next up previous
Next: About this document Up: Making Nondeterminism Unambiguous Previous: Discussion and Open Problems

References

ABO96
E. Allender, R. Beals, and M. Ogihara. The complexity of matrix rank and feasible systems of linear equations. In ACM Symposium on Theory of Computing (STOC), 1996.

AJ93
C. Àlvarez and B. Jenner. A very hard log-space counting class. Theoretical Computer Science, 107:3-30, 1993.

AL96
E. Allender and K.-J. Lange. StUSPACE( tex2html_wrap_inline1782 ) is contained in DSPACE( tex2html_wrap_inline1784 ). In Proceedings of the 7th ACM-SIGSAM International Symposium on Symbolic and Algebraic Computation (ISAAC), volume 1178 of Lecture Notes in Computer Science, pages 193-202. Springer-Verlag, 1996.

AO96
E. Allender and M. Ogihara. Relationships among PL, #L and the determinant. RAIRO - Theoretical Information and Application, 30:1-21, 1996.

BCD tex2html_wrap_inline1780 89
A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and M. Tompa. Two applications of inductive counting for complementation problems. SIAM Journal on Computing, 18(3):559-578, 1989.

BF
R. Beigel and B. Fu. Circuits over PP and PL. To appear in Proceedings of the 12th Conference on Computational Complexity, 1997.

BJLR92
G. Buntrock, B. Jenner, K.-J. Lange, and P. Rossmanith. Unambiguity and fewness for logarithmic space. In Proc. 8th International Conference on Fundamentals of Computation Theory (FCT '91), volume 529 of Lecture Notes in Computer Science, pages 168-179. Springer-Verlag, 1992.

Dam
C. Damm. DET = L tex2html_wrap_inline1788 ? Informatik-Preprint 8, Fachbereich Informatik der Humboldt-Universität zu Berlin, 1991.

Gál95
A. Gál. Semi-unbounded fan-in circuits: Boolean vs. arithmetic. In IEEE Structure in Complexity Theory Conference, pages 82-87, 1995.

GS88
J. Grollmann and A. Selman. Complexity measures for public-key cryptosystems. SIAM Journal on Computing, 17:309-335, 1988.

GW96
A. Gál and A. Wigderson. Boolean vs. arithmetic complexity classes: randomized reductions. Random Structures and Algorithms, 9:99-111, 1996.

Imm88
N. Immerman. Nondeterministic space is closed under complement. SIAM Journal on Computing, 17:935-938, 1988.

Jon75
N. D. Jones. Space bounded reducibility among combinatorial problems. Journal of Computer and System Sciences, 11:68-85, 1975.

MV97
M. Mahajan and V. Vinay. A combinatorial algorithm for the determinant. In Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1997.

MVV87
K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as matrix inversion. Combinatorica, 7:105-113, 1987.

NR95
R. Niedermeier and P. Rossmanith. Unambiguous auxiliary pushdown automata and semi-unbounded fan-in circuits. Information and Computation, 118(2):227-245, 1995.

Ogi96
M. Ogihara. The PL hierarchy collapses. In ACM Symposium on Theory of Computing (STOC), pages 84-88, 1996.

RR92
P. Rossmanith and W. Rytter. Observations on tex2html_wrap_inline1782 time parallel recognition of unambiguous context-free languages. Information Processing Letters, 44:267-272, 1992.

Ryt87
W. Rytter. Parallel time O( tex2html_wrap_inline1782 ) recognition of unambiguous context-free languages. Information and Computation, 73:75-86, 1987.

Sud78
I. H. Sudborough. On the tape complexity of deterministic context-free languages. J. Association of Computing Machinery, 25:405-414, 1978.

Sze88
R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta Informatica, 26:279-284, 1988.

Tod
S. Toda. Counting problems computationally equivalent to the determinant. Technical Report CSIM 91-07, Department of Computer Science and Information Mathematics, University of Electro-Communications, Tokyo, 1991.

Val76
L. Valiant. The relative complexity of checking and evaluating. Information Processing Letters, 5:20-23, 1976.

Val92
L. Valiant. Why is Boolean complexity theory difficult? In M. Paterson, editor, Boolean Function Complexity, volume 169 of London Mathematical Society Lecture Notes Series, pages 84-94. Cambridge University Press, 1992.

Ven91
Venkateswaran. Properties that characterize LOGCFL. Journal of Computer and System Sciences, 43, 1991.

Vin91
V. Vinay. Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In Proc. 6th Structure in Complexity Theory Conference, pages 270-284. IEEE, 1991.

VV86
L. Valiant and V. Vazirani. NP is as easy as detecting unique solutions. Theoretical Computer Science, 47:85-93, 1986.

Wig94
A. Wigderson. NL/poly tex2html_wrap_inline1794 L/poly. In Proc. of the 9th IEEE Structure in Complexity Conference, pages 59-62, 1994.



Klaus Reinhardt
Mon Apr 28 16:41:00 MST 1997