Dimension Induced Clustering

Aris Gionis
Alexander Hinneburg
Spiros Papadimitriou
Panayiotis Tsaparas

HIIT, University of Helsinki
Martin Luther University, Halle
Carnegie Melon University
HIIT, University of Helsinki

Introduction

Vector Space Motivation

- Observation: data points cannot fill the space =>
 Data lie on one or more low-dimensional manifolds
- Real data exhibit patterns and regularities
Example

- The red points form a 1d manifold in the 2d space.

- A low dimensional manifold must contain sufficient number of points that are densely packed
 - density-based methods?

Dimension Induced Clustering

- How to separate river and lake
 - River and lake have same density
 - Both are spatially connected
 - But they differ in dimensionality

- Density is still necessary for separating lake from surroundings
Dimension Induced Clustering

- Problem
 - Given a set of data objects with a distance function
 - Find dense subsets of objects with similar dimensionality

Other Applications

- Indexing
 - efficient approximation of nearest neighbor for metric data,
 assumes bounded intrinsic dimensionality
 [Krauthgamer & Lee, ICALP 2004]

- Mixture Models of PCA
 - needs average dimensionality as parameter
 [Aggarwal & Yu, SIGMOD 2002], [P. Agarwal et al, PODS 2004]
What is dimension?

- Approach using **representation**
 - dimension is the number of coordinates
 - decompose data space into set of linear sub-spaces densely filled with points
- Drawbacks
 - assumes vector spaces
 - only linear manifolds

What is dimension?

- Approach using relative distances
 - use distances between objects only
 - extend notion of **fractal dimension**
- Advantages
 - complex curved manifolds
 - applicable to metric spaces
Fractal Dimension

- Correlation Dimension
 - Set of objects X, $|X|=n$
 - Distance function $d : X \times X \rightarrow \mathbb{R}$
 - Points in the ball of radius r around x
 $B(x, r) = \{ y \mid y \in X, d(x, y) \leq r \}$
 - Correlation Integral
 $C(r) = \lim_{n \to \infty} \frac{1}{n} \sum_{x \in X} \frac{|B(x, r)|}{n}$
 - Correlation Dimension
 $d_{corr} = \lim_{r, r' \to 0} \frac{\log C(r) - \log C(r')}{\log r - \log r'}$

Intuition behind definition

- $d_{corr} = 1$
- $O(r)$
- $|B(x, r)|$
- r
- $d_{corr} = 2$
- $O(r^2)$
- $|B(x, r)|$
- r
Fractal Dimension

- In real life, datasets are finite
 \[
 C(r) = \frac{1}{n} \sum_{x \in X} \frac{|B(x,r)|}{n}
 \]

- Calculation of correlation dimension:
 fit a line on the log-log plot of \(C(r) \)
Fractal Dimension

- What if the data is non-homogeneous?

Local Fractal Dimension

- However, looking at A and B individually
Local Fractal Dimension

- Local Growth Curve
 \[G_x(r) = \lim_{n \to \infty} \frac{1}{n} |B(x, r)| \]
- Local Correlation Dimension
 \[d_x = \lim_{r, r' \to 0} \frac{\log G_x(r) - \log G_x(r')}{\log r - \log r'} \]
- For finite data \[G_x(r) = \frac{1}{n} |B(x, r)| \]
 \(d_x \) is estimated by fitting a line

Local Fractal Dimension

- Linear Growth Model of an object \(x_i \)
 \[L_{x_i}(\log r) = d_i \log r + b_i \]
Linear Growth Model

\[L_{x_i}(\log r) = d_i \log r + b_i \]

- \(d_i \): rate of growth of \(\log G_x(r) \) – dimensionality
- \(b_i \): value of \(L_x(\log r) \) at radius 1 – density
- \(L_x(\log r^*) \): density at radius \(r^* \)

The model can be summarized with two values: \(d_i \) and \(c_i = L_x(\log r^*) \)
 - how do we select \(r^* \) ?

Selecting \(r^* \)

- Idea: choose \(r^* \) such that \(c_i \)'s and \(d_i \)'s are un-correlated

Lemma 1. The choice of \(r^* \) for which \(d_i \) and \(c_i \) are un-correlated is given by

\[
\log r^* = -\frac{\sum (d_i - \bar{d})(b_i - \bar{b})}{\sum (d_i - \bar{d})^2}
\]
Local Representation

- Local Representation of point x_i

 \[
 l(x_i) = (d_i, c_i)
 \]
 \[
 c_i = L_{x_i}(\log r^*)
 \]

- Captures the view of the world for each point

The fitting interval

\[
L_{x_i}(\log r) = d_i \log r + b_i
\]

- The linear growth model is defined over a subset of the neighbors of x
 - Clipping from above
 - Clipping from below
Algorithm

Algorithm 1 The DIC algorithm

Input: Dataset X of n points, number of clusters b
Output: Clustering of X into b clusters

1: for all $i \in \{1, \ldots, n\}$ do
2: Compute k-th NN of x_i, for $k = k_{\min} \ldots k_{\max}$
3: Compute the local representation (d_i, c_i) of x_i.
4: end for
5: $X_{LR} = \{(d_1, c_1), \ldots, (d_n, c_n)\}$
6: Cluster the set X_{LR} into b clusters.

Experiments

- Detection of m-flats in high-dimensional space

(a) 2d flat in 3d space
Classification error = 8.1%

(a) 40d flat in 50d space
Classification error = 1.2%
Comparison to Optics

- Optics: density based hierarchical clustering

Low Rank Sub-Matrix

- Combinatorial low-rank sub-matrix in a random Matrix
- Apply DIC to set of columns and set of rows
- Final Clusters are the Cartesian product of row and column clusters
Experiments

- Gene Expression Data (gene clustering)

Yeast data from George Church, Harvard

Neither density nor dimensionality alone can detect the structure
Conclusion

- Find subsets with low fractal dimensionality
- Local Representation
 - local fractal dimensionality
 - local density
- Visualization of the cluster structure