+) + ind(m+)(p+) + m−(p−) − m−(p+) + ind(m−)(p+) =

d(p+) − ind(d)(p+)

because the equation in Condition 2 was already fulfilled by h,m+ and m−.
Condition 4’ holds according to the definition of d, and it holds R(t) ⊆ R(t′)
since Lt ⊆ Lt′. So what remains is to show that R(t′) ⊆ R(t):
Let m′ = m + ld ∈ Lt′ with m ∈ Lt and m′ |C(t)∈ R(t′), then for every Ti ∈ Kt,
there are mµ ∈ R(Ni) for all 1 ≤ µ ≤ 2l + 1 such that for all p ∈ PTi

mµ(p−) = m(p−) + (l − µ + 1)h(p−) + (µ − 1)d(p−)
mµ(p+) = m(p−) + (l − µ)h(p−) + µd(p−)

ml+1(p
−) = m′(p−) = m(p−) + ld(p)

ml+1(p
+) = m′(p+) = m(p+) + ld(p)

ml+1+µ(p
−) = m(p+) + (l − µ + 1)d(p+) + (µ − 1)h(p+)

ml+1+µ(p
+) = m(p+) + (l − µ)d(p+) + µh(p+)

with ind(m′) |C(Ti)∈ ml+1 + IdPTi
, mµ ∈ m+ + IdPTi

⊆ R(Ni) for all 1 ≤ µ ≤ l,
and, analogously, ml+1+µ ∈ m− + IdPTi

⊆ R(Ni).
Since mµ(p+) = mµ+1(p

−) for all 1 ≤ µ ≤ 2l and all p ∈ PTi
, we can concatenate

all the mµ’s to ind(m + lh) |C(Ti)∈ R(Ni) and, therefore, obtain m′ |C(t)= m +
lh |C(t)∈ R(t).
From this construction, it also follows that, in the proof of Lemma 5.4.1, we
can choose an l such that lf − h ≥ f . We can then proof the lemma with
f ′ = lf −h+d, under the assumption that conditions T .1 - T .4’ hold, and obtain
k = k′l by k′f ′ |C(t)= k′lf |C(t).

Proof:(of Lemma 5.4.1) Given f ∈ ∑

g∈Γt

g+Γ∗
t and e ∈ (Γt ∪−Γt)

∗ we have to find

a k ≥ 2 such that
{
(ct + kf) |C(t), (ct + kf + e) |C(t)

}
⊆ R(t).

For an elementary transition t with Kt = ∅, we have R(t) = ct+Γ∗
t and the state-

ment is easily fulfilled by choosing a sufficiently large k compensating negative
components in e.
Induction step: For every Ni ∈ Kt and for every tj ∈ Ti, let

fj :=
∑

g∈Γtj

f(wg)g, ej :=
∑

g∈Γtj

e(wg)g and hj :=
∑

g∈Γtj

ct(wg)g.

Since f(wg) > 0 for every g ∈ Γtj , according to Condition T .3, we have fj ∈
∑

g∈Γtj

g + Γ∗
tj
. This means fj fulfills the condition for f one level deeper.



5.9. ALTERNATIVE PROOF OF LEMMA 5.4.1 145

When we use Condition T .1 and apply the lemma by induction for sub-transitions
tj of t two times for e as ejorhj and for f as fj , we conclude that there exist
kj , k

′
j ≥ 2 with

(ctj + kjfj) |C(tj), (ctj + kjfj + ej) |C(tj),
(ctj + k′

jfj) |C(tj), (ctj + k′
jfj + hj) |C(tj)∈ R(tj).

(1)

There exists a sufficiently large h ≥ 1 with hf + e ∈ ∑

g∈Γt

g + Γ∗
t such that, for all

i and j, we have h = njkj = n′
jk

′
j for some nj , n

′
j ,

lj := nj(kjf(wctj
) − 1) + e(wctj

) > 0 and

n′
j(k

′
jf(wctj

) − 1) + ct(wctj
) > 0

(3)

since f(wctj
) > 0. Now we have

ind(hf) |C(tj) =
∑

g∈{ctj
}∪Γtj

hf(wg)g |C(tj)

= njkj

(

f(wctj
)ctj +

∑

g∈Γtj

f(wg)g

)

|C(tj)

= nj

(

(kjf(wctj
) − 1)ctj + (ctj + kjfj)

)

|C(tj)∈ R(tj)
∗

(4)

according to Condition T .5 and equation (1). The same holds (because of equa-
tion (3)) for

ind(hf + e) |C(tj)=
∑

g∈{ctj
}∪Γtj

(hf + e)(wg)g |C(tj) =

(

nj((kjf(wctj
) − 1)ctj + (ctj + kjfj)) + e(wctj

)ctj + ej

)

|C(tj) =
(
ljctj + (nj − 1)(ctj + kjfj) + (ctj + kjfj + ej)

)
|C(tj) ∈ R(tj)

∗.

(5)

Analogously, we have ind(hf + ct) |C(tj)∈ R(tj)
∗ and, by combination of all tran-

sitions in Ti (like those in equations (4) and (5) ), we get

ind(hf |C(Ti), ind(2hf + ct) |C(Ti), ind(2hf + ct + e) |C(Ti)∈ R(Ni).

Since for all p ∈ (P+
Ti
∪ P−

Ti
) f(p) > 0, we can find a sufficiently large l such that,

by concatenation of ind(2hf + ct) |C(Ti) respectively ind(2hf + ct + e) |C(Ti) with
l − 2 times ind(hf) |C(Ti), we have (lhf + ct) |C(t), (lhf + ct + e) |C(t)∈ R(t).



146 CHAPTER 5. REACHABILITY IN PETRI NETS WITH INHIB. ARCS

Acknowledgment Thanks to Eric Allender, Bernd Borchert, Carsten Damm,
Volker Diekert, Henning Fernau, Klaus-Jörn Lange, Oliver Matz, Pierre McKen-
cie, Peter Rossmanith, Pascal Tesson, Denis Therien, Wolfgang Thomas, Klaus
Wich and Thomas Wilke for many interesting discussions and helpful remarks,
and to Swee Leng Tan for comments and corrections relating to my writing style.



Bibliography

[AAD97] M. Agrawal, E. Allender, and S. Datta. On TC0, AC0, and arithmetic
circuits. In Proceedings, 12th Annual IEEE Conference on Computa-
tional Complexity, pages 134–148, 1997.

[ABO96] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix
rank and feasible systems of linear equations. In ACM Symposium
on Theory of Computing (STOC), 1996.

[ABO97] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank
and feasible systems of linear equations. DIMACS technical report
97-40, submitted for publication, a preliminary version appeared in
STOC 96, 1997.

[AFG87] J.-M. Autebert, P. Flajolet, and J. Gabarró. Prefixes of infinite words
and ambiguous context-free languages. Information Processing Let-
ters, 25:211–216, 1987.

[AJ93a] Eric Allender and Jia Jiao. Depth reduction for noncommutative
arithmetic circuits (extended abstract). In Proceedings of the 25th
Annual ACM Symposium on Theory of Computing (San Diego, Cal-
ifornia, May 16–18, 1993), pages 515–522, New York, 1993. ACM
SIGACT, ACM Press.

[AJ93b] C. Àlvarez and B. Jenner. A very hard log-space counting class.
Theoret. Comput. Sci., 107:3–30, 1993.

[AL96] E. Allender and K.-J. Lange. StUSPACE(log n) is contained in
DSPACE(log2 n/ log log n). In Proceedings of the 7th International
Symposium on Algorithms and Computation (ISAAC), volume 1178
of Lecture Notes in Computer Science, pages 193–202. Springer-
Verlag, 1996.

[All97] E. Allender. Making computation count: Arithmetic circuits in the
nineties. SIGACT NEWS, 28(4):2–15, December 1997.

147



148 BIBLIOGRAPHY

[AO96] E. Allender and M. Ogihara. Relationships among PL, #L, and
the determinant. RAIRO - Theoretical Information and Application,
30:1–21, 1996.

[AR88] E. Allender and R. Rubinstein. P-printable sets. SIAM J. Comput.,
17:1193–1202, 1988.

[ARS97] L. Alonso, E. Reingold, and R. Schott. The average-case complexity
of determining the majority. SIAM J. Comput., 26:1–14, 1997.

[ARZ99] E. Allender, K. Reinhardt, and S. Zhou. Isolation matching and
counting uniform amd nonuniform upper bounds. Journal of Com-
puter and System Sciences, 59:164–181, 1999.

[Avr03] Arnon Avron. Transitive closure and the mechanization of mathe-
matics. In F. Kamareddine, editor, Thirty Five Years of Automating
Mathematics, pages 149–171. Kluwer Academic Publishers, 2003.

[AZ98] E. Allender and S. Zhou. Uniform inclusions in nondeterministic
logspace. In R. Freivalds, editor, Randomized Algorithms, pages 35–
41, 1998. MFCS Satellite Workshop, Brno, Czech Republic.

[BCD+88] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa.
Two applications of complementation via inductive counting. In Pro-
ceedings of the 3d IEEE Symposium on Structure in Complexity, 1988.

[BCD+89] A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa.
Two applications of inductive counting for complementation prob-
lems. SIAM Journal on Computing, 18(3):559–578, 1989.

[BCH86] P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for
division and related problems. SIAM Journal on Computing, 15:994–
1003, 1986.

[BCP83] A. Borodin, S. Cook, and N. Pippenger. Parallel Computation
for Well-Endowed Rings and Space-Bounded Probabilistic Machines.
Inf. Control, 58(1–3):113–136, 1983.

[BDHM92] Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf, and Christoph
Meinel. Structure and importance of logspace-MOD class. Math. Sys-
tems Theory, 25:223–237, 1992.

[Ber79] J. Berstel. Transductions and context-free languages. Teubner Studi-
enbücher, Stuttgart, 1979.

[BF97] R. Beigel and B. Fu. Circuits over PP and PL. In IEEE Conference
on Computational Complexity, pages 24–35, 1997.



BIBLIOGRAPHY 149

[BGW] L. Babai, A. Gál, and A. Wigderson. Superpolynomial lower bounds
for monotone span programs. DIMACS Technical Report 96-37.

[BIS90] D. M. Barrington, N. Immerman, and H. Straubing. On uniformity
within NC1. J. of Comp. and Syst. Sciences, 41:274–306, 1990.

[BJLR91] G. Buntrock, B. Jenner, K.-J. Lange, and P. Rossmanith. Unambi-
guity and fewness for logarithmic space. In L. Budach, editor, Pro-
ceedings of the 8th Conference on Foundations of Computation The-
ory, number 529 in Lecture Notes in Computer Science, pages 168–
179, Gosen, Federal Republic of Germany, September 1991. Springer-
Verlag.

[Boa97] L. Boasson. personal communication. 1997.

[Boo71] R. V. Book. Time-bounded grammars and their languages. Journal
of Computer and System Sciences, 5(4):397–429, August 1971.

[Bor03] B. Borchert. Formal language characterizations of P, NP and
PSPACE. Manuscript: http://www-fs.informatik.uni-tuebingen.de/
∼borchert/papers/Borchert 2003 NP-characterization.pdf, 2003.

[Bra81] F. J. Brandenburg. On the height of syntactical graphs. In Peter
Deussen, editor, Proceedings of the 5th GI-Conference on Theoretical
Computer Science, volume 104 of LNCS, pages 13–21, Karlsruhe,
FRG, March 1981. Springer.

[Büc62] J.R. Büchi. On a decision method in restricted second order arith-
metic. In Proc. Internat. Congress on Logic, Methodology and Phi-
losophy, pages 1–11. Standford University Press, 1962.

[Bud91] L. Budach, editor. Proceedings of the 8th Conference on Founda-
tions of Computation Theory, number 529 in Lecture Notes in Com-
puter Science, Gosen, Federal Republic of Germany, September 1991.
Springer-Verlag.

[Bun98] G. Buntrock. Personal communication. 1998.

[CH90] Jin-Yi Cai and Lane A. Hemachandra. On the power of parity poly-
nomial time. Mathematical Systems Theory, 23:95–106, 1990.

[CJ91] C. Choffrut and M. Jantzen, editors. Proceedings of the 8th Sym-
posium on Theoretical Aspects of Computer Science, number 480 in
Lecture Notes in Computer Science, Hamburg, Federal Republic of
Germany, February 1991. Springer-Verlag.



150 BIBLIOGRAPHY

[CK86] L. A. Cherkasova and V. E. Kotov. Structured nets. In J. Gruska
and M. Chytil, editors, Proceedings of the 6th MFCS, number 118 in
LNCS, pages 242–251. Springer, 1986.

[CKS81] A. K. Chandra, D. Kozen, and L. Stockmeyer. Alternation. Journal
of the ACM, 28:114–133, 1981.

[CM78] K. Culik II and H.A. Maurer. On the height of derivation trees.
Forschungsbericht Nr. 18, Inst. für Informationsverarbeitung TU
Graz, 1978.

[CMTV96] H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nonde-
terministic NC1 computation. In Proceedings, 11th Annual IEEE
Conference on Computational Complexity, pages 12–21, 1996.

[Coo81] S. A. Cook. Towards a complexity theory of synchronous parallel
computation. Enseign. Math., 27:99–124, 1981.

[Dam] C. Damm. DET = L#l? Informatik-Preprint 8, Fachbereich Infor-
matik der Humboldt-Universität zu Berlin, 1991.

[Dam90] C. Damm. Problems complete for ⊕L. In J. Dassow and J. Kelemen,
editors, Proceedings of the 6th International Meeting of Young Com-
puter Scientists, number 464 in Lecture Notes in Computer Science,
pages 214–224. Springer-Verlag, 1990.

[Dic13] L. E. Dickson. Finiteness of the odd perfect and primitive abundant
numbers with n distinct prime factors. Amer. J. Math., 35:413–422,
1913.

[DM79] N. Dershowitz and Z. Manna. Proving Termination with Multiset
Orderings. Comm. ACM, 22(8):465–476, 1979.

[DR86] P. W. Dymond and W. L. Ruzzo. Parallel RAM’s with owned global
memory and deterministic context-free language recognition. In Au-
tomata, Languages and Programming, volume 226 of LNCS, pages
95–104, 1986.

[Edm65] J. Edmonds. Matching and a polyhedron with O-1 vertices. J.
Res. Natl. Bur. Stand., 69:125–130, 1965.

[Eil74] S. Eilenberg. Automata, Languages and Machines, volume I. Aca-
demic Press, New York and London, 1974.

[ES69] S. Eilenberg and M. P. Schützenberger. Rational sets in commutative
monoids. Journal of Algebra, 13:173–191, 1969.



BIBLIOGRAPHY 151

[Fag75] R. Fagin. Monadic generalized spectra. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik, 21:89–96, 1975.

[FFK94] Stephen A. Fenner, Lance J. Fortnow, and Stuart A. Kurtz. Gap-
definable counting classes. Journal of Computer and System Sciences,
48:116–148, 1994.

[FKS82] M. Fredman, J. Kómlós, and Endre Szemerédi. Storing a sparse
table with o(1) worst case access time. In 23rd IEEE Symposium on
Foundations of Computer Science (FOCS), pages 165–169, 1982.

[FLR96] H. Fernau, K.-J. Lange, and K. Reinhardt. Advocating ownership.
In V. Chandru, editor, Proceedings of the 16th Conference on Foun-
dations of Software Technology and Theoretical Computer Science,
volume 1180 of LNCS, pages 286–297. Springer, December 1996.

[FSV95] Ronald Fagin, Larry J. Stockmeyer, and Moshe Y. Vardi. On monadic
NP vs. monadic co-NP. Information and Computation, 120(1):78–92,
July 1995.

[Für82] Martin Fürer. The tight deterministic time hierarchy. In Proceedings
of the Fourteenth Annual ACM Symposium on Theory of Computing,
pages 8–16, San Francisco, California, 5–7 May 1982.

[Gab84] J. Gabarró. Pushdown space complexity and related full-AFLs. In
Symposium of Theoretical Aspects of Computer Science, volume 166
of LNCS, pages 250–259, Paris, France, 11–13 April 1984. Springer.

[Gál95] A. Gál. Semi-unbounded fan-in circuits: Boolean vs. arithmetic. In
IEEE Structure in Complexity Theory Conference, pages 82–87, 1995.

[Gil77] J. Gill. Computational complexity of probabilistic Turing machines.
SIAM J. Comput., 6(4):675–695, December 1977.

[Gin66] S. Ginsburg. The Mathematical Theory of Context-Free Languages.
McGraw-Hill, New York, 1966.

[GNW90] T. Gundermann, N.A. Nasser, and G. Wechsung. A survey on count-
ing classes. In Proceedings of the 5th IEEE Symposium on Structure
in Complexity, pages 140–153, 1990.

[Gol72] J. Goldstine. Substitution and bounded languages. Journal of Com-
puter and System Sciences, 6(1):9–29, February 1972.

[Gol76] J. Goldstine. Bounded AFLs. Journal of Computer and System Sci-
ences, 12(3):399–419, June 1976.



152 BIBLIOGRAPHY

[GR88] Alan Gibbons and Wojciech Rytter. Efficient parallel algorithms.
Cambridge University Press, Cambridge, 1988.

[GR96] D. Giammarresi and A. Restivo. Two-dimensional languages. In
G. Rozenberg and A. Salomaa, editors, Handbook of Formal Language
Theory, volume III. Springer-Verlag, New York, 1996.

[Grä91] E. Grädel. The Expressive Power of Second Order Horn Logic. In
Proceedings of 8th Symposium on Theoretical Aspects of Computer
Science STACS ‘91, Hamburg 1991, volume 480 of LNCS, pages 466–
477. Springer-Verlag, 1991.

[Gre78] S. Greibach. Remarks on blind and partially blind one-way multi-
counter machines. Theoret. Comput. Sci., 7:311–324, 1978.

[GRST94] D. Giammarresi, A. Restivo, S. Seibert, and W. Thomas. Monadic
second-order logic over pictures and recognizability by tiling sys-
tems. In P. Enjalbert, E.W. Mayr, and K.W. Wagner, editors,
Proceedings of the 11th Annual Symposium on Theoretical Aspects
of Computer Science, STACS 94 (Caen, France, February 1994),
LNCS 775, pages 365–375, Berlin-Heidelberg-New York-London-
Paris-Tokyo-Hong Kong-Barcelona-Budapest, 1994. Springer-Verlag.

[GS65] S. Ginsburg and E. H. Spanier. Semigroups, Presburger formulas,
and languages. Pacific J. Math., 16:285–296, 1965.

[GS88] J. Grollmann and A. Selman. Complexity measures for public-key
cryptosystems. SIAM Journal on Computing, 17:309–335, 1988.

[GTW02] Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Au-
tomata, Languages, and Infinite Games, volume 2500 of Lecture Notes
in Computer Science. Springer, 2002.

[GW96] A. Gál and A. Wigderson. Boolean vs. arithmetic complexity classes:
randomized reductions. Random Structures and Algorithms, 9:99–
111, 1996.

[HHK91] T. Hofmeister, W. Hohberg, and S. Köhling. Some notes on threshold
circuits, and multiplication in depth 4. In Budach [Bud91], pages
230–239.

[HKvM02] T. Hayes, S. Kutin, and D. van Melkebeek. On the quantum black-
box complexity of majority. Algorithmica, 34:480–501, 2002. Special
issue for selected papers on quantum information processing.

[HU79] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory,
Languages and Computation. Addison-Wesley, 1979.



BIBLIOGRAPHY 153

[Iga77] Y. Igarashi. General properties of derivational complexity. Acta Inf.,
8(3):267–283, 1977.

[Imm87] N. Immerman. Languages that capture complexity classes. SIAM J.
of Computing, 16:4:760–778, 1987.

[Imm88] N. Immerman. Nondeterministic space is closed under complement.
SIAM Journal on Computing, 17(5):935–938, 1988.

[IN77] K. Inoue and A. Nakamura. Some properties of two-dimensional on-
line tessellation acceptors. Information Sciences, 13:95–121, 1977.

[IW97] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponen-
tial circuits: Derandomizing the XOR lemma. In ACM Symposium
on Theory of Computing (STOC), pages 220–229, 1997.

[JK89] B. Jenner and B. Kirsig. Alternierung und Logarithmischer Platz.
Dissertation, Universität Hamburg, 1989.

[JKLP90] M. Jantzen, M. Kudlek, K.-J. Lange, and H. Petersen. Dyck1-
reductions of context-free languages. In Computers and Artificial
Intelligence, volume 9, pages 228–236, 1990.

[Jon75] N. D. Jones. Space bounded reducibility among combinatorial prob-
lems. Journal of Computer and System Sciences, 11:68–85, 1975.

[Kas65] T. Kasami. An efficient recognition and syntax algorithm for context-
free languages. Scientific Report AFCRL-65-758, Air Force Cam-
bridge Research Laboratory, Bedford MA, 1965.

[KL82] R.M. Karp and R. Lipton. Turing machines that take advice.
L’Enseignement Mathematique, 28:191–209, 1982.

[KLM89] H. Kleine Büning, T. Lettmann, and E. W. Mayr. Projections of vec-
tor addition system reachability sets are semilinear. Theoret. Comput.
Sci., 64:343–350, 1989.

[KN97] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge
University Press, 1997.

[Kos84] S. R. Kosaraju. Decidability of reachability in vector addition sys-
tems. In Proceedings 14th Ann. ACM STOC, pages 267–281, 1984.

[KPU79] W. Kuich, H. Prodinger, and F. J. Urbanek. On the height of deriva-
tion trees. In H. A. Maurer, editor, Automata, Languages and Pro-
gramming, 6th Colloquium, volume 71 of Lecture Notes in Computer
Science, pages 370–384, Graz, Austria, 16–20 July 1979. Springer-
Verlag.



154 BIBLIOGRAPHY

[KSTT92] J. Köbler, U. Schöning, S. Toda, and J. Torán. Turing machines with
few accepting computations and low sets for pp. Journal of Computer
and System Sciences, 44:272–286, 1992.

[KUW86] R.M. Karp, E. Upfal, and A. Wigderson. Constructing a perfect
matching is in random NC. Combinatorica, 6(1):35–48, 1986.

[KvM02] A. Klivans and D. van Melkebeek. Graph nonisomorphism has subex-
ponential size proofs unless the polynomial-time hierarchy collapses.
SIAM Journal on Computation, 31:1118–1131, 2002. preliminary ver-
sion in STOC99.

[Lam92] J.L Lambert. A structure to decide reachability in petri nets. Theo-
retical Computer Science, 99:79–104, 1992.

[Lan89] K.-J. Lange. Complexity theory and formal languages. In Proceedings
of the 5th International Meeting of Young Computer Scientists, num-
ber 381 in Lecture Notes in Computer Science, pages 19–36. Springer-
Verlag, 1989.

[Lan90] K.-J. Lange. Unambiguity of circuits. In Proceedings of the 5th IEEE
Symposium on Structure in Complexity, pages 130–137, 1990.

[Lan97] K.-J. Lange. An unambiguous class possessing a complete set. In
Proc. 14th Symposium on Theoretical Aspects of Computer Science
(STACS ’97), volume 1200 of Lecture Notes in Computer Science,
pages 339–350. Springer-Verlag, 1997.

[LLS84] R. E. Ladner, R. J. Lipton, and L. J. Stockmeyer. Alternating push-
down and stack automata. SIAM Journal on Computing, 13:135–155,
February 1984.

[LR90a] K.-J. Lange and P. Rossmanith. Characterizing unambiguous aug-
mented pushdown automata by circuits. In B. Rovan, editor, Pro-
ceedings of the 15th Conference on Mathematical Foundations of
Computer Science, number 452 in Lecture Notes in Computer Sci-
ence, pages 399–406, Banská Bystrica, Czechoslovakia, August 1990.
Springer-Verlag.

[LR90b] K.-J. Lange and P. Rossmanith. Two Results on Unambiguous Cir-
cuits. SFB-Bericht 342/3/90 A, I9006, Institut für Informatik, Tech-
nische Universität München, 1990.

[LR94] K.-J. Lange and K. Reinhardt. Empty alternation. In B. Rovan, edi-
tor, Proceedings of the 19th Conference on Mathematical Foundations
of Computer Science, number 841 in Lecture Notes in Computer Sci-
ence, pages 494–503, Kosice, Slovakia, August 1994. Springer-Verlag.



BIBLIOGRAPHY 155

[LR96] K.-J. Lange and K. Reinhardt. Set automata. In D. S. Bridges, editor,
Combinatorics, Complexity and Logic; Proceedings of the DMTCS’96,
ISBN 981308314, pages 321–329. Springer, dec 1996.

[LS97a] M. Latteux and D. Simplot. Context-sensitive string languages
and recognizable picture languages. Information and Computation,
138(2):160–169, 1 November 1997.

[LS97b] M. Latteux and D. Simplot. Recognizable picture languages and
domino tiling. Theoretical Computer Science, 178(1-2):275–283, 1997.
Note.

[LSL84] R. Ladner, L. Stockmeyer, and R. Lipton. Alternation bounded auxil-
iary pushdown automata. Information and Control, 62:93–108, 1984.

[Mat97] O. Matz. Regular expressions and context-free grammars for pic-
ture languages. In 14th Annual Symposium on Theoretical Aspects
of Computer Science, volume 1200 of lncs, pages 283–294, Lübeck,
Germany, 27 February– March 1 1997. Springer.

[Mat98] O. Matz. On piecewise testable, starfree, and recognizable picture
languages. In Maurice Nivat, editor, Foundations of Software Sci-
ence and Computation Structures, volume 1378 of Lecture Notes in
Computer Science, pages 203–210. Springer, 1998.

[Mat99] O. Matz. Dot-Depth and Monadic Quantifier Alternation over Pic-
tures. Technical report, Aachener Informatik Berichte 99-08, RWTH
Aachen, 1999.

[Mau68] H. Maurer. The existence of context-free languages which are inher-
ently ambiguous of any degree. Department of mathematics,research
series., University of Calgary, 1968.

[May84] E. Mayr. An algorithm for the general Petri net reachability problem.
Siam J. Comput., 13:441–459, 1984.

[Meh82] K. Mehlhorn. On the program size of perfect and universal hash
functions. In 23rd IEEE Symposium on Foundations of Computer
Science (FOCS), pages 170–175, 1982.

[Min71] M. L. Minsky. Computation: Finite and Infinite Machines. Prentice-
Hall, 1971.

[MRV99] P. McKenzie, K. Reinhardt, and V. Vinai. Circuits and contextfree
langauges. In T. Asano et al., editor, Proceedings of the 5th CO-
COON’99, LNCS 1627, pages 194–203. Springer, 1999.



156 BIBLIOGRAPHY

[MV97] M. Mahajan and V. Vinay. Determinant: Combinatorics, algorithms,
and complexity. Chicago Journal of Theoretical Computer Science,
5, 1997.

[MVV87] K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7:105–113, 1987.

[NR91] I. Niepel and P. Rossmanith. Uniform circuits and exclusive read
PRAMs. In S. Biswas and K. V. Nori, editors, Proceedings of the
11th Conference on Foundations of Software Technology and The-
ory of Computer Science, number 560 in Lecture Notes in Computer
Science, pages 307–318, New Delhi, India, December 1991. Springer-
Verlag.

[NR92] R. Niedermeier and P. Rossmanith. Unambiguous simulations of aux-
iliary pushdown automata and circuits. In I. Simon, editor, Proceed-
ings of the 1st Symposium on Latin American Theoretical Informat-
ics, number 583 in Lecture Notes in Computer Science, pages 387–
400, São Paulo, Brazil, April 1992. Springer-Verlag.

[NR95] R. Niedermeier and P. Rossmanith. Unambiguous auxiliary push-
down automata and semi-unbounded fan-in circuits. Information and
Computation, 118(2):227–245, 1995.

[NRS97] R. Niedermeier, K. Reinhardt, and P. Sanders. Towards optimal
locality in mesh-indexings. In L. Czaja B.S. Chlebus, editor, Pro-
ceedings of the FCT’97, LNCS 1279, pages 364–375. Springer, sept.
1997.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of
Computer and System Sciences, 49:149–167, 1994.

[Ogi96] M. Ogihara. The PL hierarchy collapses. In ACM Symposium on
Theory of Computing (STOC), pages 84–88, 1996. to appear in SIAM
J. Comput.

[Par90] Ian Parberry. A primer on the complexity theory of neural networks.
In R.B. Banerji, editor, Formal Techniques in Artificial Intelligence,
Amsterdam, 1990. North-Holland.

[Pre29] M. Presburger. Über die Vollständigkeit eines gewissen Systems der
Arithmetik ganzer Zahlen, in welchem die Addition als einzige Opera-
tion hervortritt. Comptes Rendus du Ier Congrès des Mathématiciens
des Pays Slaves, Warszawa, pages 92–101, 1929.



BIBLIOGRAPHY 157

[PW03] L. Priese and H. Wimmel. Theoretische Informatik, Petrinetze.
Springer, 2003.

[RA00] K. Reinhardt and E. Allender. Making nondeterminism unambigu-
ous. SIAM Journal of Computation, 29:1118–1131, 2000.

[Raz90] A. Razborov. Lower bounds on the size of switching-and-rectifier
networks for symmetric Boolean functions. Mathematical Notes of
the Academy of Sciences of the USSR, 48(6):79–91, 1990.

[Raz92] A. Razborov. Lower bounds for deterministic and nondeterministic
branching programs. In Proc. 8th International Conference on Fun-
damentals of Computation Theory (FCT ’91), volume 529 of Lecture
Notes in Computer Science, pages 47–60. Springer-Verlag, 1992.

[Reg97] K. Regan. Polynomials and combinatorial definitions of languages.
In L. Hemaspaandra and Alan Selman, editors, Complexity Theory
Retrospective II, pages 261–293. Springer-Verlag, 1997.

[Rei89] K. Reinhardt. Hierarchien mit alternierenden Kellerautomaten, al-
ternierenden Grammatiken und finiten Transducern. Diplomarbeit,
Universität Stuttgart, Breitwiesenstr. 22, D-70565 Stuttgart, Septem-
ber 1989.

[Rei90] K. Reinhardt. Hierarchies over the context-free languages. In J. Das-
sow and J. Kelemen, editors, Developments in Theoretical Computer
Science: Proceedings of the 6th International Meeting of Young Com-
puter Scientists, number 464 in Lecture Notes in Computer Science,
pages 214–224. Springer-Verlag, 1990.

[Rei92] K. Reinhardt. Counting and empty alternating pushdown automata.
In J. Dassow, editor, Developments in Theoretical Computer Science:
Proceedings of the 7th International Meeting of Young Computer Sci-
entists, number 6 in Topics in Computer Mathematics, pages 123–
132. Gordon and Breach Science Publishes S.A., 1992.

[Rei94] K. Reinhardt. Prioritätszählerautomaten und die Synchronisation
von Halbspursprachen. Dissertation, Institut für Informatik, Uni-
versität Stuttgart, 1994.

[Rei97] K. Reinhardt. Strict sequential P-completeness. In R. Reischuk,
editor, Proceedings of the 14th Symposium on Theoretical Aspects
of Computer Science, number 1200 in Lecture Notes in Computer
Science, pages 329–338, Lübeck, February 1997. Springer-Verlag.



158 BIBLIOGRAPHY

[Rei98] K. Reinhardt. On some recognizable picture-languages. In L. Brim,
editor, Proceedings of the 23th Conference on Mathematical Founda-
tions of Computer Science, number 1450 in Lecture Notes in Com-
puter Science, pages 760–770. Springer-Verlag, August 1998.

[Rei99] K. Reinhardt. A parallel contextfree derivation hierarchy. In G. Paun
G. Chiobanu, editor, Proceedings of the FCT’99, LNCS 1684, pages
441–450. Springer, august 1999.

[Rei01] K. Reinhardt. The #a=#b pictures are recognizable. In Proceedings
of the 18th Symposium on Theoretical Aspects of Computer Science,
number 2010 in Lecture Notes in Computer Science, pages 527–538,
Dresden, 2001. Springer-Verlag.

[Rei02] K. Reinhardt. The complexity of translating logic to finite automata.
In Erich Grdel, Wolfgang Thomas, and Thomas Wilke, editors, Au-
tomata, Languages, and Infinite Games, volume 2500 of Lecture Notes
in Computer Science. Springer, 2002.

[Reu90] C. Reutenauer. The Mathematics of Petri-nets. Masson and Prentice
Hall, 1990.

[Ros91] P. Rossmanith. The owner concept for PRAMs. In Choffrut and
Jantzen [CJ91], pages 172–183.

[RR92] P. Rossmanith and W. Rytter. Observations on log n time paral-
lel recognition of unambiguous context-free languages. Information
Processing Letters, 44:267–272, 1992.

[RST84] W. L. Ruzzo, J. Simon, and M. Tompa. Space-bounded hierarchies
and probabilistic computations. Journal of Computer and System
Sciences, 28:216–230, 1984.

[RTT98] J-F Raymond, P. Tesson, and D. Thrien. An algebraic approach to
communication complexity. In Proceedings of ICALP98, volume 1443
of Lecture Notes in Computer Science, pages 29–40. Springer-Verlag,
1998.

[Ruz81] W. L. Ruzzo. On uniform circuit complexity. Journal of Computer
and System Sciences, 22:365–383, 1981.

[Ryt87] W. Rytter. Parallel time O(log n) recognition of unambiguous
context-free languages. Information and Computation, 73:75–86,
1987.

[Sch04] N. Schweikardt. Arithmetic, first-order logic, and counting quanti-
fiers. to appear in ACM Transactions on Computational Logic, 2004.



BIBLIOGRAPHY 159

[Sie02] D. Sieling. Lower bounds for linearly transformed obdds and fbdds.
Journal of Computer and System Sciences, 64:419 – 438, 2002.

[ST94] M. Santha and S. Tan. Verifying the Determinant. In Proceedings
of the 5th Symposium on Algorithms and Computation, LNCS 834,
pages 65–73. Springer-Verlag, 1994.

[Sto74] L. J. Stockmeyer. The Complexity of Decision Problems in Automata
Theory and Logic. PhD thesis, Dept. of Electrical Engineering, MIT,
Boston, Mass., 1974.

[STV99] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom generators
without the XOR lemma. In ACM Symposium on Theory of Com-
puting (STOC), 1999. to appear.

[Sud75] I. H. Sudborough. A note on tape-bounded complexity classes and
linear context-free languages. Journal of the ACM, 22:499–500, 1975.

[Sud78] I. H. Sudborough. On the tape complexity of deterministic context-
free languages. Journal of the ACM, 25:405–414, 1978.

[SV84] L. Stockmeyer and U. Vishkin. Simulation of parallel random access
machines by circuits. SIAM Journal on Computing, 13(2):409–422,
May 1984.

[Sze88] R. Szelepcsényi. The method of forced enumeration for nondetermin-
istic automata. Acta Informatica, 26:279–284, 1988.

[Tod92] S. Toda. Classes of arithmetic circuits capturing the complexity of
computing the determinant. IEICE Trans. Inf. and Syst., E75-D:116–
124, 1992.

[Val76] L. Valiant. The relative complexity of checking and evaluating. In-
formation Processing Letters, 5:20–23, 1976.

[Val79] L. G. Valiant. The complexity of computing the permanent. Theo-
retical Computer Science, 8:189–201, 1979.

[Val92] L. Valiant. Why is Boolean complexity theory difficult? In M. Pa-
terson, editor, Boolean Function Complexity, volume 169 of London
Mathematical Society Lecture Notes Series, pages 84–94. Cambridge
University Press, 1992.

[Ven91] H. Venkateswaran. Properties that characterize LOGCFL. Journal
of Computer and System Sciences, 43:380–404, 1991.



160 BIBLIOGRAPHY

[Ven92] H. Venkateswaran. Circuit definitions of nondeterministic complexity
classes. SIAM Journal on Computing, 21:655–670, 1992.

[Vin91] V. Vinay. Counting auxiliary pushdown automata and semi-un-
bounded arithmetic circuits. In Proc. 6th Structure in Complexity
Theory Conference, pages 270–284. IEEE, 1991.

[VV86] L. Valiant and V. Vazirani. NP is as easy as detecting unique solu-
tions. Theoretical Computer Science, 47:85–93, 1986.

[Wag88] K. Wagner. Bounded query computation. In Proceedings of the 3rd
IEEE Symposium on Structure in Complexity, pages 260–277, 1988.

[Weg00] I. Wegener. Branching programs and binary decision diagrams: theory
and applications. SIAM Series in Discrete Mathematics and Applica-
tions, 2000.

[Wic99] K. Wich. Exponential ambiguity of context-free grammars. In Pro-
ceedings of DLT 1999, pages 125–138. World Scientific, Singapore,
1999.

[Wic00] K. Wich. Sublinear ambiguity. In Proceedings of MFCS 2000, LNCS
1893, pages 690–698. Springer-Verlag, 2000.

[Wic02] K. Wich. Universal inherence of cycle-free context-free ambiguity
functions. In Proceedings of ICALP 2002, LNCS 2380, pages 669–
680. Springer-Verlag, 2002.

[Wig94] A. Wigderson. NL/poly ⊆ ⊕
L/poly. In Proc. of the 9th IEEE

Structure in Complexity Conference, pages 59–62, 1994.

[Wil97] Thomas Wilke. Star-free picture expressions are strictly weaker than
first-order logic. In Pierpaolo Degano, Roberto Gorrieri, and Al-
berto Marchetti-Spaccamela, editors, Automata, Languages and Pro-
gramming, volume 1256 of Lect. Notes Comput. Sci., pages 347–357,
Bologna, Italy, 1997. Springer.



Index

AΣ, 20
P+, 114
P−, 114
#CFL, 14, 48∗Q, 113
◦Q, 112
T , 121
ΘP

2 , 20
χA, 15
≥ 0-test counters, 63
m+, 114
m−, 114
#L, 14
#P, 14

abstract family of languages, 59
AC0, 80
ACk, 21
ACC, 80
advice, 17, 26
AFL, 59
alternation, 19
automaton

finite, 83
Auxiliary Pushdown Automaton, 18
AuxPDA, 18

BDD, 53
Binary Decision Diagrams, 53
BLIND, 64
bounded, 70
bounded fan-in, 21
Branching Programs, 53

carrier set, 119
ccc, 73

cdc, 74
certificate, 31
CFLth, 64, 67
characteristic function, 15
clow sequence, 42
complement, 88
complexity class, 13
Concurrent, 22
congruence, 60
connectedness, 102
connectivity problem, 14
context-free complement constr., 73
context-free deterministic constr., 74
counter, 84
counting quantifier, 81
covering graph, 129

descriptive complexity, 79
Det, 21
deterministic recognition, 104
deterministically recognizable, 105
DLOGTIME-Uniformity, 21
double counting, 27
DSPACE, 13
DTIME, 13
Dyck-Language, 60

EAΣlog, 20
elementary transition, 119
emptiness problem, 60
empty alternation, 20
Exclusive, 22
existential second order logic, 81
expression, 119

firing sequence, 114

161



162 INDEX

first order language, 80
first order logic, 80, 85
FNL, 30
FO, 80
FO+MAJ, 21
full AFL, 59, 68
full Trio, 59

GapL, 14
GapP, 15
generalized transition, 119
Global Memory, 22
group quantifier, 80

Horn logic, 81
hv-local, 83

inductive counting, 24
inhibitor arc, 116, 135
isolation lemma, 26

Java applet, 56, 96

LFew, 16, 40
LIN, 64
Linearly transformed ordered binary

decision diagrams, 53
logarithmic closure, 19
LogCFL, 19

majority quantifier, 21, 80
marked shuffle, 62
matching, 16, 41
MC, 64
min-unique graphs, 17
Modk, 14
modular counting quantifier, 80
monadic second order language, 81
mono-causal, 105
mono-causal deterministically recog-

nizable, 105
monotone transitive closure, 81, 109
monotonicity, 113, 114
MSO, 83

complexity of, 88

decidability of, 88
hardness of, 88

mTC, 81
multi-set, 111
multiplex select gates, 21

NC, 21
NC1, 80
NC1 reducible, 21
NCk, 21
nested Petri Net, 119
Nested Set automaton, 65
NL, 13
NLOGSPACE, 13
Noetherian order, 123
non elementary, 83
Nonuniformity, 16
NP, 13
NSPACE, 13
NTIME, 13

OBDD, 53
OCL, 64
open problem, 30, 36, 46, 47, 65, 101,

108, 140
Oracle Turing machine, 13
Ordered Binary Decision Diagrams,

53
Owner, 23

P, 13
Parallel Random Access Machine, 22
parallel recognition, 68
PBLIND, 64
perfect matching, 16
Petri net, 114
picture, 82
picture language, 82
PL, 15
PLUS, 81
PRAM, 22, 68
Presburger formula, 81
priority-multicounter-aut., 63, 139
priority-multipushdown-aut., 140



INDEX 163

restricted, 63, 140
problem, 80
Processors, 22
property T , 121
protocol language, 60
push-down protocol language, 60
pushdown complexity, 67

quantifier alternation, 83

rational, 59
rational reducible, 59
rational relation, 59
rational transducer, 59
rational transduction, 59
reachability problem, 114

with inhibitor arcs, 116
without inhibitor arcs, 114

reachability relation, 114
for a transition, 114
with inhibitor arcs, 117
without inhibitor arcs, 114

recognizable, 82, 83
restriction, 112
ROCL, 64

SACk, 21
satisfiability problem, 80
second order language, 81
Semi-Dyck-Language, 60
semi-unbounded fan-in, 21
semilinear sets, 113
Set automaton, 65
shuffle, 60
size of an expression, 122
skew circuits, 17
space-bounded complexity-class

counting, 14
deterministic, 13
nondeterministic, 13

SPL, 15, 42
star-free, 82
strong unambiguity, 23, 30
structure, 79

sub-net, 119

tail-bounded, 71
TC, 80
TC0, 80
TCk, 21
threshold-gates, 21
tiling, 82
time-bounded complexity-class

counting, 14
deterministic, 13
nondeterministic, 13

transitive closure, 80, 109
Trio, 59
Trio zoo, 65
Turing machine, 88

UACk, 21
UAuxPDA, 19
UCLF, 19
UL, 14
ULIN, 19
unambiguous, 9, 14, 19, 71
unary counting quantifiers, 81
unbounded fan-in, 21
uniformity, 16
Unique Satisfiability, 14
uniqueness, 9
USACk, 21

vocabulary, 79

weak unambiguous, 21
WeakUACk, 21
WeakUSACk, 21
weight of a certificate, 31
weighted circuit, 31
witness, 121, 126, 127
word problem, 60
words, 79

zero test, 60


