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Abstract

We refine the classical notion of the nonterminal complexity of graph-controlled grammars,

programmed grammars, and matrix grammars by also counting, in addition, the number of

nonterminal symbols that are actually used in the appearance checking mode. We prove

that every recursively enumerable language can be generated by a graph-controlled grammar

with only two nonterminal symbols when both symbols are used in the appearance checking

mode. This result immediately implies that programmed grammars with three nonterminal

symbols where two of them are used in the appearance checking mode as well as matrix

grammars with three nonterminal symbols all of them used in the appearance checking mode

are computationally complete. On the other hand, every unary language is recursive if it is

generated by a graph-controlled grammar with an arbitrary number of nonterminal symbols

but only one of the nonterminal symbols being allowed to be used in the appearance checking

mode. This implies, in particular, that the result proving the computational completeness

of graph-controlled grammars with two nonterminal symbols and both of them being used

in the appearance checking mode is already optimal with respect to the overall number of

nonterminal symbols as well as with respect to the number of nonterminal symbols used in

the appearance checking mode, too.

1 Introduction

Nonterminal complexity is a classical measure of descriptional complexity of grammars. Within
the area of regulated rewriting, graph-control can be seen as a framework in which many other

∗Corresponding author.
†Supported by the FWF-project T225-N04.
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rewriting mechanisms can be expressed, see [2, 3, 4, 14]. In particular, programmed grammars and
matrix grammars can be seen as special cases of graph-controlled rewriting, see [7].

In 1984, Gheorghe Păun published a paper [12] where he showed that “six nonterminals are
enough for generating each r.e. language by a matrix grammar,” as already the title of the paper
indicates. Up to 2001, no better bound was published in this area. Then, at the MCU conference of
2001, two independent papers [5, 8] showed that actually three nonterminal symbols are sufficient
to generate each recursively enumerable language by a graph-controlled grammar. However, there
were some distinctive differences in the proofs of this result:

• Fernau (also see the journal version [6]) used a Turing machine simulation to obtain his result.
He actually showed that three nonterminal symbols are enough in programmed grammars (a
model that is more restrictive than graph control) to generate each recursively enumerable
language. The results in [8] are weaker in this respect, since they only provide an upper
bound of four on the nonterminal complexity of programmed grammars.

• The simulation of Freund and Păun makes use of the universality result of register machines
with two registers as obtained by Minsky [11]. Since appearance checking is only needed in
the actual simulation of the register machine with its two registers, only two out of these
three nonterminal symbols are ever used in appearance checking mode; the third nontermi-
nal symbol is only of interest to compute the conversion between the concrete recursively
enumerable language whose acceptance is to be simulated and the specific representation of
strings used in Minsky’s result. In this respect, Fernau’s result was weaker, since he used all
nonterminal symbols in the appearance checking mode.

With the mentioned two MCU’01 papers [5] and [8] in mind, there are a couple of natural
questions regarding the optimality of the results discussed above:

• What is the computational power of graph-controlled grammars with only one or two non-
terminal symbols? In other words: are the MCU’01 universality results optimal?

• What is the computational power of graph-controlled grammars with only one nonterminal
symbol that actually uses appearance checking? This question is particularly interesting
from the viewpoint of membrane computing, e.g., see [9], where hierarchies with respect
to the number of membranes may directly depend on the number of nonterminal symbols
used in the appearance checking mode in the simulated regulated grammar (graph-controlled
grammar, matrix grammar).

We shall address these questions in the present paper and improve the results discussed above
by showing the optimal result for graph-controlled grammars being computationally complete with
only two nonterminal symbols both of them being used in the appearance checking mode, whereas,
on the other hand, a unary language over a one-letter alphabet can only be recursive if generated
by a graph-controlled grammars with an arbitrary number of nonterminal symbols where only one
of them is allowed to be used in the appearance checking mode.

2 Definitions

For the notions from the theory of formal languages, the reader is referred to [2]. We just mention
the following: An alphabet V is a finite non-empty set of abstract symbols. Given V , the free
monoid generated by V under the operation of concatenation is denoted by V ∗, the empty string
is denoted by λ, and V + := V ∗ − {λ} . By N we denote the set of non-negative integers. RE (k)
denotes the family of recursively enumerable languages over an alphabet of cardinality k.
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2.1 Register machines

A (deterministic) register machine is a construct M = (m, R, l0, lh), where m is the number of
registers, R is a finite set of instructions injectively labelled with elements from a given set lab(M),
l0 is the initial/start label, and lh is the final label. The instructions are of the following forms:

• l1 : (ADD (r) , l2)

Add 1 to the contents of register r and proceed to the instruction (labelled with) l2. (We say
that we have an ADD-instruction.)

• l1 : (SUB (r) , l2, l3)

If register r is not empty, then subtract 1 from its contents and go to instruction l2, otherwise
proceed to instruction l3. (We say that we have a SUBTRACT-instruction.)

• lh : Halt

Stop the machine. The final label lh is only assigned to this instruction.

A computation of the register M starts with the instruction assigned to the initial label l0 and
eventually ends when M reaches the final label, i.e., M halts.

The results elaborated in [11] immediately lead to the following assertions:

Proposition 1 For any recursively enumerable set L of non-negative integers there exists a register
machine M with two registers accepting L in such a way that, when starting with 2n in register 1
and 0 in register 2, M accepts the input 2n (by halting with both registers being empty) if and only
if n ∈ L. Moreover, the halting configurations are the only ones where both registers are empty.

Proposition 2 For any partial recursive function f : N → N there exists a register machine M
with two registers computing f in such a way that, when starting with 2n in register 1 and 0 in
register 2, M computes f (n) by halting with 2f(n) in register 1 and 0 in register 2. Moreover, in
no configuration both registers are empty.

2.2 Graph-controlled grammars and programmed grammars

A context-free graph controlled grammar is a construct

GC = (N, T, (R, Lin, Lfin) , S) ;

N and T are alphabets of non-terminal and terminal symbols, respectively, with N ∩T = ∅, S ∈ N
is the start symbol; R is a finite set of rules r of the form (l (r) : p (l (r)) , σ (l (r)) , ϕ : (l (r))), where
l (r) ∈ Lab (GC), Lab (GC) being a set of labels associated (in a one-to-one manner) to the rules r
in R, p (l (r)) is a context-free production over (N ∪ T )∗, σ (l (r)) ⊆ Lab (GC) is the success field
of the rule r, and ϕ (l (r)) is the failure field of the rule r; Lin ⊆ Lab (GC) is the set of initial
labels, and Lfin ⊆ Lab (GC) is the set of final labels. For r = (l(r) : p (l (r)) , σ (l (r)) , ϕ (l (r)))
and v, w ∈ (N ∪ T )∗ we define (v, l (r)) =⇒GC

(w, k) if and only if

• either p (l (r)) is applicable to v, the result of the application of the production p(l(r)) to v
is w, and k ∈ σ (l (r)),

• or p (l (r)) is not applicable to v, w = v, and k ∈ ϕ (l (r)).

The language generated by GC is

L (GC) = {w ∈ T ∗ | (w0, l0) =⇒GC
(w1, l1) =⇒GC

. . . (wk, lk) , k ≥ 1,
wj ∈ (N ∪ T )

∗
and lj ∈ Lab (GC) for 0 ≤ j ≤ k,

w0 = S, wk = w, l0 ∈ Lin, lk ∈ Lfin} .
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If the failure fields ϕ (l (r)) are empty for all r ∈ R, then GC is called a graph-controlled grammar
without appearance checking. A nonterminal symbol A ∈ N is said to be used in the appearance
checking mode, if there exists at least one production of the form A → α, α ∈ (N ∪ T )∗, such that
for some r ∈ R with p (l (r)) = A → α the failure field ϕ (l (r)) is not empty.

A graph-controlled grammar GC = (N, T, (R, Lin, Lfin) , S) is called a programmed grammar if
and only if Lin = Lfin = Lab (GC). The major drawback of programmed grammars in comparison
with graph-controlled grammars with respect to our goals is the absence of the possibility to specify
initial rules.

2.3 Matrix grammars

A matrix grammar is a construct GM = (N, T, (M, F ) , S) where N and T are sets of nonterminal
and terminal symbols, respectively, with N ∩ T = ∅, S ∈ N is the start symbol, M is a finite
set of matrices, M = {mi | 1 ≤ i ≤ n}, where the matrices mi are sequences of the form mi =
(mi,1, . . . , mi,ni

), ni ≥ 1, 1 ≤ i ≤ n, and the mi,j , 1 ≤ j ≤ ni, 1 ≤ i ≤ n, are context-free
productions over N ∪ T , and F is a subset of

⋃

1≤i≤n, 1≤j≤ni
{mi,j}.

For mi = (mi,1, . . . , mi,ni
) and v, w ∈ (N ∪ T )

∗
we define v =⇒mi

w if and only if there are
w0, w1, . . . , wni

∈ (N ∪ T )∗ such that w0 = v , wni
= w, and for each j, 1 ≤ j ≤ ni,

• either wj is the result of the application of mi,j to wj−1,

• or mi,j is not applicable to wj−1, wj = wj−1, and mi,j ∈ F .

The language generated by GM is

L (GM ) = {w ∈ T ∗ | S =⇒mi1
w1 . . . =⇒mik

wk, wk = w,

wj ∈ (N ∪ T )
∗
, mij

∈ M for 1 ≤ j ≤ k, k ≥ 1
}

.

A nonterminal symbol A ∈ N is said to be used in the appearance checking mode, if there exists
at least one production of the form A → α, α ∈ (N ∪ T )∗, that appears in F.

2.4 Families of languages

Let GCac / Pac / Mac and GC / P / M denote the families of languages that can be generated
by context-free graph-controlled grammars / programmed grammars / matrix grammars with and
without appearance checking, respectively. It is well known (e.g., see [2]) that GCac, Pac, and
Mac just equal the family of recursively enumerable languages. Hence, we refine our notation and,
for n, j, k with n ≥ 1, n ≥ j ≥ 0, and k ≥ 1, we write GC (n, j, k), P (n, j, k), and M (n, j, k),
respectively, for all languages L that can be generated by graph-controlled grammars / programmed
grammars / matrix grammars in such a way that

• L is a language over some alphabet of cardinality k,

• in the graph-controlled grammars / programmed grammars / matrix grammars at most n
nonterminal symbols are used,

• out of which at most j nonterminal symbols actually are used in the appearance checking
mode.

2.5 Priority-multicounter-automata

To state our results, we need some notions from the areas of Petri net theory and automata theory.
These concepts are reviewed in the habilitation thesis of K. Reinhardt [13].
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We define a priority-multicounter-automaton by a restrictive zero-test according to an order of
the counters in the following way: the first counter can be tested for zero at any time; the second
counter can only be tested for zero simultaneously with the first counter; any further counter can
only be tested for zero simultaneously with all preceding counters. Formally, this reads as follows:

A priority-multicounter-automaton is a one-way automaton described by the 6-tuple

A = (n, Z, Σ, δ, z0, E)

with the number of counters n, the set of states Z, the input alphabet Σ, the transition relation

δ ⊆ (Z × (Σ ∪ {λ}) × {0, . . . , n}) × (Z × {−1, 0, 1}n
) ,

the initial state z0 and the accepting states E ⊆ Z: We consider the set of configurations

CA = Z × Σ∗ × Nn,

the initial configuration

σA (x) =

〈

z0, x, 0, . . . , 0
︸ ︷︷ ︸

n

〉

for x ∈ Z∗, and the configuration transition relation

〈z, ax, m1, . . . , mn〉 `
A
〈z′, x, m1 + j1, . . . , mn + jn〉

if and only if z, z′ ∈ Z, a ∈ Σ ∪ {λ} , (z, a, k; z′, j1, . . . , jn) ∈ δ, ∀i ≤ k ji = 0.
The language recognized by a priority-multicounter-automaton A is

L(A) =

{

w | ∃ze ∈ E ∃m1, . . . , mn ∈ N 〈z0, w, 0, . . . , 0〉
∗

`
A
〈ze, λ, m1, . . . , mn〉

}

.

A priority-multicounter-automaton can be modified in such a way that it has only one
accepting state ze and that all counters are empty when accepting; in that case L(A) =
{

w | 〈z0, w, 0, ..., 0〉
∗

`
A
〈ze, λ, 0, ..., 0〉

}

.

The family of languages over a k-letter alphabet accepted by priority-multicounter-automata
with n counters of which at most j can be tested for zero in the restricted way defined above is
denoted by P k

n CA (j) .
As is shown in Theorem 5.6.1 in [13], the emptiness problem for a language accepted by a

priority-multicounter-automaton is decidable:

Theorem 3 The emptiness problem for priority-multicounter-automata is decidable.

3 Results

By definition, GC :=
⋃

n,k≥1

GC (n, 0, k). Hauschildt and Jantzen [10] related regulated rewriting

with the theory of Petri nets.1 These links show that the (trivial) inclusion GC ⊆ GCac is actually
strict, exhibiting that

{
a2n

| n ≥ 0
}

/∈ GC. More specifically, they showed that
⋃

n≥1

GC (n, 0, 1)

characterizes the unary regular languages.
In [8] it was already proved that GCac = GC (3, 2, k) . So the classes having remained to be

investigated are GC (2, 2, k) and GC (n, 1, k) .
We now show that two symbols, both working in the appearance checking mode, are already

sufficient to obtain computational completeness:

1As already indicated above, also the results from [13] we use in this paper heavily rely on Petri net theory, i.e.,
on the decidability of Petri nets with one inhibitor arc.
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Theorem 4 GC (2, 2, k) = RE (k).

Proof. For a given language L ∈ RE (k) , L ⊆ T ∗ for some alphabet T with card (T ) = k, we
construct a graph-controlled grammar

GC = ({A, B} , T, (R, {i} , {f}) , A)

with L (GC) = L as follows:

1. Let T = {am | 1 ≤ m ≤ k} ; then every symbol am in T can be interpreted as the digit m
at base k + 1; hence, every string in T ∗ can be encoded as a non-negative integer using the
function gT : T ∗ → N inductively defined by gT (λ) = 0, gT (am) = m for 1 ≤ m ≤ k, and
gT (wa) = gT (w) ∗ (k + 1) + gT (a) for a ∈ T and w ∈ T ∗. We now iteratively generate

wA2gT (w)

for some w ∈ T ∗:

Introducing a new symbol am and generating the corresponding number of symbols A after it

mainly is accomplished by a procedure pm generating A2x(k+1)+m

from A2x

; we assume the la-
bel (m, i) to symbolize the start label of the procedure pm and the final label of this procedure
to be labelled by (m, f). As we shall show below, the actions of a register machine with two
registers can be simulated by GC with the number of copies of the two non-terminal symbols
A and B representing the contents of registers 1 and 2; hence, according to Proposition 2 we
need not specify the details of pm.

Thus, the initial phase of generating wA2gT (w)

can be accomplished by the following rules
(observe that for the procedure pm we only specify the initial label (m, i) and the final label
(m, f)):

• (i : A → A, {(m, i) | 1 ≤ m ≤ k} ∪ {l0} , ∅);

we may either add a new terminal symbol am by choosing the label (m, i) or else finish
the initial phase by choosing l0, which is the start label of the register machine to be

simulated according to Proposition 1 (accepting or not A2gT (w)

);

• ((m, f + 1) : A → B, {(m, f + 2)} , ∅);

• ((m, f + 2) : B → amB, {(i, 1)} , ∅);

• ((i, 1) : A → λ, {(i, 2)} , {(i, 3)});

• ((i, 2) : B → BB, {(i, 1)} , ∅);

• ((i, 3) : B → A, {(i, 3)} , {i}).

Observe that the correct sequence of terminal symbols in a sentential form of GC is guar-
anteed by the sequence of rules (m, f + 1) (introducing the first symbol B) and (m, f + 2)
(generating the new terminal symbol am) as well as (i, 1) to (i, 3) eliminating all symbols
A possibly being before the newly generated symbol am and generating the corresponding
number of symbols B after it, which then are renamed to symbols A again.

2. According to Proposition 1 we then simulate a register machine with two registers which

halts when started with A2gT (w)

in its first register if and only if w is in the given language
L: the contents of registers 1 and 2 correspond to the numbers of non-terminal symbols A
and B, respectively; the operations of incrementing and conditionally decrementing a register
are performed by adding one symbol A or B or conditionally erasing one symbol A or B,
respectively. As long as the current sentential form is not terminal, either symbol A or
symbol B can be used for the incrementation, i.e., for each rule l1 : (ADD (r) , l2) of the
register machine, we have to specify two rules in GC labelled by l1 and l′1. For each rule
l1 : (SUB (r) , l2, l3) we only need one rule in GC labelled by l1. In more detail, the simulation
works as follows:
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• l1 : (ADD (1) , l2) is simulated in GC by the two rules

(l1 : A → AA, {l2} , {l′1}) and

(l′1 : B → BA, {l2} , ∅);

• l1 : (ADD (2) , l2) is simulated in GC by the two rules

(l1 : B → BB, {l2} , {l′1}) and

(l′1 : A → AB, {l2} , ∅);

• l1 : (SUB (1) , l2, l3) is simulated in GC by the rule

(l1 : A → λ, {l2} , {l3});

• l1 : (SUB (2) , l2, l3) is simulated in GC by the rule

(l1 : B → λ, {l2} , {l3}).

3. After halting in the final label, the two registers of the register machine are empty, hence,
the remaining sentential form in GC is terminal, i.e., GC has generated the terminal string
w. On the other hand, during the whole computation in GC at least one nonterminal symbol
must be present, because the only configuration where both registers in the simulated register
machine are empty occurs when the machine halts (see Proposition 1). Hence, GC reaches
the final label if and only if the underlying sentential form is terminal. This observation
completes the proof.

In programmed grammars we have to specify the starting point of a derivation, for which we
use an additional nonterminal symbol that is only used in the first derivation step and never in
the appearance checking mode:

Corollary 5 P (3, 2, k) = RE (k).

Proof. For a given language L ∈ RE (k) , L ⊆ T ∗ for some alphabet T with card (T ) = k, let

GC = ({A, B} , T, (R, {i} , {f}) , A)

be the graph-controlled grammar with L (GC) = L as constructed in the proof of Theorem 4. Then
we construct the programmed grammar

GP = ({A, B, C} , T, (RP , K, K) , C)

with

• Lab (GP ) = K = Lab (GC) ∪ {s} where s is a new start label not in Lab (GC);

• C is the new start symbol only used in the initial rule labelled by s;

• (s : C → A, {i} , ∅) is the initial rule;

• RP = R ∪ {(s : C → A, {i} , ∅)}.

After the application of the new initial rule, the derivations in GP proceed in the same way as
the derivations in GC . As a derivation in GC stops in the final label f if and only if the underlying
sentential form is terminal, we conclude L (GP ) = L (GC) = L.

The proof of the following theorem follows the proof of Theorem 3 in [8]:

Corollary 6 M (3, 3, k) = RE (k).
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Proof. For a given language L ∈ RE (k) , L ⊆ T ∗ for some alphabet T with card (T ) = k, let

GC = ({A, B} , T, (R, {i} , {f}) , A)

be the graph-controlled grammar with L (GC) = L as constructed in the proof of Theorem 4. Then
we construct the matrix grammar

GM = ({A, B, C} , T, (M, F ) , C)

with L (GM ) = L (GC) = L as follows:
Without loss of generality we may assume Lab (GC) = {j | 2 ≤ j ≤ g − 1} as well as i = 2 and

f = g − 1; we then take
F = {X → Cg | X ∈ {A, B, C}} .

Now denote a sequence of k equal productions p in a matrix by (p, )
k
. Then M contains the

following matrices:

(1) (C → A, C → Cg, A → CCA) is the start matrix;

(2)
(

(C → λ, )
l
C → Cg, Y → Y Cm, X → α

)

for (l : X → α, σ (l) , ϕ (l)) ∈ R with X, Y ∈ {A, B} , α ∈ ({A, B} ∪ T )
∗
, and m ∈ σ (l) ;

(3)
(

(C → λ, )
l
C → Cg, Y → Y Cm, X → Cg

)

for (l : X → α, σ (l) , ϕ (l)) ∈ R with X, Y ∈ {A, B} , α ∈ ({A, B} ∪ T )
∗
, and m ∈ ϕ (l) ;

(4)
(

A → Cg, B → Cg, (C → λ, )
g−1

C → Cg
)

is the final matrix.

The start matrix (1) has to be applied as the first matrix in a successful derivation; from the
start symbol C we generate one symbol A; after having applied the production C → Cg in the
appearance checking mode, from this symbol A besides introducing C2 as the encoding of the
initial label 2, the start symbol A of GC is generated by the production A → CCA.

The number of symbols C encodes the label of the current rule in GC . In every matrix of type
(2) and (3), the encoding Cl of the label l, 2 ≤ l ≤ g − 2, is checked by eliminating exactly l
symbols C in a sequence and then applying the production C → Cg in the appearance checking
mode. If more than l symbols C are present in the current sentential form, then C → Cg will be
applied; if less than l symbols C are present, then the derivation will stop without finishing the
whole sequence of rules in the matrix thereby leaving no symbol C, but at least one nonterminal
symbol A or B in the final sentential form, because according to Proposition 1 and Proposition 2 in
an intermediate configuration at least one register must be non-empty which means that not both
the number of nonterminal symbols A and the number of nonterminal symbols B can be zero. This
symbol Y ∈ {A, B} that must be present in the sentential form then also allows for the generation
of the encoding of the rule m by the production Y → Y Cm when the correct number l of symbols
C has been present (and the right matrix with Y being present, too, has been chosen). With
rules of type (2), the application of a production X → α can be simulated and we proceed with a
rule m ∈ σ (l). With rules of type (3), the appearance checking case is covered (by introducing g
symbols C in case X were present) and we proceed with a rule m ∈ ϕ (l).

With the final matrix (4) we first check that no nonterminal symbols A and B are present
anymore (which according to Proposition 1 means that we have reached the halting configuration
of the register machine simulated by the graph-controlled grammar GC); if exactly g − 1 control
symbols C are present (which encodes the final label f of GC), after the elimination of these
symbols a terminal string from L is obtained as the result of this successful computation in GM .

The production C → Cg must not be applied in a derivation that should lead to a terminal
string from L, because in every matrix at most g − 1 symbols C can be removed, before the

8



generation of g symbols C would be enforced again. Hence, after the first application of the
production C → Cg we can never get rid of all symbols C anymore.

Finally, we observe that it does not matter at all in which sequence the nonterminal symbols
A, B, and C appear in the sentential form, because for simulating a register machine by the graph-
controlled grammar GC as described in the proof of Theorem 4 only the number of nonterminal
symbols A and B is relevant, and also the encoding of the label l as the number of symbols C
does not depend on the position of these symbols in the sentential form. Moreover, even the
simulation of the initial phase of GC in the proof of Theorem 4 by GM works correctly, because
the construction of the simulation of GC by GM guarantees that the order of symbols A and B
in the sentential form derived in GM is exactly the same as in the corresponding sentential form
derived in GC . Hence, GC is simulated by GM in a correct way.

We now turn our attention to the families of languages that are strictly included in the family
of recursively enumerable languages.

Theorem 7 GC(1, 1, k) = GC(1, 0, k).

Proof (sketch). For each node l in the control graph which has no final label, but a No-edge leaving
it (i.e., an edge leading to a node from the failure field ϕ (l)), we search the control graph for a
path leading to a final node by using No-edges only; if such a path exists, we also re-mark l to be
a final node.

The new control graph obtained by this procedure accepts the same language as the original
control graph. Erasing all No-edges from the new control graph again does not change the resulting
language. The main observation in this proof is the fact that as soon as we take the first No-edge
in the original control graph, the underlying sentential form must already be terminal.

The following results show that even with an arbitrary number of nonterminal symbols we
cannot reach computational completeness if only at most one of them can be used in the appearance
checking mode.

Theorem 8 GC(n, 1, 1) ⊆ P 1
nCA(1).

Proof. Let GC = (N, {a} , (R, Lin, Lfin) , S) be a graph controlled grammar where N =
{Xi | 1 ≤ i ≤ n} and only X1 is used in the appearance checking mode. We then construct the
priority-multicounter-automaton

A = (n, Z, {a} , δ, z0, {ze})

that accepts L (GC): The counters count the number of non-terminal symbols. As we have only
one terminal symbol, only the number of symbols counts and we do not have to take care of the
sequence of symbols in the underlying sentential form of GC . The first counter, which is the only
one that can be tested for zero, corresponds to the only non-terminal symbol that is used in the
appearance checking mode. Moreover, we take the labels of GC as the states in A.

We define the function δn,i : {1, ..., n} → {0, 1} by

δn,i (j) =

{
0 for j 6= i
1 for j = i

for 1 ≤ i ≤ n and n ≥ 1; for given i, δn,i can be also viewed as an n-dimensional vector. Moreover,
Ωn denotes the all-zero vector defined by Ωn (j) = 0 for 1 ≤ j ≤ n.

In sum, we define
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A = (n, Z, {a} , δ, z0, {ze}) ,
Z = Lab (GC) ∪ {z0, ze} ,
δ = {(z0, λ, 0; z, Ωn) | z ∈ Lin}

∪ {
(
z, a|w|

a , 0; z′,−δn,i0 + Σn
i=1 |w|Xi

δn,i

)
|

(z : Xi0 → w, σ (z) , ϕ (z)) ∈ R, z′ ∈ σ (z)}
∪ {(z, λ, 1; z′, Ωn) |

(z : X1 → w, σ (z) , ϕ (z)) ∈ R, z′ ∈ ϕ (z)}
∪ {(z, λ, 0; ze, Ωn) | z ∈ Lfin}

We should like to mention that here we use a more general variant of priority-multicounter-
automata where (

z, a|w|a , 0; z′,−δn,i0 + Σn
i=1 |w|Xi

δn,i

)

stands for a sequence of transitions starting with (z, λ, 0; z1,−δn,i0) , continuing with
(zi, a, 0; zi+1, Ωn) for 1 ≤ i ≤ |w|a and finally extending Σn

i=1 |w|Xi
δn,i into single steps where

each counter is incremented by at most one. The remaining details of this construction are obvious
and therefore omitted.

As can be seen from the construction of A, successful applications of productions are simulated
by decrementing the counter representing the number of the symbol that appears on the left-hand
side of the production, by reading as many terminal symbols as appear on the right-hand side of
the production, and by adding the number of occurrences of symbols on the right-hand side of the
production to the corresponding counters. On the other hand, checking for the non-appearance
of the nonterminal symbol X1 (the only nonterminal symbol that may be used in the appearance
checking mode) is accomplished by testing the first counter for zero. The computation starts and
ends with the states corresponding to the labels in Lin and Lfin, respectively. Hence, we conclude
that am is accepted by A if and only if am can be generated by GC .

Corollary 9 For every n ≥ 1, the emptiness problem for any GC(n, 1, 1)-grammar is decidable.

Proof. As the proof given in Theorem 8 is constructive, the decidability of the emptiness problem
for any GC(n, 1, 1)-grammar directly follows from the decidability of the emptiness problem for
any priority-multicounter-automaton.

Corollary 10 For every n ≥ 1, every language in GC (n, 1, 1) is recursive.

Proof. Let L ∈ GC(n, 1, 1) and G = (N, {a} , (R, Lin, Lfin) , S) be a GC (n, 1, 1)-grammar gener-
ating L; then, for each string w ∈ Σ∗, from G we can construct a GC (n, 1, 1)-grammar G (w) such
that L(G (w)) is empty if and only if w /∈ L:

• G (w) = (N, {a} , (R (w) , Lin (w) , Lfin (w)) , S) ;

• for each rule (l : Xl → ul, σl, ϕl) in R we take the rules

((l, m) : Xl → ul, σ
′
l, ϕ

′
l) in R (w) , 0 ≤ m ≤ |w| + 1, with

σ′
l = {(k, min {m + |ul|a , |w| + 1}) | k ∈ σl} and

ϕ′
l = {(k, m) | k ∈ ϕl} ;

• Lin (w) = {(l, 0) | l ∈ Lin} ;

• Lfin (w) = {(l, |w|) | l ∈ Lfin}.
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In fact, G (w) has been constructed in such a way that

w ∈ L(G) ⇐⇒ L(G (w)) = {w} and
w /∈ L(G) ⇐⇒ L(G (w)) = ∅.

Applying Corollary 9 now completes the proof.

Corollary 11 For every n ≥ 2 and k ≥ 1, the inclusion GC (n, 1, k) ⊆ GC (n, 2, k) is strict.

Proof. By Theorem 4, GC (2, 2, k) = RE (k). As any language in GC (n, 1, 1) according to Corol-
lary 10 is recursive, we get GC (n, 1, 1) $ GC (n, 2, 1) for every n ≥ 2. This obviously implies
GC (n, 1, k) $ GC (n, 2, k) for any k ≥ 2, too.

The following result is an immediate consequence of the results established above:

Corollary 12 The result GC (2, 2, k) = RE (k) is optimal with respect to the overall number
of nonterminal symbols as well as with respect to the number of symbols used in the appearance
checking mode, too.

4 Conclusion

We have solved most of the open questions as described in the introduction: especially we have
shown that graph-controlled grammars with only one nonterminal symbol used in the appearance
checking mode are less powerful than graph-controlled grammars with at least two nonterminal
symbols used in the appearance checking mode. Computational completeness can be obtained by
graph-controlled grammars with only two nonterminal symbols both of them being used in the
appearance checking mode, whereas for programmed grammars and matrix grammars we need
one more nonterminal symbol, which only in the case of matrix grammars has to be used in the
appearance checking mode, i.e., for all m ≥ 1, n ≥ 2, and k ≥ 1,

GC (m, 1, k) $ GC (n, 2, k) = RE (k) = P (n + 1, 2, k) = M (n + 1, 3, k) .

For programmed grammars the open question remains whether or not the third nonterminal
symbol (which is not used in the appearance checking mode) is needed to obtain computational
completeness, whereas for matrix grammars the only open question that remains is whether or
not the third nonterminal symbol is needed to be used in the appearance checking mode, because
to obtain computational completeness the third nonterminal symbol is necessary anyway (see
Lemma 4.2.3 in [2] referring to [1] where even for the generation of a metalinear language three
nonterminal symbols are shown to be needed).
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[14] G. Rozenberg and A. K. Salomaa. Context-free grammars with graph-controlled tables. JCSS,
13 (1976), pp. 90–99.

12


