Towards Asynchronous Adaptive Hypermedia

An Unobtrusive Generic Help System

Andreas Putzinger - putzinger@fim.uni-linz.ac.at
presentation @ ABIS 2007, 09/26/2007 (Halle / Saale, Germany)

FIM - Institute for Information Processing and Microprocessor Technology
Johannes Kepler University Linz, Austria
Contents

• Introduction - Asynchronous Web
• Concepts in Asynchronous Adaptive Hypermedia
• Example System - Providing Help
• Conclusion, Future Research
“Asynchronous” web

Terminology
- Asynchronicity in the context of web refers to the point in time, when the actual data transmission takes place.

Technical aspects
- Asynchronous data transfers take place independently of the traditional, surrounding, blocking http-request-response cycle (out-of-band communication).
- RIA, AJAX, XmlHttpRequest, …
- Many current (widget)-frameworks inherently support this technology.

Benefits
- More responsive interfaces
- More applications are being transferred from the desktop to the web. Gaps must be bridged ASAP (regarding GUI, latencies, features, convenience, etc.)
- ...
traditional “synchronous” apps

asynchronous web apps
traditional “synchronous” apps

asynchronous web apps
traditional “synchronous” apps

asynchronous web apps
Further examples for async. web apps

- Many Google apps, Yahoo apps, etc.
Further examples for async. web apps

- Many Google apps, Yahoo apps, etc.
Further examples for async. web apps

- Many Google apps, Yahoo apps, etc.
Adaptive Hypermedia Systems (AHS)
Adaptive Hypermedia Systems (AHS)

- Client
- Data collection
- Models
 - Uses
 - Modelling
- Adaptation engine
 - Apply on data/pages
Adaptive Hypermedia Systems (AHS)

Client

Data collection

- on http-requests
 - all kind of data
 - implicit, explicit.
 - piggybacking of data

Adaptation engine

Uses

Models

Apply on data/pages

Modelling
Adaptive Hypermedia Systems (AHS)

adaptation is applied once

apply on data/pages

data collection

adaptation engine

uses

models

on http-requests
- all kind of data
- implicit, explicit.
- piggybacking of data

modelling
Async. Adaptive Hypermedia - concept

- Combination of the well established field of Adaptive Hypermedia with well-established techniques of the asynchronous web.
- Bidirectional, continuous communication channel! (AJAX’s not enough!)
Async. Adaptive Hypermedia - concept

- Combination of the well established field of Adaptive Hypermedia with well-established techniques of the asynchronous web.

- Bidirectional, continuous communication channel! (AJAX’s not enough!)

```
client

*adaptation is applied once*

data collection

apply on data/pages

models

uses

adaptation engine

on http-requests
- all kind of data
- implicit, explicit.
- piggybacking of data

modelling

© A. Putzinger, 2007
```
Async. Adaptive Hypermedia - concept

- Combination of the well established field of Adaptive Hypermedia with well-established techniques of the asynchronous web.
- Bidirectional, continuous communication channel! (AJAX’s not enough!)
Async. Adaptive Hypermedia - concept

- Combination of the well established field of Adaptive Hypermedia with well-established techniques of the asynchronous web.
- Bidirectional, continuous communication channel! (AJAX’s not enough!)

Diagram:
- Client
 - Data collection
 - Continuously transmit (usage) data
- Adaptation engine
 - Uses
 - Models
 - Modelling
 - Apply on data/pages
Async. Adaptive Hypermedia - concept

- Combination of the well established field of Adaptive Hypermedia with well-established techniques of the asynchronous web.

- Bidirectional, continuous communication channel! (AJAX’s not enough!)

```
continously update page
"Instant Adaptation"
apply on data/pages
continously transmit (usage) data
```

```
data collection
uses
modelling
```

```
client
adaptation engine
models
```

© A. Putzinger, 2007
Asynchronous AH - Implications [1]

- *In general:* the more the system knows about a user, the better personalization could be featured.
- More (precise) data about user actions -> more possibilities for interpreting subsymbolic user behavior.
Asynchronous AH - Implications [1]

• *In general:* the more the system knows about a user, the better personalization could be featured.

• More (precise) data about user actions -> more possibilities for interpreting subsymbolic user behavior.

• **Monitoring the user’s mouse** (position, clicks, timings and latencies, etc.) -> “valuable raw material” for modeling the user’s focus of attention, performing website usability evaluation, etc.
Asynchronous AH - Implications [1]

• *In general*: the more the system knows about a user, the better personalization could be featured.

• More (precise) data about user actions -> more possibilities for interpreting subsymbolic user behavior.

• **Monitoring the user’s mouse** (position, clicks, timings and latencies, etc.) -> “valuable raw material” for modeling the user’s focus of attention, performing website usability evaluation, etc.

• **Key Strokes** -> typing characteristics, *adaptive text completion / recommendation*, plan recognition etc.
Asynchronous AH - Implications [1]

- In general: the more the system knows about a user, the better personalization could be featured.
- More (precise) data about user actions -> more possibilities for interpreting subsymbolic user behavior.
- Monitoring the user’s mouse (position, clicks, timings and latencies, etc.) -> “valuable raw material” for modeling the user’s focus of attention, performing website usability evaluation, etc.
- Key Strokes -> typing characteristics, adaptive text completion / recommendation, plan recognition etc.
- Browser events (scroll actions, etc.) -> focus of attention, etc.
Asynchronous AH - Implications [1]

- In general: the more the system knows about a user, the better personalization could be featured.
- More (precise) data about user actions -> more possibilities for interpreting subsymbolic user behavior.
- Monitoring the user’s mouse (position, clicks, timings and latencies, etc.) -> “valuable raw material” for modeling the user’s focus of attention, performing website usability evaluation, etc.
- Key Strokes -> typing characteristics, adaptive text completion / recommendation, plan recognition etc.
- Browser events (scroll actions, etc.) -> focus of attention, etc.
- “Still Alive / Working / Active” messages
Asynchronous AH - Implications [2]

• **On-demand data retrieval** gets possible -> reduced “provisional transmission”;
Adaptive engine needs information from client -> simply ask for it, NOW, asynchronously
Asynchronous AH - Implications [2]

• **On-demand data retrieval** gets possible -> reduced “provisional transmission”; Adaptive engine needs information from client -> simply ask for it, NOW, asynchronously

• **Subscriber model** gets possible -> server subscribes to client values (scrolling state, etc.) -> when value changed -> server gets notified
Asynchronous AH - Implications [2]

- **On-demand data retrieval** gets possible -> reduced “provisional transmission”; Adaptive engine needs information from client -> simply ask for it, NOW, asynchronously

- **Subscriber model** gets possible -> server subscribes to client values (scrolling state, etc.) -> when value changed -> server gets notified

- **Instant adaptation** -> instantly apply new adaptations when underlying model gets changed -> **instant forward chaining**
What’s really new??

• Concept of inspecting/transmitting user actions from inside the browser is NOT new
What’s really new??

• Concept of inspecting/transmitting user actions from inside the browser is NOT new

• The technique of interpreting user actions / clickstreams is NOT new.
What’s really new??

• Concept of inspecting/transmitting user actions from inside the browser is NOT new

• The technique of interpreting user actions / clickstreams is NOT new.

• So, what’s really new about this
 Asynchronous Adaptive Hypermedia / AH 2.0 ????
What’s really new??

- Concept of inspecting/transmitting user actions from inside the browser is NOT new.
- The technique of interpreting user actions / clickstreams is NOT new.
- **So, what’s really new about this**
 - Asynchronous Adaptive Hypermedia / AH 2.0 ????
- **Low latency** (information from client in “realtime” - whatever this term means in practice)
What’s really new??

• Concept of inspecting/transmitting user actions from inside the browser is NOT new

• The technique of interpreting user actions / clickstreams is NOT new.

• So, what’s really new about this
 Asynchronous Adaptive Hypermedia / AH 2.0 ????

• **Low latency** (information from client in “realtime” - whatever this term means in practice)

• **Continuous model update**
What’s really new??

• Concept of inspecting/transmitting user actions from inside the browser is NOT new

• The technique of interpreting user actions / clickstreams is NOT new.

• So, what’s really new about this Asynchronous Adaptive Hypermedia / AH 2.0 ????

• **Low latency** (information from client in “realtime” - whatever this term means in practice)

• **Continous model update**

• **possibility of forward chaining**
What’s really new??

• Concept of inspecting/transmitting user actions from inside the browser is NOT new

• The technique of interpreting user actions / clickstreams is NOT new.

• So, what’s really new about this
 Asynchronous Adaptive Hypermedia / AH 2.0 ????

• Low latency (information from client in “realtime” - whatever this term means in practice)

• Continuous model update

• possibility of forward chaining

• Instant adaptation
What’s really new??

• Concept of inspecting/transmitting user actions from inside the browser is NOT new

• The technique of interpreting user actions / clickstreams is NOT new.

• So, what’s really new about this
 Asynchronous Adaptive Hypermedia / AH 2.0 ????

• **Low latency** (information from client in “realtime” - whatever this term means in practice)

• **Continuous model update**

• **possibility of forward chaining**

• **Instant adaptation**

• **New facilities/possibilities for evaluation and esp. meta-adaptivity**
Watch / record / replay / eval. sessions

Client
Watch / record / replay / eval. sessions

Client

Central Monitor
Watch / record / replay / eval. sessions

Client

Central Monitor

server / model / etc.
Watch / record / replay / eval. sessions

Client

Central Monitor
AAHS Example: Adaptive Help Provision

• Asynchronous Adaptive Hypermedia System for Help Provision
 • Generic
 • Context sensitive and insensitive help
• Specific aspects to model (in order provide the shown functionality):
 1. User Idle time
 2. Locus/Focus of Attention (FOA):
 • FOA limited to widgets on page
 • When “using” a widget -> user is probably concentrated on that
 • Not a 100% sure hint -> need to quantify the probability of the correctness of this information
 • The longer an element is focused without interaction, the lower the probability gets that a user is still concentrated on the contents / semantics of that element.
Probability of Correctness for FOA

\[p_{\text{cor}}(\text{it}_{\text{key}}(U), \tau) = \frac{1}{1 + \left(\frac{\text{it}_{\text{key}}(U)}{\tau} \right)^2} \]
Probability of Correctness for FOA

\[p_{\text{cor}}(it_{\text{key}}(U), \tau) = \frac{1}{1 + \left(\frac{it_{\text{key}}(U)}{\tau} \right)^2} \]

passed seconds since last user interaction took place
Probability of Correctness for FOA

\[p_{\text{cor}}\left(\text{it}_{\text{key}}(U), \tau\right) = \frac{1}{1 + \left(\frac{\text{it}_{\text{key}}(U)}{\tau}\right)^2} \]

passed seconds since last user interaction took place

seconds for prob = 50\% ("stretchfactor")
Probability of Correctness for FOA

\[
p_{\text{cor}}(\text{it}_\text{key}(U), \tau) = \frac{1}{1 + \left(\frac{\text{it}_\text{key}(U)}{\tau}\right)^2}
\]

- Passed seconds since last user interaction took place
- Seconds for prob = 50% (“stretchfactor”)
Probability of Correctness for FOA

\[p_{\text{cor}}(it_key(u), \tau) = \frac{1}{1 + \left(\frac{it_key(u)}{\tau} \right)^2} \]

threshold = 50%

passed seconds since last user interaction took place

seconds for prob = 50% (“stretchfactor”)
Probability of Correctness for FOA

The probability of correctness is expressed as
\[p_{\text{cor}}(\text{it}_\text{key}(U), \tau) = \frac{1}{1 + (\frac{\text{it}_\text{key}(U)}{\tau})^2} \]

\[p_{\text{cor}}(\text{it}_\text{key}(U), \tau) \]

\[\text{threshold} = 40\% \]

passed seconds since last user interaction took place
seconds for prob = 50% (“stretchfactor”)
Context Sensitive Help [1]

- **Attention Span**
 - Number of seconds a widget is focused and probability of correctness > threshold

- Help is offered/triggered if the attention span on an input element is higher (threshold!) than average.

- If server-side system determines that attention span is exceeded, it sends specific help text to the client, which shows that help text in an unobtrusive way.
configuration

average attention span = 18s
tolerance = 33%
--> offer help after
 24 seconds

Value of p_{correct} after 12
seconds = 50% -->
 $\tau = 12$

FOA can be determined, if
 $p_{\text{correct}} > 60\%$
configuration

average attention span = 18s
tolerance = 33%
--> offer help after
 24 seconds

Value of p_correct after 12 seconds = 50% -->
 \(\text{tau} = 12 \)

FOA can be determined, if
 \(p_{\text{correct}} > 60\% \)
Context **Insensitive Help** [1]

• **Semantics**: Offer help when system notices that user probably needs no specific, but general help (using the system itself, application / domain specific help, etc.)
Context **Insensitive Help** [1]

- **Semantics**: Offer help when system notices that user probably needs no specific, but general help (using the system itself, application / domain specific help, etc.)

- Additional aspect to model: “user’s progress on a certain page”
Context **Insensitive Help** [1]

- **Semantics:** Offer help when system notices that user probably needs no specific, but general help (using the system itself, application / domain specific help, etc.)

- Additional aspect to model: “user’s progress on a certain page”

- Compare the “progress” of each element on a page with it’s “final state” -> do this for each element -> progress on whole page (0% - 100%)
Context **Insensitive Help** [1]

- **Semantics:** Offer help when system notices that user probably needs no specific, but general help (using the system itself, application / domain specific help, etc.)

- Additional aspect to model: “user’s progress on a certain page”

- Compare the “progress” of each element on a page with it’s “final state” – do this for each element – progress on whole page (0% - 100%)

- Consider number of “user interactions” to reach the current percentage of progress; compare with values of other users
Context Insensitive Help [1]

- **Semantics:** Offer help when system notices that user probably needs no specific, but general help (using the system itself, application / domain specific help, etc.)

- Additional aspect to model: “**user’s progress on a certain page**”

- Compare the “progress” of each element on a page with it’s “final state” -> do this for each element -> progress on whole page (0% - 100%)

- Consider number of “user interactions” to reach the current percentage of progress; compare with values of other users

- The more interactions a user needs for a certain degree of progress on a page, the higher is the probable “confusion factor” of that particular user -> higher chance to need general help.
Context **Insensitive Help** [2]

- Threshold factor is dynamic and depends on the current progress.
Context Insensitive Help [2]

- Threshold factor is dynamic and depends on the current progress.
- When a user enters a page (low progress values), chances are higher that a user wants to get general information -> lower threshold. Therefore, the system reacts more strict to anormative behaviour and offers help faster than in phases of advanced progress.
Context **Insensitive Help** [2]

- Threshold factor is dynamic and depends on the current progress.
- When a user enters a page (low progress values), chances are higher that a user wants to get general information -> lower threshold. Therefore, the system reacts more strict to anormative behaviour and offers help faster than in phases of advanced progress.
- Nevertheless, some groups of users orientate first when entering a page -> a certain degree of flexibility must be tolerated from the beginning.
Context **Insensitive Help** [2]

- Threshold factor is dynamic and depends on the current progress.
- When a user enters a page (low progress values), chances are higher that a user wants to get general information -> lower threshold. Therefore, the system reacts more strict to anormative behaviour and offers help faster than in phases of advanced progress.
- Nevertheless, some groups of users orientate first when entering a page -> a certain degree of flexibility must be tolerated from the beginning.
Goal: support the user!!
Goal: support the user!!

Observe the user’s behaviour (typing speed, mistakes, characteristics, general timings, focus of attention, etc.)
Goal: support the user!!

Data transfers without the user’s awareness.

Observe the user’s behaviour (typing speed, mistakes, characteristics, general timings, focus of attention, etc.)
Goal: support the user!!

Data transfers without the user’s awareness.

Observe the user’s behaviour (typing speed, mistakes, characteristics, general timings, focus of attention, etc.)

We work browser-independent (works even on current mobile phones).
Goal: support the user!!

Data transfers without the user’s awareness.

Observe the user’s behaviour (typing speed, mistakes, characteristics, general timings, focus of attention, etc.)

We work browser-independent (works even on current mobile phones).

Firewalls don’t block due to the usage of standard protocols and techniques.
Goal: support the user!!

Data transfers without the user’s awareness.

Observe the user’s behaviour (typing speed, mistakes, characteristics, general timings, focus of attention, etc.)

We work browser-independent (works even on current mobile phones).

Firewalls don’t block due to the usage of standard protocols and techniques.

Goal: support the user!!
Goal: support the user!!

Data transfers without the user’s awareness.

Observe the user’s behaviour (typing speed, mistakes, characteristics, general timings, focus of attention, etc.)

We work browser-independent (works even on current mobile phones).

Firewalls don’t block due to the usage of standard protocols and techniques.

Goal: support the user??

Does google/ebay/etc. know more than I thought?
Goal: support the user!!

Data transfers without the user’s awareness.

Observe the user’s behaviour (typing speed, mistakes, characteristics, general timings, focus of attention, etc.)

We work browser-independent (works even on current mobile phones).

Firewalls don’t block due to the usage of standard protocols and techniques.

Goal: support the user??

Does google/ebay/etc. know more than I thought?

Why does amazon always recommend diet books to me???
Goal: support the user!!

Data transfers without the user's awareness.

Observe the user's behaviour (typing speed, mistakes, characteristics, general timings, focus of attention, etc.)

We work browser-independent (works even on current mobile phones).

Firewalls don’t block due to the usage of standard protocols and techniques.

Goal: support the user??

Does google/ebay/etc. know more than I thought?
Why does amazon always recommend diet books to me???
Future Work

• **Validation** of shown concepts are currently being prepared.
 • **technical evaluation**: general feasibility and certain aspects (scalability, latencies, browser-independence, etc.) -> stable and reliable technical basis
 • **user-oriented evaluation**: show that AAHS have further impact on the quality
 • **empirical user study** for help system

• Validation -> refinement -> **module for LMS** (assist in self assessments, general platform usage, etc.)

• Many technical improvements possible on the technical side (reducing the amount of transmitted data, bulk transfers, enhanced client logics, etc.)
Conclusions
Conclusions

• Asynchronous AHS enable interesting new features and represent - adaptively - one further step in bridging the gap between desktop- and web-applications.
Conclusions

• Asynchronous AHS enable interesting new features and represent - adaptivewise - one further step in bridging the gap between desktop- and web-applications.

• Generic help system as example for AAHS.
Conclusions

- Asynchronous AHS enable interesting new features and represent - adaptively - one further step in bridging the gap between desktop- and web-applications.

- Generic help system as example for AAHS.

- New features, new challenges, new research topics
Conclusions

• Asynchronous AHS enable interesting new features and represent - adaptivewise - one further step in bridging the gap between desktop- and web-applications.

• Generic help system as example for AAHS.

• New features, new challenges, new research topics

• Let’s launch Adaptive Hypermedia 2.0!
Thx for the attention!

Questions???

Acknowledgements: The work reported in this paper has been partially funded by the Socrates Minerva Adaptive Learning Spaces (ALS) project (229714-CP-1-2006-NL-MPP).

http://www.als-project.org