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Overview

e Multisets, New operators o and >|<Q on multisets, Semilinearity
e Petri nets, Inhibitor arcs

e The reachability relation for Petri nets with one inhibitor arc

e Nested Petri Nets as normal form for expressions

e new Overview: Decision algorithm, Logic, Automata



Multisets

We write a multiset f € NB as a set {b— f(b) |be B}, as atable {f(bél), f(bgz)v s f(bgn)}
f(by)

Oor as an n-ary vector f(bz):

f(bn)
ACB = NACNP
feNAAgeNB = (f+0g) e NAB
0 with O(x) = O for all x is neutral element for +.

NANNB = NAB



sgnf) :={a|f(a) > 0}, sgnM) := erI\/I sgn’f).

Restriction: f|a:={b—f(b) [be A} flz={b—1f(b)|bgA},thusf="1|s+f|z.

A set M = {mq,...,m} C N2 of multi-sets generate linear combinations:

M* = {fagmq +... +aymi| Vi <k g € N}
More generally, by M9 := {0} and M't1:=M!+ M, we can define M* :=JiM".

Linear set: m¢+M*. Semilinear set: finite union of linear sets.

Semilinear sets: Smallest class of sets of multisets containing all finite sets of
multisets and being closed under U, + and x.

[GS65],[ES69]: The semilinear sets are also closed under N.



New operators og and *g on multisets

For an unambiguous and injective binary relation Q and two sets of Multisets M
and N we define

neN,meM,V(ab)eQn(a) :m(b)}.
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For m1(Q) and m(Q) disjoint, we define |dg := {{ar 1,b+ 1} | (a,b) € Q}* which
Is the neutral element for og,

Obviously, it holds NogM = N + M which makes + with the neutral element | dy =
{0} a special case of the og operator.

Furthermore, for Q with 71(Q) and 7>(Q) disjoint, we define >l<Q(M) as the clo-
sure of M Uldg under og and the addition og.

In other words, **2(M) :=Idg, >|<iQ+1(M) = X(M)ogM +Idg and
KQ(M) = Ui K 5(M) . Again, Kg(M) = M* is a special case.



Properties: NogM = I\/IoQ_lN

For N,M C NA we get NN M = NoglLogM with @ := {(a &) |ac A}, Q" :=
{(@,a)|]acAland L :={{a— 1@ — 1,d"+— 1} |ac A}*.

In general, NoyL ogsM can only be written without brackets because m(Q7)U
(sgn(M)\ m2(Q")) and m(Q") U (sgn(N) \ 711 (Q')) are disjoint.

If, additionally, 7(Q") and sgnN) are disjoint and sgnM ) and 71 (Q")) are disjoint,

then NOQ/L OQ//M = LOQ,_]_UQ,,(M —+ N)



Semilinearity

oq preserves semilinearity: Assume N and M are semilinear sets over A.
N’ semilinear set over A\ 71(Q) Uy (Q)’.
M’ semilinear set over A\ 7>(Q) U mx(Q)’.

Eqi={{a — 10— 1},{c— 1} | (@ b) € Qce A" = {f | ¥(a b) € Qf(d) = (D)}
semilinear sets over the set AU 1(Q)' U1 (Q)’.

Thus, NogM = ((N"+M’) NEq ; is semilinear.

|

) m@m©

>k o does not preserve semilinearity:

1
Let M = (8) + ( )* then *{(b3,b2)}(M> = { (

N~ O
O T w

c< bza} not semilinear.



Petri net

We describe a Petri net as the triple N = (P, T,W) with the places P, the transitions
T and the weight function W € NPXTUTXP A transition t € T can fire from a
marking m € NP to a marking m’ € NP, denoted by m[t)m’, if

m—W(.,t)=m’'—W(t,.) e N".
A firing sequence w =tj...tn € T* can fire from mg to mp, denoted by mg[w)mp, if

M1, ...Mp_1 exist with mg[t;)m1[ta)...[th) Mn.

Reachability problem: given net N with start- and end markings mg, me € NP,
decide if there is a w € T* with mg|w)me.

[May84][Kos84][Lam92]: decidable.



Let PT :={p" | pc P} and P~ := {p~ | p € P} be copies of the places and P:=
{(p+, p~) | p<€ P}. For m define the corresponding copies m™ :={p~ — m(p) |
peP}and m™:={pT— m(p)|peP}.

Reachabillity relation for a transition t:
R(t) = {m—qtm’Jr m[t)m’}
= {reN""PlvpePr(pT)~W(p,t) = r(p") ~W(t,p) € N}

Reachability relation for a set of transitions T as R(T) := |J R(t).
teT

Monotonicity: Whenever m[w)m’, then also (m +n)w)(m’+n) for any n € NP,

This corresponds to adding Idp := Ids and R(t) = ¢t + | dp is a linear set using ¢
with ct(p~) =W(p,t) and c;(p*) =W(t, p) for all p € P.



Concatenation of two firing sequences  described by the operator op := o
iteration described by Kp:= 5.

The reachability relation of the petrinet N is R(N) := R(T*) := Xp(R(T)).
The reachability problem:  (mg +mg) € R(N).

Corollary 1 There is a firing sequence w € T* with mg|w)me in N if and only if
Mg oPR(N)opmg = (Mg +md)oaR(N) = {0}

for A:={(p~,p7),(p",p") | p€ P}. Inthe other case (my + Mg )oaR(N) = 0.



Inhibitor arcs

We describe such a Petri net as the 6-tuple (P, T,W, 1, mg, me) with the places P,
the transitions T, the weight function W € NPXTUTXP ‘the inhibitor arcs | CPx T

and, the start and end markings mg, me € NP. We will denote an inhibitor arc in
the pictures by o .

m[t)m’ only if Ype P (p,t) € | — m(p) =0.
Lemma 1 Each Petri net (P, T,W,I,mg,me) can be changed in such a way that

the condition Vpe Pt € T (p,t) € | — W(t,p) = 0 holds without changing the
Inhibitor arcs or the reachability problem.

‘ X
Q; oLt




Lemma 2 Each Petri net (P, T,W,I,mg,me) can be changed in a way such that
the conditionVpe Pt €T (p,t) € — mg(p) = me(p) = 0 holds by changing neither
the inhibitor arcs, the condition in Lemma 1 nor the reachability problem.



The reachability relation for Petri nets with one inhibitor arc

Given a Petri-net (P, T,W, {(p1,£)},mg,me).we (T \ {f})*.
R1=R((RT\{f},W)) = Kp(R(T\ {f}))

Ra=Ryn{r e N""P"|r(pp) =r(p{) =0}
R3=RoUR({)

Ra =" p\(py) (Rs)



Lemma 3 Given a Petri-net (P, T,W, {(p1,t)}, Mg, me) with only one inhibitor arc
(p1,t) having the property of lemmata 1 and 2, then there is a firing sequence
w e T* with mg|w)me if and only if

mgOp\{pl}RArOP\{pl}mg — (ma —+ mg)oAR4 — {@}

A:={(p~,p ), (p",p") | p€ P\ {p1}}. Inthe other case (Mg +mg)oaR4 =0



Y

t7 3= 2=t8
t

Example:

with the start marking {p2 — 4, p3 — 2} and the end marking {p> — 4, p3 — 3}.
We have R(t7) = {p, — 1,p; — 3} +Idp, R(tg) = {p; — 2,p3 — 1} +Idp and
R(f) = {pg — 7, pEL — 5} + | dp\{pl}' This yields

4 — Nt
R1=R((P{tz,tg})) = *p <{ [plz ’ péL] | [pzl | pf] }> )

Py PL| |PL P3| [Py PL P3| |Pp Py Pa| [P PL P3| [Py Palls_ 4
>3 |21 |ddidp|drd2 |2 22|23 P




B - P, P3| | «

We can cut the firing sequences in (t;+tg+1)* = ((ty+tg)* +1)* into parts in
(t7 +tg)* and { all starting and ending with no token on p;. This yields Rz =
RoUR(f) and Rg = >|<{p27p3}(R3) —

P, P3| |Ps Pa| |P, P3 Pa| |P, P3 Pa| |P3 Py P3| |P3 Py P3
273 9 775 9 27475 9 47175 9 77373 9 77176 2

P, P3 P3| [Py P P3 Ps| P3 Po P3| |P2 P3 Po P3| lx g
4208|0501 di 7|0 6743|4204 3 {P2,p3}



Nested Petri Nets as normal form for expressions

For every expression e, there is a carrier set C(e) D sgn(R(e))}.  R(e) C NC(©),

R is the evaluation function for an expression defined in a way such that is always
commutes with the expression operators *p,oQ,U and +, and the additional
operator N.

Expression for an elementary transition: t = Lt is an expression for the linear
setLi =R(Lt) =c+T7¥.

Example: Tt ={{p~ — 1,p" — 1} | p€ P} leading to I'f = Idp. C(t) ;= P~ UPT U
sgn{c} Urly).



Expression for sets of transitions: T =1t Uty... Ut for expressionst; € T.
Expression for a sub-net: N = *pT(T) for N consisting of Pr and T.
Let C(N) :=C(T) := Uit C(1).

Expression for a generalized transition : t = Liog,Kt, where Lt again ex-
presses a linear set, and K; is a set of sub-nets and interpreted as expression

Ki= S N where the C(N;) are pairwise disjoint.
N; €Kt

Using Qa = {(a,a) | a€ A} with A= Unck,C(Nj), we define C(t) :={a| (ct +
S d)(a) > 0} \ A. This means that the behavior of t is mainly described by the

gelt

linear set ¢t +I'{ but it is additionally controlled by the reachability in the sub-nets

N;.



Example (continued) We identify t7 = {p, — 1, p1 — 3} + 1dpy.po.pa)r 18 =
{py —2,p3 — 1} +1dgp, py.pg @Nd t={pz — 7, Py — 5} +1dgp, pg3- This yields

the expressions T =t7yUtg and Ny = *{pl,pz,ps}( 1). On the next level, we get
the generalized transition t; =

~ a6 ~ A + At + AF
0 Py Py P3 Pj Py Po P3 P3 *N oo o o A Al A N
( —|_ { [ 1’1 ] ’ [ 1’1 ’ 1’1 ’ 171 {(pz 7p2)7(p3 7p3)7(p—2+_7p—2|—)7(p§_7p§_)} 1

which we visualize as

4 N




To=toufand Np = ¢ ,1(To). On the top level, we get

which we visualize as

b, P3 P3PS

472747

3

] % {(py 03).(p5.p3)} 2

-~




Expression Carrier set

T 71p CM=U:

Ni € K T, F1p \CN)=CT)=U,
t' e {c} UMy CN ™ < C(t') = Pr UP{ U {wg,,wg',...}




new Overview

e The property .7

e The size of an expression

e Additional operators working on expressions, Logic with mTC
e The main algorithm establishing property &

e The reachability relation for Petri nets with inhibitor arcs

e Priority-Multicounter-Automata

e Restricted Priority- Multipushdown- Automata



The property 7

Definition 1 An expression T has the property 7 if vt € T,VN; = >l<|:Ti(Ti) € Kt
the following 5 conditions hold:

1. In recursive manner, T; has
(a) the property .7, and
(b) Forallt’ €T it holds Vg € {cy} UTy Iwg € C(t') g(wg) = 1,

v e U {cq}uly\{g} d(wg) =0.
t’eT,



2. Vge {c}Ult,Vpe Py g(p~) —ind(g)(p~) = g(p™) —ind(g)(p™), where

ind(g) 1= > 9(Wy)9
t'eTj, o’ e{cyuly

3. vWwe C(N)\ (PfUP:) = g(w) > 0.
| | gErt

4. There are multisets Im ., m_ € R(N;) with Vp € P,

m4 ||:T—_E (c+Ty) |pT—_ AN(VgEeTyg(p™) =0) — my(p™) >my(p7))A

M- o€ (e + ) |pr A((Vg €T g(pT) =0) = m—(p7) >m-(p™)).



5. G ’C(t)e R(t).

Theorem 1 For every expression T, we can effectively construct a T' with R(T) =
R(T’) such that T’ has property 7.

Corollary 2 The reachability problem for a Petri net with one inhibitor arc is de-
cidable.



The size of an expression

m :< m’ if there is an e with m(e) < m’(e) and m(¢) = m’(¢) for all € > e.
[DM79]: Noetherian order on €'s = Noetherian order on m’s.
ST):= 3 {S(t)—1}.

teT

S(t) ;== (S(Kt),bo,bs+ |I't]). Here, bj = 0 if Condition 7.i is fulfilled, and bj =1
otherwise.

SK) = 3 {SIN) w1},

N| EKt



S(Ni) := (sm+{|Pr| — 1},3(Ti), b1p, [C(N)|) with
sm:=maxs| 39 ((s,.,.,.)) > 0,5T;)((¢,.,.)) > O}

Example (continued):

St7) = S(tg) = (0,0,3), S(T1) = {(0,0,3) — 2},

S(N1) = ({3—1},{(0,0,3) — 2},1,6), St2) = ({S(N1) — 1},1,4),
S(To) = {S(té) — 1,(0,0,2) — 1}, S(Np) = ({3—1,2— 1},9Ty),1,4).

Lemma 4 The ordering on Sdefined above is Noetherian



Additional operators working on expressions

Lemma 5 Lett=LtogKt be an expressions for a transition and L be (an ex-
pression for) a semi linear set. Then, we can construct an expression T :=t|_
(with R(T’) = (R(Lt) NR(L))ogqR(Kt)) where the occurring sizes S(t) with t’ € T’
Increase relatively to St) only in the last position in the triple.

Lemma 6 LetT and T’ be expressions for sets of transitions, and Q be a relation.
Then, we can construct an expression T" :=ToqT’ (with R(T”) = R(T)ogqR(T"))
where the occurring sizes S(t) increase only in the last position in the triple and
sum up in the first position.

Lemma 7 Let N be an expression for a subnet. Then, we can construct an
equivalent expression for a transition t(N) with R(t(N)) = R(N) and tp/(N) with
R(tp(N)) ={meR(N) [Ype P"m(p~) =m(p") = 0}.



Logic

Given a formula ¢(xg, ..., X, X1, .-, X ), then mTC(¢) denotes the smallest set SC
N2K containing all of the following:

® (X1y--y X, X1, ---, Xi) TOr (Xq,...,%Xk) € NK (this stands for the identity),

O (X1, ey X X ooy X ) TOF @ (Xq, ooy X, X o0, X )

/! /! / / / / /! /!
® (X1yeees Xi, X750y X)) FOF (X, 00, i, X7, 00X )5 (X500 X, X7, 00, X ) € S, and

® (X1HX], 0, XX, X +XT, . X +X0) fora (Xq, ..., X, X, -, %) € Sand (x7,...,%x) €
NK,



Corollary 3 The emptiness and satisfiability is decidable for formulas with an
FO+PLUS-formula inside and A, V,3 and mTC operators outside.

A corresponds to N expressible with og Lemma 6
V corresponds to U expressible since T is already a union
3 remove the element

mTC is done by using Lemma 7.



The main algorithm establishing property T

function reacheq(T):

begin
repeat
=1
while i<5 and vt € T,VN € Ki Condition .7 .i fulfilled
do i:=1+1 od

If i=6 thenreturn T
else T:=T' for T/ according to treatment of Condition .7 .i
until =6
end reacheq



In each step S(T) decreases (S(reachedT)) < §(T) if T # reachedT)); due to
Lemma 4 the algorithm terminates.

Change of size S(t) during the treatment of Condition .7 .i:

S(t)
S(Ni)
St fort’ €T
sm+{IPrl— 1} | SKy) bp bs+|Ty| | by [C(Ni)| | by bg+|It

.1 - - - - | 1 1 _
7.2 : - - : N
.3 - - - - - l 1 T
T4 | T T T T T i T
7.5 : - - : R




Condition 1 Recursion and introducing withesses

Let Condition 1 be not fulfilled by Tj; let T := reacheqT;), which terminates by
induction since S(T;) < S(T). Construct T’ from T by adding witnesses inside as
for T = T, = T, Ut in following continued example:

Replace t7 and tg by t}, = {p5 — 1, p] — 3,We, — 1} +1dp, p, pg @nd tg = {py
7
2,p3 — Lwg, — 1} +1dpyppp = T =tpUtgand Ny =5 5 55 (T7").

ty=(0+{{py —1,py — 1}, {p3 — 1, p3 — 1},{pg = 1,P3 — 1}, {p3 — 1,p§ —
* /! ! ¢/ £
Lho ey = 1o AWey == 1115 ©(py py).(p3.3).(05.65).(p5 oy N1 @A T2 = UL



The new sizes are now S(t7) S(t8) (0,0,3) = S(ty),
(1) = {(0,0,3) — 2} = §(Ty),

S(N”) ({3—1},{(0,0,3) — 2},0,8) < S(N7),
Sty) = ({S(N}) — 1},1,6) < S(tp),

S(TZ) {S(tz) — 1,(0,0,2) — 1} < §(Ty).



Condition 2 Quantitative consistency

Let Condition 2 be not fulfilled by T;. The set L :=

N; €Kt

{QENCLW)E g Prig(p>ind(g)(p)g(p+)ind(g)(p+>}

is a Presburger set. Construct T’ := T \ {t} Ut|_ using Lemma 5. In the example
L is characterized by the following three equations:

29(We, ) = 39(We, ). 9Pz ) — 9(We, ) = 9(P3 ), 9(P3) = 9(P3) — 9(Way )
Their solutions are described by the linear set Ly =LyNL=

0+ ) |P2 P2 P2 Po| P3Py Py By | |Wey Woy py Py P3 P3|
1717171 Y 1717171 Y 27372727373




=t = Lyyo {(aa)|ac{Py .05.67.55 }}N” with S(t7) = ({S(N{) — 1},0,3) < S(t5).

Adding the witnesses leads to L, =

o+{[p2 5, P; B m] [pg B Py P wZ] [W% Wou By B Py By vvsn*
17171717171717171717 2737272737371

(we omit the witness for 0.) with S(t5") = S(t7) = ({S(N{) — 1},0,3).

Defining T} =ty UE with S(Ty") = S(T;) and N’ = X (5 5 5.1(T3") with S(NJ') =
({3 — 172 — 1}78( 2”/)707 8) < S(Né,) — ({3 — 172 = 1}7S(T2”,>7 174) we get

> P3 Py Py Weyy *
d= (%555 |+ {00111} © e om.ptss Y-



Condition 3 Elimination of withesses

Let Condition 3 be not fulfilled by withess w € C(N;) \ (P{-ir U PT_i). Replace N; by
some expression T with R(T) = R(Nj)o ) Ctlw Since for all m € Ly, we have
m(w) = ct(w). Then, we can replace in

T = TA{ U (Ll ©\Qeqny, K\ ND) Qe gy T

Example: Considert with ¢t = {"2" p4 j Vge Tt g(w) =0, Kt:{*{p}(vutj)},

— _|_ —
and o = | 1.% % %% | Ky = R gy (),



N
Y 5 e
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i W

4\'0/5=

N J

— g a o nt a af n- nt
! ' _|Po Bp 94 91 Py P1 9 G P Po )
Then t |sdef|nedsuchthatct/_[4,6,8,9,7,6,8,9,7,5],further

- nt — nt
P1 BPo P Pq
more, [1, 1],[1, 1]ert/and

Kt = {F g} (V0), *F 1,3 (U1), K 11 (V1), (g1 (U2), K (1 (V2)}, where pi, g, v and
u; are replacements caused by disjointness condition in Lemma 6.
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The variables x and y illustrate the effect of the periods in 'y, which originate from
the (omitted) periods of t;.



Condition 4 Elimination of bounded places

Condition 4 is decidable by two covering graph constructions for every i: Every
node in the covering graph CG (CG ) respectively ) has a marking from

(NU{w}) TI (NU{w}) i , respectlvely ). The root of the covering graph CG;; .
has the marking ct |- + P [39erg(p™)>0}
i

For a node in CG(I ) marked W|th m, we construct T’ with R(T’) {0 € R(T))

g|P_< m} using Lemma 5 as T := {t’ [{geLy o <m} |t € Ti}. Compute T :=
T;

reachecQTi’ ) recursively.

For every t” € T”, add to the covering graph CG;j 4+) a new node

m':=m—cylp- +{p" = (@(p)+o = (p"))|pePr}
i g€l n



If m" > m" for an m” on the path from the root to m, then we set m’ :=m’+ w(m’ —
m').

If for all i a node marked with a)Pi IS In CG< +) and, analogously, a node marked

+
with @ T is in CG;j ), then the Condition 4 is fulfilled. Otherwise, we calculate

k:=min max min max m(p°)
oce{+,—} pathcCG; ) pcPr, mepath

and construct T":=T\ {t}u U U(p) (restrict place pto k).
PPy,
K
U(p) = (Lt |{p— pT} OQ\QC (Ke\ { |})) N\ {p— p+}TCt( =), (pt)

TJI —1 describes firing sequences in N; with the followmg property: They start
Wlth a marking mg with mg(p) = j, end with a marking m4 with m4(p) = h, and
meanwhile the number tokens on p is always less than |.



Example: Lett= (c+ F*)o{p}up*{p}up(Ni}) with c(p™) =1, Nj = vuwut; and
tj=(cj+ FT)O{q}UQ*{q}uQ(U) with cj(p™) =1, cj(q”)=8and cj(q") =9

(@)

S
e

u
W

4 N
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k=1 = firing sequences are restricted to the regular expression ((wv'tj) +
V) WV,

Tojol and lell only consist of a copy of v, leol only of a copy of w and Tojll only of
a copy of t;.

To?o —t(°K P(To, 01)) correponds to v*, Tlo1 =T oPTé)OopTO 1YT1 ! corresponds

to wv'tj +v and Tll,O = Tll,lo Tfo =t(Fp (T10,1>>OPT170 OPT(?’()

Iooks like

Every t' in (c+|‘*)|{p PFY e (p- p+}



-~

8

~
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Corollary 4 If the conditions 1 - 4 hold for t, then it holds

Vi e 9+ T¢3k>2 (et +kf) )€ R(Y)
gel't

This immediately follows from:

Lemma 8 If the conditions 1 - 4 hold for t, then it holds

Vi e 0+ F{Wee (rt U —rt)*ﬂkz 2 {(C’[ —I—kf) |C(t)7 (Ct +kf+e) ’C(t)} C R(t)
gel t



Condition 5 Making the constant firing

If Condition 5 is not fulfilled for t then, according to Corollary 4, forf = Y g, there
ger

exists a (smallest) k such that (c+kf) |c)€ R(t). So we decompose Lt such that

R(Lt) =R(Le+kHu U U R(ce+jg+(Te\{g})*). Set
gel j<k

T’Z:T\{t} U {t’|Kt/:Kt,r{:rt/\Ct/:Ct—i—kf)}
U{t'[3i<kgelri=T\{ghArcy=ct+jg)}.

The size S(t') is smaller than S(t) since bs is now zero or [F\ {g}| < |[].



The reachability relation for Petri nets with inhibitor arcs

Theorem 2 In a Petri-net (P, T,W, I, mg, me) with

Jge NP Vp,p e Pg(p) <g(p) — (vteT (pt) el —(p,t) €l),

we can construct an expression Tg such that there is a firing sequence we T*
with mg|w)me if and only if R(Ty) is (= {0} and) not empty.

With Theorem 1 we derive the following:

Corollary 5 The reachability problem for a Petri net (P, T,W, I, mg, me) with

Jge NP vp,p e Pg(p) <g(p)) — (vteT (pt) el — (p,t) €l),

IS decidable.



Example: Start marking: {p3+— 3, ps — 2}, end marking {ps — 27}

We find gwith g(p1) =1, 9(p2) = 2and g(p3) = 9(p4) = 3and construct Ty = {tg,t7}

— 0t ot — - nt nt
with R(Ty) = { [p?‘} : p21 : pf} : [pll : pf : p22 : pf] } + ldp, as innermost net of
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This enables the firing sequence w = tgt;t7 from [

.%] 10 [%7.%] on the in-
R(to) € R(T»). Together with

nermost level as [pf P4 pj p4] € R(Fpy, (T1) =



— ot
[p52 : pé”)] e R(T,) for tg, we get the firing sequence W = (w)(w)tg(w)tg(w)tg(w)tg

— 0~ nt nt
from [, 4] to [, %] on the next level as [p23,p;1,p§>,p24] e R(*p.l_z(Tz)) —
— ot
R(t3) C R(T3). Together with p13 : pg] € R(T3) for tg, this enables the firing se-
~ o nt
quence W’ =tg(wW)t3 from [F3, B4 to [D4] on the following level as {p?’ P p4] c

30227
R(*PrS(Ts)) = R(ts) = R(Ty).



Priority-Multicounter-Automata

A priority-multicounter-automaton is a one-way automaton described by the 6-
tuple

A: (k7z7z767207 E)
with the set of states Z, the input alphabet %, the transition relation
8§ C (Zx (ZU{A}) x{0...k}) x (Zx {—1,0,1}K),

Initial state zy, the accepting states E C Z, the set of configurations Cp = Z x

>* x NK, the initial configuration on(X) = (29,%,0,...,0) and configuration transition

_ K
relation

(zax,ng,....,ng) Fx (Z,X,N1+iq,...,M+ig)



ifandonly if zZ € Z,ac ZU{A},{(za,j),(Z,iq,...i)) € 6, Vi <jnj=0.

Recognized language:
L(A) = {w|3zec Edny,...,ne N (0,W,0,...,0) |x (Ze,A,Nq,...,N).

Alternatively L(A) = {w| (z,w,0,...,0) |t (z,A,0,...,0)}.
Using Theorem 2, we get:

Theorem 3 The emptiness problem for priority-multicounter-automata is decid-
able.

The same holds for the halting problem by constructing an automaton which
contains its input in the states.



Restricted Priority- Multipushdown- Automata

Different treatment of one of the two pushdown symbols {0,1}:

A 0 can be pushed to and popped from every pushdown store independently,
but a 1 can only be pushed to or popped from a pushdown store if all pushdown
stores with a lower order are empty.

Restriction: If a 1is popped from a pushdown store, then a 1 cannot be pushed
anymore to this store until it is empty.

Theorem 4 The emptiness problem for restricted priority-multipushdown-auto-
mata is decidable.



This generalizes the result in [JKLP90] that ﬂ%D’fk (the class of languages
generated by linear grammar and deletion of semi Dyck words) is recursive.

Conjecture: Decidability still holds in the unrestricted case.

Open problem: Pushdown automaton with additional weak counters (without
zero-test).



