
Eyes4Ears - More than a Classical Music Retrieval System

Dirk Habich and Wolfgang Lehner
Dresden University of Technology

Database Technology Group
01062 Dresden, Germany

{dirk.habich,lehner}@inf.tu-dresden.de

Alexander Hinneburg
Martin-Luther-University of Halle/Wittenberg

Database and Data Mining Group
06099 Halle,Germany

hinneburg@informatik.uni-halle.de

Philip Kitzmantel and Mathias Kimpl
PXP Software AG
Vienna, Austria

{philip.kitzmantel,mathias.kimpl}@pxpgroup.com

Abstract

Content-based similarity search for music retrieval at-
tracted a lot attention in recent information retrieval re-
search. Most music applications (e.g. several commercial
web portals) offer to search music files, which however is
limited to key-word-based search on subjects like genre or
artist. Other similarity search approaches base on abstract
metrics, which are defined on feature vectors representing
psycho-acoustic or physical properties. However, it is still
an open problem to adapt the search towards the user own
music similarity measure.

This paper presents a new music retrieval system which
is more than a classical music management system. The
system architecture is based on a client/server architecture
and offers methods to manage a large music database effi-
ciently. In addition to key-word-based search methods the
Eyes4Ears system provides also methods for content-based
similarity search. Furthermore, we report an attempt to
cross the semantic chasm between user and search system
by an adaptive retrieval approach.

1 Introduction

The development and the widely-spread usage of the
MP3 format and other digital audio formats initiated a
change of managing the personal music collection. Instead
of putting CDs into a shelf nowadays many people store
their own music collection in file systems of their com-
puters. So when looking for suitable music in a particular
situation, they have to browse through directory listings of
file names instead of orienting themselves according to the
cover pictures at the CD’s envelopes.

A more modern management of digital music files can be
done with special software or with extended music players,
like Winamp1 or Windows Media Player2. In this case, the
included meta information in music files is used for the or-
ganization and this approach enables an efficient key-word-
based search mechanism for music files. Also this approach
works well for small music file collections, the usage of a
relation database system is essential for large music collec-
tions. The advantage of database systems is that they pro-
vide functionalities to deal with large data sets as well as
efficiently search methods within the data sets.

The key-word-based search is not always sufficient to
answer all possible user questions, e.g. music similarity.
Content-based similarity search in music data is an active
research area since nearly a decade. Such a search approach
extends the classical key-word-based search, so that the
users can find pieces of music on the basis of a given query
music file. In particular, content-based similarity search en-
ables the discovering of new music files for the user, which
are interesting for him, because they match to him music
taste.

While in the beginning mostly symbolic music represen-
tations like MIDI files has been studied, recently also raw
audio data were used for content-based similarity retrieval.
Most approaches dealing with the latter form of music data
rely on some features extracted in advance from the files.
These feature sets can be classified into physical and psy-
choacoustic feature sets. The first category of feature sets
describes the music at the physical level in terms of fre-
quency, amplitude and several derived measurements. Psy-
choacoustic features try to represent what a human recog-

1http://www.winamp.com
2http://www.microsoft.com/windows/windowsmedia/default.aspx



nizes, when hearing music. These features are more ex-
pensive to determine, but reveal the advantage of being less
sensitive to noisy elements in the data, which a human does
not recognizes or which the user can filter out. However,
there still remain subjective factors of what music is con-
sidered similar by a human.

Relevance feedback is a well known technique from in-
formation retrieval to iteratively adapt a systems’ similarity
measure towards the users’ needs. In general, during the
feedback process firstly the system produces an initial re-
sult, from which the user may pick relevant records. Then
the feedback is used by the system to come up with a re-
vised version of the result set, which is assumed to contain
the previously selected records but also some new records,
which might be also relevant to the user. Then the next it-
eration starts until the iterative process converges. Beside
several technical things, regarding how the feedback is used
by the system to determine a new query, there is a main
problem in the application of the relevance feedback idea to
music retrieval, namely how to pick the relevant music files
efficiently.

Our Contribution

In this paper we present our Eyes4Ears music applica-
tion server allowing managing large music collections. In
addition to the meta information of music files we store also
content-based feature vectors in a database. The Eyes4Ears
application server is based on the Client/Server architecture.
The server offers methods for key-word-based as well as
content-based search. The provided methods are published
as Web Services, so that a wide range of client applications
can use these services. In this paper we will mainly focus
on the following issues:

• We explain a new feature extraction technique, which
is used to describe the content of music files. The fea-
ture vectors are then used for music similarity search.

• We propose a novel adaptive relevance feedback tech-
nique, which is based on interactive genetic algo-
rithms.

The reminder of the paper is structured as follows. In
section 2 we discuss related work and in section3 we
shortly present our developed Eyes4Ears application server.
The feature extraction method as well as a basic approach
of content-based retrieval is pointed out in section4. Sec-
tion 5 outlines our adaptive music retrieval approach. Fur-
thermore, we present in section6 future work and then we
conclude the paper.

2 Related Work

The published works about music include music analy-
sis, classification as well as content-based similarity search.
An early overview about audio information retrieval is given
in [4]. Audio information retrieval systems differ in the
kind of the underlying music, which is raw audio data
(MP3,WAV,...) and symbolic data (e.g. MIDI representa-
tion) and in the way of querying such a system. As most of
music is not available in symbolic representation we con-
centrate in our work on the retrieval of raw music data.

Music classification includes techniques to automatically
categorize music in various genres and has a long history
from speech recognition. Tzanetakis and Cook [17] de-
scribed an automatic classification method for a hierarchy
of musical genres. They used three feature sets to repre-
sent timbral texture, rhythmic content and pitch content.
Foote [3] constructs a tree-based vector quantizer with the
help of mel-frequency cepstral coefficients (MFCC), which
have been widely used in speech recognition. For each au-
dio signal a histogram of the relative frequencies to each
class is constructed. These histograms are also used for
retrieval and allow retrieving audio documents by acoustic
similarity.

In the MuscleFish approach [18] raw data sound files are
analyzed and a specific set of psychoacoustic features are
derived from them. Such a feature vector includes attributes
like loudness, pitch, bandwidth and harmonicity. For re-
trieval a distance in the feature space is defined, which is
computed between a given query vector and all feature vec-
tors in the music database. Finally records are ranked by
distance (closer means more similar). The MuscleFish sys-
tem is a so called query-by-example system, because it re-
trieves similar music for an example sound file from the mu-
sic data base. ARTHUR [5] is another query-by-example
retrieval system working on raw data that retrieves similar
music on the basis of long-term structures. The long-term
structure is determined from the envelope of audio energy
versus time in one or more frequency bands.

SEMEX [13] and C-BRAHMS [12] are also query-by-
example retrieval systems, which, however, work on sym-
bolic music data, e.g. MIDI representation. The other way
to query an audio retrieval system is to hum the music. In
this case the systems are called query-by-humming, like
those described in [8, 11]. The systems work on symbolic
music data.

All the mentioned audio information retrieval systems do
not consider different user preferences, because each sys-
tem determine the similar records independently from the
user. However, users may have different emotions to the
same music, so for each user the similarity measure for mu-
sic files may be different. Recently Hoashi et. al [10] pro-
posed a system adapting known relevance feedback tech-

2



niques to music retrieval. As it may be tedious for the user
to pick relevant results especially from music, s/he have to
listen at least a part of each music file, Hoashi el. al pro-
posed a method to generate user profiles based on genre
preferences, which are refined by the relevance feedback.
We propose an orthogonal method to ease relevance feed-
back by proposing a novel screen space-saving visualization
technique, which allows the user to visually compare music
files.

The aim of some works about music analysis were to
produce summary excerpts, thumbnails of music [2] or mu-
sic snippets [14]. This works can also be used to ease rele-
vance feedback, but listening of the thumbnails or snippets
is still necessary.

There are many different approaches to visualize raw
music data. The audiogram of the waveform is well known,
where time is on the x-axis and amplitude is on the y-axis.
Another visualization is the spectrogram. In this case the
amount of frequencyy at timet is encoded by the bright-
ness of the pixel at the coordinate(t, y). The darker the
pixel, the more that frequency contributes to the signal at
that time. This representation can be computed using the
Fourier transformation (see section4 for details).

A new alternative is the comparisonics waveform dis-
play3, where the audiogram of the waveform contains ad-
ditional information. The commanding frequency at time
t is represented through different colors. Foote and Uchi-
hashi [6, 7] proposed the beat spectrogram which graph-
ically illustrates rhythmic variation of time. Pampalk et.
al [15] also used rhythm patterns to estimate the similar-
ity between music files and subsequently to train a self or-
ganizing map, which is used to visualize a whole music
collection asIslands of Music. The produced visualiza-
tion yields an interesting overview of a collection of mu-
sic files. Performance visualization [9] generates a three-
dimensional scene, which shows different elements of the
music. A drawback of most of the music visualizations is
their dependency on time, which causes the visualizations
to have different sizes and makes the graphical comparison
of music files difficult. To allow the comparison of many
music pieces at the same time without scrolling we pro-
pose a space-limited music visualization to efficiently use
the available screen space.

3 Eyes4Ears-System

The overall aim of the Eyes4Ears project is on the hand
the development of a music management server allowing
handling a large music collection efficiently. On the other
hand, the server should also provide effectively classical
key-word-based as well as the content-based search meth-
ods of music objects. In an client/server environment, one

3www.comparisonics.com

Figure 1: Eyes4Ears system architecture

of the most important requirement is the capability to enable
a large number of users/clients to use the provided services.
This requirement implies further:

• Concurrent access on data: The Eyes4Ears methods
operate on the same data and this concurrent access
should be done without any anomalies.

• Transactional Behavior: Either the whole action, e.g.
insert new music object in the database, takes place or
nothing.

• Access Control: In such an application context the
concept of identity is essential.

For this reason we decided us to realize the Eyes4Ears-
System on the basis of the J2EE platform, which supports
the development of enterprise applications with multiple
tiers. The multiple tiers are typically:Client Machines,
J2EE Application ServerandDatabase Server. The above
considered system-level issues are handled by the J2EE
platform and the developer can focus on solving business
problems. The corresponding Eyes4Ears architecture is il-
lustrated in figure1. We use the Open-Source application
server JBoss4 as J2EE platform.

The J2EE application server consists of two containers,
a Web container and an EJB container. The Web container
handles HTTP requests, and retrieves and delivers HTML
documents as a response by means of the methods in the
EJB Container. The Web container can be seen as a pre-
sentation manager for web browsers. The components in-
side the EJB (Enterprise JavaBean) container represent the
application-specific business logic. The container provides
services like lifecycle management, security, transaction
management, concurrency and many more. The Enterprise
JavaBeans components can be distinguished in three differ-
ent types:entity, sessionandmessage-driven beans.

The entity beans represent entities that are stored in per-
sistent storage, such as a database. Every entity bean has a

4http://www.jboss.org

3



uniquely identifier by a primary key. In our application con-
text entity beans are e.g. Authors, Albums and many more.
As persistent storage system we use a MySQL5 database
system. Session beans manage processes and tasks. The
Eyes4Ears session beans can be classified as follows:

• E4E Meta Management Class: The methods in this
class assume all tasks, which are responsible of meta
information management of music objects. A typical
method isinsertMusicObject(String fileName). The
method determines the meta information of the spec-
ified music object. If the music object does not exist
in the database, the new object will be stored. Further-
more, the class also provides efficient key-word-based
on subjects like genre or artist.

• E4E Retrieval Class: Our content based retrieval ap-
proaches are represented by this class and therefore
provides corresponding methods. Sections4 and5 will
deal with these approaches.

• E4E Visualization Class: This class provides methods
for visualization of music objects, which are then used
in the iterative and interactive retrieval of music ob-
jects.

The lifecycle of session beans are dependent on a session
between a client and a server. While session beans pro-
vides remote interfaces that define which methods can be
invoked, a message-driven bean subscribes to or listen for
messages. Therefore, message-driven beans are a mecha-
nism to process asynchronous messages. An invocation of
server methods at a client is done through some kind of re-
mote method invocation (RMI) protocol. The drawback of
the existing RMI protocols like Java RMI and CORBA is
that these technologies are not truly platform-independent.
For example to use Java RMI, you need a Java virtual ma-
chine and the Java Programming language.

Web Services represent a new paradigm in the distrib-
uted computing. They are XML-based, independent and
modular applications, which are published and usable over
the network. That implies that applications or other Web
Services can use services over the network without to ex-
plicitly integrate them. Web Services are truly platform-
independent and enterprise beans can be exposed as Web
Services. The Eyes4Ears system provides their methods as
Web Services and these Web Services can be invoked by
other J2EE applications as well as applications which are
written in other programming languages on a various plat-
forms.

Existing Client applications, like Windows Media Player
or Winamp have now a simple standardized interface to in-
voke Eyes4Ears methods. In particular the content-based

5http://www.mysql.com

Figure 2: The figure shows an overview about the transforma-
tion procedure of the audio data into a length independent vector
representation. The result of the transformation is a histogram,
which describes the frequencies of combinations of a particular
frequency and an intensity value. The histogram counts the occur-
rences of all combinations during a piece of music.

retrieval of similarity music objects is an interesting feature
and this extends the functionality of such clients.

4 Content-Based Similarity Search

By nature, pieces of music are continuous signals, which
firstly have to be digitalized to process them by computers.
For the digitalization the signal is scanned at discrete points
in time and measured analogous values are stored as digital
numbers. The time between the scan points determines the
sampling frequency and the precision of the digital number
for the amplitude signal is called quantization. For the right
recognition the sampling frequency of a signal has to be at
least twice as large as the maximum frequency in the sig-
nal. As the human ear can detect frequencies from 20 Hz
to 20 kHz, high quality audio data are usually sampled with
44,1kHz. The result of the digitalization is a time discrete
signals, which is stored on the computer using various mu-
sic formats like WAV or MP3, whereas MP3 additionally
compress the signal.

Discrete Signals can be characterized and decomposed
using the discrete Fourier transformation. The intuition
is to decompose an arbitrary signal into several sinus sig-
nals of different frequency, amplitude and phase. For a
discrete signals(n), which is defined on the time points

4



(a) Classic (b) Pop (c) Techno (d) Musical

Figure 3: The figures (a-d) show our frequency-ratio histogram for two music file for each genre.

n ∈ {0, 1, 2, . . . , N−1}, theN -point discrete Fourier trans-
formation is defined as:

S(f) =
N−1∑
n=0

s(n)e−j 2π
N ·n·f

with f = 0, 1, . . . , N − 1 and j =
√
−1

The fast Fourier transformation (FFT) is a complex algo-
rithm, which reduces the run time complexity of the discrete
Fourier transformation fromO(n2) to O(n · log n) under
certain conditions.

As the Fourier transformation of a whole music file de-
livers only the average frequency distribution and even the
FFT of a music file consumes a lot of CPU time, the fre-
quency decomposition of audio data is modified as follow-
ing. First the audio signal is disassembled intom overlap-
ping time windows of a certain length (e.g. 16 millisecs).
Then for each window the discrete Fourier transformation
is applied. As sharp cutting at the window borders would
lead to artefacts in the frequency distribution, the signal is
fade in and out at the window borders. For this purpose
typically the signal within a window is multiplied by the
Hamming-function [1].

The FFT of overlapping time windows delivers a se-
quence of frequency spectra with intensity values for each
frequency. This very detailed representation of a music file
is unsuitable for efficient similarity search because of the
large size. It is desirable to have a compact representation,
whose size is independent from the length of music files.
Figure 2 shows an overview of the transformation of the
music file towards the feature vector.

To get coarser frequency intervals the range from 20Hz-
22kHz is logarithmically divided intok intervals. The loga-

rithmic intervals are chosen due to fact that humans recog-
nize frequencies in a nearly logarithmic way [16]. The in-
tensities are transformed into ratio values of the maximal
occurring intensity in each music object. This transfor-
mation considers the fact, that not all music objects sound
equally loud. The intensity ratio value range[0, 1] is divided
as well intol intervals. To average the audio data over time
we use a two-dimensional histogram withk columns andl
rows. Typical values arek = 40 and l = 20. To fill the
histogram the time-dependent spectrogram from the FFT is
traversed according to the time axis and the occurrences of
the particular combinations of frequency and intensity ra-
tio are counted. More formally a histogramh for a music
file which is split intom windows for the FFT is defined as
matrix:

h =
1
m
· [hi,j ] with 1 ≤ i ≤ k and1 ≤ j ≤ l

wherehi,j is the count of the occurrences of frequency in-
tervali with intensity ratio intervalj. For each music object
we save the histogram as well as the maximal occurring in-
tensity value.

The figure3 shows histograms of different pieces of mu-
sic. To make the two-dimensional frequency-intensity ratio
histogram as compact as possible we map the frequencies
to gray values. Due to the very skewed frequency distrib-
ution, that means some values occur very often, we visual-
ized the histogramh with different squared frequencies like
h1/2, h1/4 resp.h1/8. The version based onh1/4 shows the
best contrast for most of our test music objects, therefore
we used this data transformation for visualization. The test
music objects in the figure3 illustrate similarity and dissim-
ilarity of pieces of music of different genres.

The histograms characterize the content of music files in
a compact way and therefore they are now the basis for a

5



efficient similarity metric for music files. The distance be-
tween two frequency histogramsa, b can be measured using
the Euclidean metric as follows:

dist(a, b) =

√√√√ k∑
i=1

l∑
j=1

(ai,j − bi,j)2

This similarity metric can be expressed as SQL statement,
so that the determination of similar music object to a given
query piece of music is done by the database system. The
drawback of this approach is that each user gets the same
result for a music object. Normally, each user has its each
preference to each music file that means a similarity search
should determine a user-dependent result for each user. To
achieve that, we assume that not all counts in the histogram
may be of equal importance. To approximate this effect we
use the generalization to projected nearest neighbor search
[?]. Genetic search is used to find good projections, where
the nearest neighbors are more meaningful than those found
by the full-dimensional metric. However, due to the very
large dimensionality (d = 20 · 40 = 800) this method is
not effective. To make the genetic search working we pro-
pose to restrict the search space of projections, so that the all
intensity ratios of the same frequency are included in a pro-
jection. In that way we have to search only for meaningful
frequency intervals.

5 Adaptive Music Retrieval Approach

The goal of every similarity search is to find records from
a collection having the user in mind while submitting the
query. Despite the goal may be not perfectly achievable,
due to the limited representation of the database objects, it
is still desired to approximate the goal as far as possible.
It is natural to formulate such a problem as optimization
task, which is in our case to find a subspace defined by a
projectionP , in which the objects relevant to the user are
the closest objects to the query.

To describe our adapted similarity search method in a
more formal way, we firstly need a representation for a pro-
jection of the high dimensional feature space. As we stick
to axis-parallel projections restricted in the way described
above, we need for the representation of ad′ · l-dimensional
projectionP with d′ ∈ N, d′ < k exactlyd′ integer val-
ues{i1, . . . , id′} ⊂ {1, . . . , k}, which are the indices of
the frequencies included in the particular projection. So the
distance defined according to a picked projectionP is:

distP (a, b) =

√√√√ ∑
i∈{i1,...,id′}

l∑
j=1

(ai,j − bi,j)2

This measure can also be seen as a special case of the Ma-

halanobis distance, which is defined as quadratic form

distMahalanobis(a, b) =
√

(a− b)M(a− b)T , a, b ∈ Rk·l

whereM is a matrix withk · l rows and columns. In our
case the matrix has to be a diagonal matrix with ones at
the positions of the picked frequencies with all associated
intensities.

A very flexible classes of optimization methods are ge-
netic algorithms (GA). Inspired by evolution theory genetic
algorithms iteratively search the space of possible solutions
in parallel in several regions. Therefore, initially a set of
possible solutionsG0, called population, is generated. In it-
erationi, each solutions ∈ Gi is evaluated by determining
its fitness value. Thereafter solutions are picked with proba-
bility proportional to the fitness and new solutions are gen-
erated from the picked ones by applying crossover opera-
tors. A crossover operator recombines properties of the par-
ent solutions. As the solutions with higher fitness are more
likely picked for recombination the iteration converges.

A possible solution to the similarity search problem is
any particular axis-parallel projection of thek·l dimensional
space. As pointed out in section4 such a large number of
parameters may be to much for genetic algorithms, it is rea-
sonable to restrict the projections, that for each picked fre-
quency interval all intensity levels are included in the pro-
jections. Therefore a projectionP is given by a subset of
{1, . . . , k}. To make a projections representation more suit-
able for genetic algorithms, we code the integer values set
of relevant frequencies as bit string of lengthk.

The initial population is a set of randomly generated
bit strings each determining a particular projection. Af-
ter evaluating the fitness of each projection, a new popu-
lation is generated using crossover operators. In our case
we tested several types of crossover operators, namely one-
point, two-point and multipoint crossover. Each crossover
operator takes two bitstrings and also outputs two bit-
strings. The one-point crossover operator randomly de-
termines a positioni, which partitions each of two in-
put strings in two halfs, saya = a1 . . . aiai+1 . . . ak and
b = b1 . . . bibi+1 . . . bk. Then two new strings are derived
by exchanging the first part to form the two output strings,
a′ = a1 . . . aibi+1 . . . bk andb′ = b1 . . . biai+1 . . . ak. Two-
point and multi-point crossover works similar, the former
determines two split points and forms the output stings by
exchanging the middle part. The latter operator determines
several exchange positions and forms the output by swap-
ping the bits at the determined positions. In our tests we
found single-point crossover performing most suitable, as
the changes in the similarity measure are more smooth than
those performed by the other operators.

In our case the fitness corresponds to the degree the sim-
ilarity measure defined by a particular projection matches

6



the user’s intensions and needs. Due to the diversity of hu-
man perception of music and different possible intensions
for submitting music queries, determining fitness of a sim-
ilarity measure in an automatic way is nearly impossible.
However, the user can judge weather the result of similar-
ity search is relevant or not. So we use the user’s feedback
to determine the fitness of a projection. But unfortunately
the typical user can not evaluate the fitness of a projection,
when only the indices of the involved frequency intervals
are presented as a set of numbers. A better way is to per-
form the similarity search for each projection in the popula-
tion and to present the top results of each search. This maps
a projection to an ordered set of music pieces, which can be
much better evaluated by the user. However, in case of mu-
sic files the selection task is still very tedious as many music
files have to be at least shortly listened. This is especially a
problem, when title and short description of the music file
are not expressive.

To ease the selection of relevant results we propose a vi-
sualization of content-based features of music files. The
goal of the visualization is to enable the user to quickly
compare the results found by similarity search and to give
him an advice, which search comes close to her/his intu-
ition. In the moment we use our visualization technique,
which is described in section4 and we mark the projections.

The following algorithm summarizes our framework.

Algorithm 1 Visual Music Retrieval Framework
Require: set of data vectorsD, query pointq, n number of

points returned by a similarity search
1: Initialize randomly a set of projectionsG0, i← 0
2: repeat
3: for all P ∈ Gi do
4: X← n nearest points toq out ofD usingdistP
5: Draw a visualization for each music piece corre-

sponding to a point inX
6: end for
7: R← the user picks the relevant projections
8: Gi+1 ← {recombinations of elements inR} ∪R
9: i← i + 1

10: until User is satisfied

6 Future Work

In this section we want to outline some ideas for future
work. The framework described above works well for com-
paring whole music files. However, it may be meaningful
to the user to look for a partial matching which can be mo-
tivated by inhomogeneous parts in music files. Often one
part in a music file is very interesting for the user, so this
part should be used to search music files which include sim-
ilarity parts. One possibility for the user to express her/his

intuition of the query is to explicitly specify the interesting
part.

As we know at this point that not the whole reference
music file is used for similarity search we have also to
look for the best matching parts of the files in the result-
ing ranking. To enable this feature we need to store for
each music file not only a single frequency histogram as
introduced in the section4 but a sequence of cumulative
non-normalized histograms. For this we choose the time
interval t between two consecutive histogram and we gen-
erate the non-normalized histograms by averaging over the
intervals[0, t], [0, 2 · t], [0, 3 · t] . . . until the whole music file
is finished. For each interval we store the non-normalized
frequency histogramhN . With this description it can be as-
sumed, that only parts can be specified starting at the begin-
ning of the music files. But users may not only interested
in time intervals of lengtht. As we store non-normalized
frequency histograms we can also compute frequency his-
tograms for longer time intervals. Let bemt the number
of FFT windows per intervalt, so the partial frequency his-
togram for the interval[s · t, e · t] with s, e ∈ N, s < e is
defined as:

he−s =
1

mt(e− s)
·
(
hN

e − hN
s

)
.

The time interval of the reference music file the user se-
lected, is extended to have a length which is a multiple oft.
The selected time intervalq has therewith a length ofn · t
with n ∈ N. So the similarity between the specific partq
of the reference music file and a music filex in the data-
base is not easy to determine. Similarity parts can occur at
different placement that means at different time intervals in
various music files. Therefore we compare the specific part
q against all possible parts of a music file in the database by
shiftingq over the music file[0, q], [t, q+t], [2·t, q+2·t], . . .
until the whole music file is finished. To compare with all
possible parts we shiftq by time intervalt over the music
files. The part with the smallest distance is considered to
be the best matching part. Only this part is included into
the final ranking of best matching files. Note, that at this
stage of the project we are only interested in improving the
effectiveness of the of the retrieval method.

Partial matching search is especially relevant for very
inhomogeneous music pieces. The identification and the
usage of the inhomogeneous music pieces in the retrieval
process can improve the effectiveness the content-based
search. Using our music visualization technique introduced
in section4 we show in figure4 a sequence of consecutive
intervals of10 seconds length of a music piece. The visu-
alization looks quite different due different themes of the
music.

Furthermore, we plan to extend our visualization as well
as our retrieval engine with rhythmic information of the mu-
sic files. We also investigate wavelet transformation and

7



Figure 4: Visualization of several parts of a music file

want to extract more information at different granularities
about the content of music files. Moreover, we want to
efficiently support the music similarity search with data-
base operators. The overall aim of the ongoing work is
to develop a content-based music similarity search system,
where the user can visually search music files without the
need to explicitly expressing him/her emotional intuition
about the query music file.

7 Conclusion

In this paper we present our Eyes4Ears music application
server. In addition to the meta information of music files
we store also content-based feature vectors in a database.
The server offers methods for key-word-based as well as
content-based search. The provided methods are published
as Web Services, so that a wide range of client applications
can use this services. The main part of the paper focused
on our adaptive music retrieval approach. Our system al-
lows the adaptation of the similarity measure to the user’s
intuition of the query and we are now able to determine for
each user an individual result. To enable this feature we
developed a new feature vector (frequency histogram) and
use interactive genetic algorithms to translate the users intu-
ition into terms of frequency intervals. Our interactive sys-
tem solves one main problem, which is to enable the user
to quickly pick relevant result, by offering visualizations
of pieces of music. In combination to listing some pieces
of music our visualization technique eases the judging the
relevance of the results not heard so far. Furthermore, we
outline some ideas for future work.

References

[1] L. Rabiner abd B.-H. Juang.Fundamentals of Speech Recog-
nition. Pretence Hall Inc., 1993.

[2] Wei Chai and Barry Vercoe. Music thumbnailing via struc-
tural analysis. InProceedings of the eleventh ACM inter-
national conference on Multimedia, pages 223–226. ACM
Press, 2003.

[3] J. Foote. Content-based retrieval of music and audio. In
Multimedia Storage and Archiving Systems II, Proceedings
of SPIE, pages 138–147, 1997.

[4] Jonathan Foote. An overview of audio information retrieval.
In Multimedia System, pages 2–10. Spriner-Verlag, 1999.

[5] Jonathan Foote. Arthur: Retrieving orchestral music by long-
term structure. In3rd International Conference on Music
Information Retrieval (ISMIR), 2002.

[6] Jonathan Foote, Matthew Cooper, and Unjung Nam. Audio
retrieval by rhythmic similarity. In1st International Confer-
ence on Music Information Retrieval (ISMIR), 2000.

[7] Jonathan Foote and Shingo Uchihashi. The beat spectrum:
A new approach to rhythm analysis. InIEEE International
Conference on Mulitmedia and Expo 2001, 2001.

[8] Asif Ghias, Jonathan Logan, David Chamberlin, and
Brian C. Smith. Query by humming: Musical information
retrieval in an audio database. InACM Multimedia 1995,
1995.

[9] Rumi Hiraga, Reiko Mizaki, and Issei Fujishiro. Perfor-
mance visualization: a new challenge to music through visu-
alization. InProceedings of the tenth ACM international con-
ference on Multimedia, pages 239–242. ACM Press, 2002.

[10] Keiichiro Hoashi, Kazunori Matsumoto, and Naomi Inoue.
Personalization of user profiles for content-based music re-
trieval based on relevance feedback. InProceedings of

8



the eleventh ACM international conference on Multimedia,
pages 110–119. ACM Press, 2003.

[11] Naoko Kosugi, Yuichi Nishihara, Tetsuo Sakata, Masashi
Yamamuro, and Kazuhiko Kushima. A practical query-by-
humming system for a large music database. InProceedings
of the eighth ACM international conference on Multimedia,
pages 333–342. ACM Press, 2000.

[12] Kjell Lemstrm, Veli Mkinen, Anna Pienimki, Mika Turkia,
and Esko Ukkonen. The c-brahms project. In4th Interna-
tional Conference on Music Information Retrieval (ISMIR),
2003.

[13] Kjell Lemstrm and Sami Perttu. Semex-an efficient music
retrieval prototype. In1st International Conference on Music
Information Retrieval (ISMIR), 2000.

[14] Lie Lu and Hong-Jiang Zhang. Automated extraction of
music snippets. InProceedings of the eleventh ACM inter-
national conference on Multimedia, pages 140–147. ACM
Press, 2003.

[15] Elias Pampalk, Andreas Rauber, and Dieter Merkl. Content-
based organization and visualization of music archives. In
Proceedings of the tenth ACM international conference on
Multimedia, pages 570–579. ACM Press, 2002.

[16] J. G. Roederer. Introduction to the Physics and Psy-
chophysics of Music. Springer, New York, 1979.

[17] George Tzanetakis and Perry Cook. Musical genre classifi-
cation of audio signals. InIEEE Transactions on Speech and
Audio Processing, Vol.10, 2002.

[18] Erling Wold, Thom Blum, Douglas Keislar, and James
Wheaton. Content-based classification, search, and retrieval
of audio. IEEE MultiMedia, 3(3):27–36, 1996.

9


	Introduction
	Related Work
	Eyes4Ears-System
	Content-Based Similarity Search
	Adaptive Music Retrieval Approach
	Future Work
	Conclusion

