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Abstract

Advanced Data Mining applications require more and
more support from relational database engines. Especially
clustering applications in high dimensional features space
demand a proper support of multiple Top-k queries in order
to perform projected clustering. Although some research
tackles to problem of optimizing restricted ranking (top-k)
queries, there is no solution considering more than one sin-
gle ranking criterion. This deficit - optimizing multiple Top-
k queries over joins - is targeted by this paper from two per-
spectives. On the one hand, we propose a minimal but quite
handy extension of SQL to express multiple top-k queries.
On the other hand, we propose an optimized hash join strat-
egy to efficiently execute this type of queries. Extensive ex-
periments conducted in this context show the feasibility of
our proposal.

1. Motivation

With the advent of data warehousing concepts, knowl-
edge discovery in general became one of the most promi-
nent database application areas. Many extensions were pro-
posed to better support KDD and warehouse queries and
optimize their execution. Before the SQL:1999/SQL:2003
standardization, a top-k query with a single rank could be
written as SELECT statement containing an ORDERBY plus
a limiting clause like STOP AFTER k ROWS [3] or FETCH

FIRST k ROWS ONLY (DB2 dialect) to retrieve the top-k

results. The standard introduced an alternative formulation
with nested SELECT statements making use of OLAP func-
tions like RANK in combination with the OVER clause.

The extension of the OVER()-clause allows the specifica-
tion of a column-wise ordering, partitioning and windowing
scheme. Positions are computed by three additional aggre-
gation functions RANK (), DENSERANK(), and ROWNUM-
BER() differing in the semantics of breaking ties. Due to
simplicity, we do not further consider ties and refer to the

RANK ()-operator. The limitation with respect to the firstk

rows must be indirectly specified in a surrounding query.
The following example shows how to state one or more top-
k queries within a single SQL query.

SELECT x.id, x.pos1, x.pos2

FROM (
SELECT id ,

RANK( ) OVER (ORDER BY f1() ) AS pos1 ,
RANK( ) OVER (ORDER BY f2() ) AS pos2

FROM R INNER JOIN S ON. . .
WHERE . . . ) x

WHERE x.pos1 ≤ : k OR x.pos2 ≤ : k

Computing top-k queries using this SQL extension is
based on the principle of ordering the underlying data set
with regard to the (usually numeric) ranking criterion and
returning only the firstk values per column. In the above ex-
ample, after joining tablesR andS, two different ranks are
determined for each tuple according to sort criteria func-
tions f1() andf2(). The restriction to the top-k tuples of
both rankings is applied in an surroundingselect statement.

Example 1:The concept of multiple top-k queries natu-
rally appears in several relevant data mining and informa-
tion retrieval applications. Many information retrieval sys-
tems employ relevance feedback. The idea is that the system
learns iteratively from the users rating of the presented re-
sults to improve the retrieval quality. For example the con-
cept of Kim and Chung [12] extends the basic idea of query
point movement. Instead of moving the query point based
on user feedback towards an assumed ideal query point the
extended concept of complex similarity queries allows a set
of multiple query pointsQ = {q1, . . . , qn}. The top-k re-
sult tuples can be defined by a new distance function, which
requires that the result tuple is close to at least one of the
query points inQ:

dist(x,Q) = mink
qi∈Q

{dist(x, qi)}, 1 ≤ i ≤ n

The distance function can be expressed as a SQL query us-
ing n top-k rankings, one for each query point. The com-
bined results of the top-k queries are ordered according to



SID PID QUAN. SALES

1 1 500 1200,00
1 2 300 100,50

. . .
10 5 100 50,00

SID G F EU

1 0.2 0.3 0.2
2 0.1 0 0.05
3 0 0.2 0.1

. . .

(a) fact table (b) weighting table

Figure 1. Example for multiple top-k queries
over joins

the distance to their nearest query points and thek tuples
with the smallest distance are returned.

Example 2:Another application scenario appears in data
warehouse environments, where multiple top-k queries over
joins are useful. Consider following example, where a fact
table holds objects like products or shops and correspond-
ing facts. These informations are either stored in the data
warehouse or computed with SQL-statements. The table
in figure 1(a) holds some facts for sold products (PID) in
shops (SID), like quantity and sales. The objects can now
be ranked according to the different facts with regard to
weighting factors. Such factors represent the importance of
the objects in different contexts and they are used to align
raw data and to statistically correct samples. For example,
typical weighting factors for shops are the market power
with regard to geographic location, e.g. Germany, France
and Europe. This weighting factors are typically stored in a
dimension table (figure 1(b)). To rank the objects into mul-
tiple directions with regard to the multiple facts and multi-
ple weighting factors a join between the fact table and the
weighting table is necessary and the result have to be or-
dered according to multiple ranking functions. In this case,
the parameters of the ranking functions come from both re-
lations.

Our Contribution

In this paper we consider a class of ranking functions
described byf(g1(R.A1, R.A2, . . .), g2(S.B1, S.B2, . . .))
wheref(·, ·) is monotonic in its two input attributes. The
functionsg1() andg2() might be any functions taking in-
puts from tables R and S respectively. We also consider mul-
tiple ranking functions taking only inputs from one relation.

Moreover, it is worth mentioning that without applying
very specific optimization strategies the top-k-computation
is done by computing the ranks forall tuples requiring one
sort for each individual ranking criterion. Finally, for apply-
ing specific optimization algorithms, the currently available
top-k ranking formulations show the problem that the in-
formation about the top-k predicate is structurally very far
from the ranking declaration implying very sophisticated

query graph pattern recognition mechanisms to detect sit-
uations in which the query could be optimized.

To soften the two major problems - no direct support of
top-k queries in the SQL formulations and no internal op-
timization algorithms for computing multiple top-k queries
simultaneously, we propose the following concepts in this
paper:

• First of all, we introduce a small SQL extension of OR-
DERING SETS to simplify the declaration of multiple
rankings. Additionally, we inject LIMIT BY clauses in
the ORDERINGSSETSas well as within the already ex-
isting OVER-clause.

• We discuss the limitations of existing rank optimiza-
tions in the presence of multiple ranks and give a po-
tential extension of an early stop algorithm based on
sort-merge joins.

• We finally propose a variation of the well-known hash-
join algorithm which considers the presence of multi-
ple top-k columns. This variation outperforms all other
join strategies and can be easily integrated into exist-
ing database engines.

The rest of the paper is organized as follows: After glean-
ing related work in the following section, we present our
SQL extension for computing multiple top-k queries in sec-
tion 3. In section 4 we consider simple queries with multi-
ple ranks, but without joins. Thereafter, in section 5, we de-
scribe an extension of an early stop algorithm and introduce
our proposed extension of a hash-join method considering
the existence of rankings. In section 6, we demonstrate the
improved efficiency of our algorithms by describing the re-
sults of extensive experiments run on a prototypical imple-
mentation. The paper closes with a summary and conclu-
sion.

2. Related Work

The goal behind top-k queries is to apply a scoring func-
tion on multiple attributes coming from one or multiple ta-
bles to select the bestk tuples ranked by the function. So far,
top-k queries with single ranking function have been inten-
sively studied in the last years of database research. In par-
ticular it is worth mentioning that top-k queries have been
considered in various contexts.

Carey and Kossmann [3] extended SQL’s SELECT state-
ment by a STOP AFTER clause, which limits the cardinal-
ity of a query result. The authors showed that this clause
especially in combination with ORDER BY leads to signif-
icant better query plans and execution times. In the follow
up paper [4] they presented extended implementation tech-
niques for the STOP AFTER clause based on range par-
titioning. Donjerkovic and Ramakrishnan [7] proposed to
map a top-k query to a range query with the range[max, κ]
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whereκ is chosen in a probabilistic way so that the range
contains approximatelyk tuples. While this and the pre-
vious articles focused on orderings based on the column
values of a single attribute themself, later papers take also
ranking conditions based on multiple attributes, e.g. multi-
dimensional metrics, into account. Chaudhuri et. al [1, 5]
studied the use of multi-dimensional histograms to eval-
uate top-k queries with multi-attribute ranking conditions,
namely metrics like Maximum, Euclidean and Manhattan.
Here a top-k query is mapped to a multi-dimensional range
query centered around a given query point. In their work
they included experiments with ranking conditions based
on up to four attributes. Cheng and Ling [6] proposed an
approximative variant of the method of Chaudhuri et al.
based on sampling, which scales better to high-dimensional
data (up to 100 attribute) and has only a small loss of ac-
curacy. Another approach was taken by Hristides et al. [9],
who used multiple materialized views to efficiently answer
top-k queries, with ranking conditions based on linear func-
tions of the attributes of a relation. For a given ranking con-
dition the best matching materialized view is selected to ap-
proximate the query answer.

None of the above described approaches considered top-
k queries in conjunction with joins. Ilyas et. al [10,11] pro-
posed a new rank join operator producingsingle top-k re-
sults progressively during the join results. They considera
set of tablesR1 to Rn, where each tuple inRi is associated
with a local score. The global score is computed accord-
ing to a functionf combining the local scores of the indi-
vidual tables. In section 5 we give a more detail descrip-
tion, because one of our algorithm extends the rank join ap-
proach to evaluate multiple top-k join results. In [11] Ilyas
et. al present a rank-aware query optimization framework
integrating the rank-join operators into relational queryen-
gines. The generation of a rank-aware query plan is done
with a probabilistic model for estimating the input cardinal-
ity, and cost of the rank-join operators.

In a recent article Slivinskas, Jensen and Snodgrass [13]
identified the optimization problem of database queries con-
taining ORDER BY as a very important problem, which has
been underestimated in the database community. They pro-
pose an extended algebra taking a single ORDER BY and
top-k queries into account and give several formal transfor-
mation rules for such queries.

However, research so far on top-k queries considers only
queries with a single ranking, i.e. sort and limitation condi-
tion.

3. SQL Extension for Top-k Queries

This section outlines minimal SQL extensions providing
a new concept of computing multiple top-k queries within
a single select statement. In a first step, we revise the cur-

id����1
val����NULL

2
val

NULL

id��������val

(a) (b)

Figure 2. Schematic sketch of the possibili-
ties for returning result of queries with multi-
ple ranking conditions.

rent state of the art, demonstrate the problems in retriev-
ing multiple top-k database entries and finally introduce the
ORDERING SET() and LIMIT BY () concepts from a syntac-
tical as well as a semantic point of view.

3.1. Multiple Top-k Queries

Conceptually there are two possible methods to re-
turn multiple top-k results without unnecessary informa-
tion. Figure 2 illustrates the shape of the resulting ta-
bles.

The following query pattern basically extends the basic
SQL pattern given in the motivation with the assumption
that only the firstk values of each sorting criterion have to
be considered. This can be achieved by performing ann−1-
ary outer join to compute the required result (figure 2a).

SELECT v1.id ,v1.pos1 ,COALESCE(v1.ind1 , 0 ) AS ind1 ,
v2.pos2 ,COALESCE(v2.ind2 , 0 ) as ind2

FROM (
(SELECT v1.id, v1.pos1, 1 AS ind1

FROM (
SELECT id ,

RANK( ) OVER(ORDER BY f1() ) AS pos1 ,
FROM . . .

WHERE . . . ) u1

WHERE u1.pos1 ≤: k ) v1(id, pos1)
FULL OUTER JOIN

(SELECT v2.id, v2.pos2, 1 AS ind2

FROM (
SELECT id ,

RANK( ) OVER(ORDER BY f2() ) AS pos2 ,
FROM . . .

WHERE . . . ) u2

WHERE u2.pos2 <=: k ) v2(id, pos2)
ON v1.id = v2.id )

Within this query template, each subquery locally com-
putes the individual ranking results which are then ’concate-
nated’ using a full outer join so that the individual ranks
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larger than the givenk are set to NULL. Additionally, an
indicator functionCOALESCEis used to differentiate be-
tween natural NULL values and NULL values generated by
full outer joining the individual top-k queries. In the worst
case, this may yield an extremely sparse table where each
tuple holds only one valid rank. So for computingn ranks
of sizek, we may yield a cardinality betweenk andn · k.

Alternatively (figure 2b), the local results of the individ-
ual ranking values can be concatenated vertically by per-
forming an union after computing the local ranks. For the
running example, the corresponding query pattern might
look like the following:

SELECT u1.id , ′1′ AS indicator , u1.pos1 AS pos

FROM (
SELECT id ,

RANK( ) OVER (ORDER BY f1() ) AS pos1 ,
FROM . . .

WHERE . . . ) u1

WHERE u1.pos1 ≤ : k
UNION
SELECT u1.id , ′2′ AS indicator , u2.pos2 AS pos

FROM (
SELECT id ,

RANK( ) OVER (ORDER BY f2() ) AS pos2 ,
FROM . . .

WHERE . . . ) u2

WHERE u2.pos2 ≤ : k

An additional indicator column denotes the local result
set. This solution is perfect if there is almost no overlap in
the result set implying that a single row appears only once
within the top-k values with regard to a single ranking.

Comparing both alternatives from a query formulation
and query optimization perspective leads to the following
observation. The individual subqueries are computed lo-
cally and combined in a subsequent step, which is either a
union or a full outer join so that applying sophisticated rank-
operators eventually computing multiple top-k results be-
comes extremely difficult. Additionally, the query structures
of both variants are inadequate to serve as language expres-
sions because of the huge statements necessary to express
the same pattern and repetitive computation of the (poten-
tially complex) table expressions in the FROM clauses.

To put it into a nutshell, it is clear that SQL does not ad-
equately support multiple orderings in combination with a
limitation of the output stream either for vertically or hori-
zontally constructed result sets. The query expressions are
extremely voluminous. Additionally, it is extremely diffi-
cult for the rewrite system inside of the database engine to
detect these query patterns and to apply specific optimiza-
tion techniques.

3.2. The ORDERING SET-Operator

To weaken the problems of multiple orderings and limit-
ing the output stream, we propose a much simpler language
construct, namely ORDER BY ORDERING SET, which op-
erates quite similar to the GROUPING SET-operator and
therefore fits nicely into the set of SQL extensions.

The ORDERING SET()-operator (as an extension of the
ORDER BY-clause) denotes that the same data is sorted ac-
cording to multiple ordering criteria and may be seen quite
similar to the construct of a GROUPING SET()-operator,
which is an extension of the simple GROUPBY-clause. Ad-
ditionally, the individual ordering criteria may be extended
with a LIMIT BY-parameter to restrict the number of rows
for the particular ordering criterion. The ORDERING SET()-
operator delivers the tuples of a table in the order according
to the actual ranking criterion. When all tuples of the ta-
ble are returned or the limit is reached the next ranking is
processed.

SELECT . . . , f1(), f2()
FROM . . .

WHERE . . .

ORDER BY ORDERING SET (
(f1() DESC LIMIT BY : k ) ,
(f2() DESC LIMIT BY : k ) )

To illustrate the ORDERING SET()-operator, we refer to
the example in figure 3, which shows how to compute the
first 3 rows with the highest values inf1() andf2().

The result (right table) of the ORDERING SET()-
operator, which ranks first according to columnf1 and then
f2 with the limit k = 3. The horizontal line in the right ta-
ble indicates when the second ordering starts.

Like the normal ORDER BY expression, one single OR-
DERING SET expression can exhibit multiple sorting cri-
teria including ASC and DESC annotations to distinguish
between ascending and descending ordering. A single OR-
DERING SET expression is equivalent to a normal ORDER

BY expression, e.g.

ORDER BY ORDERING SET ( f1() ASC, f2() DESC)
≡

ORDER BY f1() ASC, f2() DESC

Although in the general case, the value fork may be dif-
ferent for each individual ranking, in many applicationsk

ID f1 f2

1 4 11
2 3 22
3 2 33
4 1 44

⇒

ID f1 f2

1 4 11
2 3 22
3 2 33
4 1 44
3 2 33
2 3 22

Figure 3. Example of a 2-ary ranking of size 3
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ID f1() f2()

1 44 11
2 33 22
3 22 33
4 11 44

⇒

ID ORDERING(f1()) ORDERING(f2() DESC) ORDERING(f1() DESC,f2())

4 1 0 0
3 1 0 0
4 0 1 0
3 0 1 0
1 0 0 1
2 0 0 1

Figure 4. Example for the ORDERING function

will be the same for all sorting criteria. In this case, we allow
an alternative global limitation for the ORDERING SETS as
a shortcut, e.g.

ORDER BY ORDERING SET ( (f1() LIMIT BY : k ) ,
(f2() LIMIT BY : k ) )

≡

ORDER BY ORDERING SET ( ( f1() ) , ( f2() ) )
LIMIT BY : k

Like the GROUPING()-function for the GROUPINGSET-
extension we introduce the ORDERING()-function, which
indicates to which ordering set a tuple in the result set be-
longs to. The function returns1 if the current row was
sorted according to the given sorting criterion. Thus, OR-
DERING(x) returns1 if the current row was sorted accord-
ing to expressionx. In case the ordering set is defined over
multiple sorting criteria (e.g.f1() DESC,f2() ASC) the
ORDERING()-function takes also a list of expressions.

To illustrate the semantics in more detail, we consider the
following ORDERING SET()-clause returning the first three
rows of each ranking:

SELECT . . . ,
ORDERING(f1() ) ,
ORDERING(f2() DESC) ,
ORDERING(f1() DESC, f2() )

FROM . . .

WHERE . . .

ORDER BY ORDERING SET ( (f1() ) , (f2() DESC) ,
(f1() DESC, f2() ) ) LIMIT BY 2 ;

Figure 4 illustrates the identification of the individual or-
dering set membership for each row.

In case the ranking criteria are compatible with each
other, e.g. only one expression is used for each ordering
set, the result table can be explicitly transformed into the
schema shown in figure 2b with the help of the ORDER-
ING()-functions by adding a CASE statement like the fol-
lowing:

SELECT . . . ,
1 ∗ ORDERING(f1() ) +
2 ∗ ORDERING(f2() ) AS indicator ,
CASE WHEN ORDERING(f1() ) = 1 THEN f1()

WHEN ORDERING(f2() ) = 1 THEN f2()
END AS value , . . .

FROM . . .

WHERE . . .

ORDER BY ORDERING SET ( (f1() ) , (f2() ) ) LIMIT BY : k

3.3. The LIMIT BY Over-Clause Extension

Similar to the relationship of GROUPBY (with GROUP-
ING SETS()) and PARTITION BY in the context of the
OVER()-clause, we extend the functionality of reporting
functions by a local LIMIT BY clause resulting in multi-
ple benefits. This implies that the restriction of the output
data is now close to the RANK() function avoiding nested
queries. The scenario above may now be specified without
any nesting by the following expression:

SELECT . . . ,
RANK( ) OVER(ORDER BY f1()

LIMIT BY 10 ) AS pos1 ,
RANK( ) OVER(ORDER BY f2()

LIMIT BY 10 ) AS pos2 ,
LIMIT ( ) OVER(ORDER BY f1()

LIMIT BY 10 ) AS indicator1 ,
LIMIT ( ) OVER(ORDER BY f2()

LIMIT BY 10 ) AS indicator2

FROM . . .

WHERE . . .

From a local perspective of a single column, the val-
ues are sorted according to the given ORDER BY crite-
rion. In a second step, the LIMIT BY-clause propagates the
first k rows from the preceding sort operator to the follow-
ing RANK () function. All subsequent values are replaced by
NULL values indicating that they are not contributing to the
overall result. As an indicator, the new LIMIT ()-function re-
turns a numeric0 if the corresponding original value with
regard to the given OVER()-clause is omitted and1 if the
original value is part of the aggregation process (in most
cases applied to the RANK ()-operator). The same seman-
tics applies in the presence of an additional PARTITION BY-
clause with an optional window specification. The limita-
tion applies to each partition locally without affecting the
succeeding window definition.

3.4. Summary

Supporting ordering in relational database systems has
a long tradition to pre-process returning data for presenta-
tional use. With the advent of data warehouse and informa-
tion retrieval applications limited orderings (i.e. ranks) and
multiple orderings (according to different combinations of
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the data space) are becoming tremendously important. We
introduced a small and seamless SQL-extension dedicated
to support these requirements. The ORDERING SETS and
the LIMIT BY extension fits seamlessly into the SQL lan-
guage and greatly enhances query capability by reducing
the complexity of the query statement. The following two
sections outline the implementation of a special operator for
simple queries and join queries with multiple ranks.

4. Simple Queries with Multiple Ranks

This section introduces the MRANK ()-operator support-
ing our new language concepts and details the underlying
algorithm. In the presence of joins the MRANK ()-operator
will be combined with join algorithms as shown in the next
section. Since the mechanism of locally computing ranks
using the OVER-clause with the LIMIT BY-extension is
similar to the global construct of ORDERING SETS(), we
restrict the following discussion to the latter one.

Assume the underlying data is stored in a rela-
tion R(tid, col1, . . . , colm) and the ranking functions
F = {f1, . . . , fn} order the objects in descending man-
ner. When mapping the ORDERING SET()-operator to
queries of forms like presented in section 3.1 the cur-
rent implementations compute the query body individ-
ually, apply the specific ordering functions, return the
first k rows, and concatenate the single tuple streams us-
ing an union operator thus forming the overall result
stream. Figure 5a) illustrates this approach. Unfortu-
nately, such implementations require the complete sort
of the underlying data stream according to each order-
ing function fi. Instead we propose a novel (logical) op-
erator MRANK () with multiple corresponding (physical)
operators, which can be directly exploited when pars-
ing the query. Figure 5b) shows how the query plan
changes.

Figure 5. Applying MRank()-operator to com-
pute limited ordering sets

The simplest implementation of the MRANK ()-operator
is based on data structures holding a minimal set of data
in main memory. The algorithm holds a heap structure for
every ranking criterion. It computes a single top-k query
holding therowid and the values of the ordering function
(Algorithm 1).

Algorithm 1 Main memory based algorithm

Require: RelationR(id, col1, . . . , coln)
Query Q with ordering functionsF = {f1, . . . , fn} and
local limitsk1, . . . , kn

1: H:= set of heap data structureshi[id, fi] of sizeki for
all top-k operators1 ≤ i ≤ n

2: {Phase 1: Compute Multiple Orderings}
3: for all tuplet ∈ R do
4: for all i ∈ H do
5: if hi.count() < ki then
6: hi.add(t[id], fi(t))
7: else if fi(t) > min(hi) then
8: hi.remove(min(hi))
9: hi.add(t[id], fi(t))

10: end if
11: end for
12: end for
13: {Phase 2: Generate Output Stream}

In a first phase, each row of the incoming data stream is
split according to the individual sorting criteria and added
to the heap structure if the number of elements in the heap
is still below the limit. If the heap size has already reached
the limit, the current valuec replaces the minimum valuem
stored at the top of the heap, if thec > m. When all heaps
have been checked in that way the next tuple is processed.

In a second phase, the entries of the heaps are sorted,
the final positions are assigned and the final rows are con-
structed and given to the next operator.

In case not enough main memory is available to hold all
heaps, vertical or horizontal splitting and temp table tech-
niques can be applied. However, due to the lack of space we
do not present those technique in this paper .

Please note that the query body may include join-
expressions. Still the basic MRANK ()-operator can be ap-
plied, but the whole join has to be performed. In the next
section we investigate how to push down the top-k crite-
ria which may result in an early stop of the join.

5. Join Queries with Multiple Ranks

For single top-k queries with joins [10] proposes a rank
join, which avoids to perform a full join of the underlying
tables. First, we give an extension of the idea to deal with
multiple top-k queries, which however requires the rank-
ing functions to be linear combinations of the attributes.
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Figure 6. Evaluation of a single top-k join
query

Second, we propose a new join method for multiple top-
k queries, which is faster and is not limited to linear rank-
ing functions.

5.1. Early Stop in Sort Merge Joins

The section of related work already mentioned the core
principle of the approach given by [10]. From a join opera-
tor perspective, the main idea consists in stopping the flow
of incoming tuples from the join partners, if future combi-
nations of join tuples can never be within the set of the top-k

tuples.
Given the join tablesR and S and the ranking func-

tion f(g1(R), g2(S)) the key idea of the rank join is to
process the tuples fromR and S in decreasing order of
g1(R) respectivelyg2(S). Let bexmax the first tuple (which
yields the maximum ofg1(R)) and x the current tuple
from R andymax andy the analogous tuples fromS then
T = max{f(g1(xmax), g2(y)), f(g1(x), g2(ymax))} is an
upper bound for the ranks of unprocessed join combina-
tions. If T is smaller than the smallest rank of the top-k

tuples seen so far, than the join can be stopped early as no
future tuple combination will be included in the top-k re-
sult.

Consider the following example with the ranking func-
tion f(R,S) = g1(R)+g2(S), g1(R) = R.A1 +R.A2 and
g2(S) = S.B1 + S.B2. The join condition is R.id=S.id. To
achieve an early stop, the input data streams are sorted ac-
cording to local scoresg1(R) respectivelyg2(S). In the ex-
ample of figure 6, after reading the third tuple ofR and
S the join can be early finished. The two circled results of
the three matches are the top-2 tuples based on the ranking
function. All other potential join combinations can never
contribute to the top-2. An early stop after reading three tu-
ples fromR and only two tuples fromS is not possible al-

though two join combinations are found. This is because the
upper boundT is still 25 and thus exceeds the smallest rank
of top-k tuples seen so far, which is23.

Although the idea works well for single top-k queries,
however it is not directly applicable in the context of multi-
ple independent ranking criteria. The problem is that in gen-
eral we have no ordering ofR andS for which we can de-
termine an upper bound for all local scores of the different
ranking functions.

In the special case that the ranking functions differ only
in their local scoresfi(R,S) = f(g1,i(R), g2,i(S)), 1 ≤
i ≤ n and the local scores have the formg1,i(R) = α1,i ·
R.A1 + α2,i ·R.A2 + . . . andg2,i(S) = β1,i ·S.B1 + β2,i ·
S.B2+. . . we can extend the idea from [10] to multiple top-
k queries.

Therefore we define a global score function forR

ḡ1(R) = max
1≤i≤n

{α1,i}|R.A1| + max
1≤i≤n

{α2,i}|R.A2| + . . ..

The global score function̄g2(S) for S is analogous. It
is easy to see that global scoresḡ1(R), ḡ2(S) are al-
ways larger or equal than the respective local scores
g1,i(R), g2,i(S).

The tuples from tablesR andS are processed in decreas-
ing order according to their global scoresḡ1(R), ḡ2(S).
With the global sorting criteria we cannot assume that the
largest local scores appear in the first tuples, so we must
keep the maximum local scoresgmax

1,i , gmax
2,i seen so far

for each of then ranking functions as we scan through R
and S. Also the top-k tuples for each ranking seen so far
are stored in heap structuresHi. Each heap has the small-
est rankminHi

of the particular ranking on top.
Let bex the current tuple from R andy the current tuple

from S. ThenTi = max{f(gmax
1,i , ḡ2(y)), f(ḡ1(x), gmax

1,i )}
is an upper bound for the ranks of future join combinations
of rankingi. We can stop early if the conditionminHi

≥ Ti

holds for all rankings. In the experiment section we show
that the proposed global sorting criteria has a negative ef-
fect on the performance of the algorithm because the lin-
ear combination of many attributes slowly pushes the upper
boundaries to the lower values and thus delaying the early
stops.

5.2. Early Stop in Hash Joins

The global orderings of R and S are suboptimal for most
of the ranking functions. To avoid that disadvantage we can
extend the hash-join principle to compute multiple top-k

rankings and make use of early stops as much as possible.
In this subsection we do not assume any special structure
of the local scoresg1,i(R) andg2,i(S) as well as thefi(·, ·)
might be different but monotonic.

The basic idea of the hash join extension is to partition
the incoming (and not necessarily sorted) data stream of one
join partner (in general the smaller table, say R) according

7



Figure 7. Evaluation multiple top-k with hash
join

to the local scoresg1,i(R) (and not according to the join at-
tribute). Therefore we needn hash tables of sizeli, one for
each local score.

Our hash-join for multiple top-k queries process R it-
eratively, with two phases per iteration. In a first phase
we select the top-li tuples of R according to the local
scoresg1,i(R) into the hash tablesPi. For this we use the
MRANK ()-operator for simple multiple top-k queries (see
section 4). Figure 7 illustrates an example with the three
top-k ordering functions. Note that a single tuple may be
placed into more than one hash table. As all hash tables fit
in main memory this phase requires one scan over R.

In a second probing phase, all tuples of the join part-
ner S are probed against the hash entries. If a join part-
ner is found in hash tablePi, the joined tuple is inserted
into the corresponding top-k heap structureHi (used al-
ready within the MRANK ()-operator) if theith rank func-
tion of the combined tuple yields a value larger than the
smallest top-k value for this ranking seen so far. The prob-
ing phase requires one scan over S. Then the hash tables are
emptied and in the next iteration the nextli tuples are filled
into the hash tables.

The two phases are repeated until all entries of table
R are handled once in each hash tablePi or the com-
putation of all top-k values stops early. For early stops
we maintain for each ranking an individual upper bound
Ti = fi(min{g1,i(Pi)},max{g2,i(S)}). Note that the tu-
ples of R are put into the hash tablePi in decreasing order
according tog1,i(). The maximal local scoreg2,i(S) can be
determined during the probing phase of the first iteration. If
the probing phase of the first iteration is not finished we use
the maximum seen so far.

It is worth mentioning that each local partitionPi holds

the complete tuple such that the final result can be computed
without any further effort. An important effect on the per-
formance of the algorithm have the cardinalities of the hash
tablesPi. Given an amountC of main memory (in num-
ber of tuples) we determine the cardinalitiesli = |Pi| as
follows:

|Pi| =
|C|

∑n

i=1
ki

· ki

In this case the partitioning of the main memory depends
only on the local limits of the multiple rankings. The run-
time of the hash join for multiple top-k rankings isO(iter ·
(|R| + |S|)), whereiter is the number of iterations. In the
experimental section we show that in most cases the num-
ber of iteration is quite low, because the individual upper
boundsTi are quite tight.

5.3. Summary

In this section, we outlined two alternatives to push-
down the limitation of multiple ranks into join operators.
The first idea is based on the proposal of [10]. This only
suitable if the sorting expressions have special structureand
are highly correlated. For the general case of arbitrary sort-
ing expressions, we propose a solution based on the hash
join technique, which is expected to run faster than the sort-
merge join approach.

6. Experiments

We conducted multiple experiments of our MRANK op-
erator to demonstrate the benefit in multiple situations, i.e.
with different implementations and different parametric en-
vironments. All experiments were carried out on a Linux
machine with an AMD Athlon XP3000+ CPU and1.5 GB
main memory. The following subsections describe different
scenarios based on single table expressions and – most im-
portant – in combination with joins.

6.1. Simple Queries with Multiple Ranks

In this section we present our experiment results, which
are based on simple queries. The real data we used come
from the UCI KDD Archive and contain32-dimensional
color histograms of66.615 images. For this experiments we
used the commercial DB2 V8.1 database system. We also
implemented a prototype of our MRANK -operator as C++
client on top of DB2, which has to read the data over an
ODBC connection. So our MRANK -operator had a much
slower access to the data as the system itself.

We simulated an image search application based on com-
plex similarity search queries. For the experiment we varied
the number of query points in the query point setQ from 1
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Figure 8. Experimental comparison: images

to 45. Each query point translates to a separate ranking cri-
teria. The limit parameter was set tok = 20, which means
that each query point the 20 best matching objects were
returned. The results are shown in figure 8. The MRANK

implementation performs better than the database systems
original implementation when more than5 query points
(different ranking functions) are used. We argue that the mi-
nor performance for small query point sets (1-5 points) is
caused by the top of database implementation of our proto-
type. In case of45 query points the MRANK -operator is7
times faster than the database system. As the query point set
and the limitk were reasonably small the main memory ap-
proach was used only.

6.2. Join Queries with Multiple Ranks

We proposed two algorithms to optimize multiple ranks
over joins. The first algorithm is an extension of [10] con-
sidering multiple top-k ranking, which have a special form
(linear). Ilays et. al. [10] showed that the rank join oper-
ator outperforms existing methods in database today. Our
approaches performs also better than the today’s database
operators, because we avoid multiple sorts after joiningR

andS. Therefore we concentrate on analyzing and compar-
ing our two proposed algorithms for joins in this section.

In the first experiment we compared the run time of the
two approaches. The result is shown in figure 9. For this ex-
periments we generated relations where the local scores are
independently from the join condition and varied the num-
ber of multiple top-k ordering functions (k = 10). The rela-
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Figure 9. Comparing Sort-Merge and Hash
Join approach

tion R contains50, 000 andS 150, 000 tuples. With a join
selectivity of0.01, 75, 000, 00 join combinations exists. All
temporary data structures are kept in main memory. For the
hash join we limited the main memory space for all hash ta-
bles to1, 000 tuples and respectively to5, 000 tuples. We
distributed the available space proportional to individuals
hash tables. With increasing number of ranking functions
the sizes of the individual hash tables decrease.

The hash join outperforms the sort merge approach, be-
cause the hash join does not sort the relations according
global score functions. Furthermore, the upper bounds for
early stop condition of the sort merge join become less tight
as the number of ranking functions increases. Beyond a cer-
tain number of rankings all tuples ofR andS have to be
processed (see figure 10). A second observation from fig-
ure 9 is that the hash join gets faster when more main mem-
ory is available because of fewer scans ofS.

That fact is further investigated in the second experi-
ment. It shows the effect of the main memory on the per-
formance of the algorithm. We varied the number of tuples
in R and generatedS, such that each tuple inR had5 join
partners inS. In the experiments we computed ten top-k

ranking function, withk = 20. Figure 11(a) shows the re-
sult for main memory space of1, 000 and5, 000 tuples for
the hash tables. The figure shows clearly, that the hash join
can utilize the larger main memory very effectively.
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Figure 11. Hash Join

Our hash join approach extents the classic hash tech-
nique to join two relations considering multiple ranking
functions. The classic hash join technique puts a fraction
of the tuples from the smaller relation in the main memory.
With a scan overS all tuples ofS are probed against the tu-
ples in the main memory hash tables. The amortized com-
plexity is O(R + C

|R| · S), because the relationR have to
be read only once. In our approach we invest more time to
built up the hash tables but can reduce on the other hand
the number of scans overS because of early stops. Figure
11(b) presents the percentage reduction of the number of
scan overS compared to the classic hash join with the same
amount of main memory.

7. Conclusion

In this paper, we analyzed the problem of supporting
multiple top-k queries from a relational database engine
perspective. We proposed a minimal SQL extension to ease
the specification of multiple rankings within one SQL query
and gave some ideas of applications which can benefit
from it. Additionally, we proposed a variant of the well-
known hash-join strategy which enables an early pruning
of potential join candidates. Finally, we demonstrated the
feasibility of our approach with a variety of different ex-
periments. With our proposed SQL extension of ORDER-
ING SET and column wise limitation in combination with
an optimized implementation, we are convinced that this
technology pushes the envelope and makes relational data-

base technology more applicable for a huge range of data-
intensive applications.
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