
This study i s  based on a virtual-storage concept that provides for 
automatic  memory allocation. 

Several algorithms for the replacement of current information in 
memory are evaluated. 

Discussed i s  the simulation of a number of typical  program runs 
using  differing replacement  algorithms with varying memory sixe and 
block size. The results are compared with each other and  with a 
theoretical optimum. 

A study of replacement  algorithms 
for a  virtual-storage  computer 

by L. A. Belady 

One of the basic limitations of a digital  computer is the size 
of its available memory.’ In  most cases, it is neither feasible 
nor economical for a user to insist that every problem program 
fit into memory. The number of words of information in a pro- 
gram  often exceeds the number of cells (i.e., word locations) 
in memory. The only way to solve this problem is to assign more 
than one program word to a cell. Since a cell can hold only one 
word at  a time, extra words assigned to  the cell must be held 
in  external  storage. Conventionally, overlay techniques are em- 
ployed to exchange memory words and external-storage words 
whenever needed; this, of course, places an additional planning 
and coding burden on the programmer. For several reasons, it 
would  be advantageous to rid the programmer of this  function 
by providing him with  a  “virtual” memory larger than his pro- 
gram. An approach that permits him to use a sufficiently large 
address range can accomplish this objective, assuming that means 
are provided for automatic execution of the memory-overlay 
functions. 

Among the first and most promising of the large-address 
approaches is the one described by  Kilburn, et a1.’ A similar 
virtual-addressing scheme was assumed as  a  starting  point for 
the studies  reported  in  this  paper.  Within  this framework, the 
relative  merits of various specific algorithms are compared. Before 
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to delay the replacement decisioll until sufficient information  lor 
an optimal  solution  is attainable, we must rely on the previous 
distribution of references or  assume  randomness. 

Theoretically, the best  replacement  pushes  a  “dead” block, 
i.e., a block no  longer  needed by  the program  run. The worst 
replacement  occurs  when  a block is referenced immediately  after 
being pushed. 

Although a wide variety of possible replacement  algorithms 
exists, they  can be grouped into  three  main classes: 

Class I-It is assumed that all blocks are equally likely to 
be referenced at  any t’ime. The replacement  algorithm is not 
based on  information  about memory usage. 
Class 2”Rlocks are classified by the history of their most  recent 
use in  memory. The replacement  algorithm  uses  corresponding 
information. 
Class 3-Blocks are classified by  the history of their absence 
and presence in memory.  Information is recorded about all 
blocks of the  entire program. 

As a useful benchmark  for comparison purposes, we first probabilistic 
develop a probabilistic  replacement model. For this purpose, we model 
make the primitive  assumptiou that references occur a t  random, 
i.e., evenly  distributed  over the range of‘ all program blocks. 
Under this  assumption, historical  information is irrelevant,  and 
the use of any specific replacement rult: does not ensure any 
relative advantage. Therefore, we might, as well choose a simple, 
random  replacement,  scheme i n  building the probabilistic model. 
This  scheme  (let us call it RAND) chooses t>he block to be  pushed 
a t  replacement  time at  random  over  the  range of all blocks in 
memory. 

To find the efficiency of HAND, i t  suffices to  determine  the 
probability of a  wrong decision when using HAND. Let s be the 
number of blocks in the problem  program. Then  the  probability 
of hitting a  particular block at  any address reference time  is l/s. 
Let c be the number of blocks i n  memory. Then  the  probability 
of’ referencing a block i n  menlory is c/s, and  the  probability of 
a  replacement is (s - c)/s. A reference to a block already  in 
memory  can  be considered a repetition because a t  least  one  previous 
reference must  have occurred (when the block was  pulled). From 
the above expressions, we can  deduce that  the ratio of repetitions 
to replacements is c/(s - e). 

For  the  set of all  problem  program blocks, there is-at any 
given time-a set R of blocks that were pushed to make room 
for a new set of blocks in  memory.  After  the  initial loading period 
i n  a run,  each block in memory is associated with a block in R. 
However, not all blocks in R are necessarily in  external  storage; 
a block does not lose its membership in R when referenced and 
pulled again.  Furthermore,  a block may be  pushed more than 
once into R by distinct blocks in memory. Of course, according 
to the  above definition,  a  given block loses membership  in R 
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Figure 2 Block pairs of a prob- 
abilistic model 
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as soon as its associate (the block in memory that pushed the 
given block) is itself pushed out of memory. 

Equipped  with these definitions, we  now examine the possibility 
of poor replacement decisions. Obviously, a reference to a block 
in memory does not reveal a previous bad choice of replacement, 
since the required block was left  in memory where it is  now needed. 
Also, reference to a non-R  block in external  storage does not 
indicate  a previous poor  decision, since the block has  not recently 
been pushed. However, a previous poor replacement decision may 
be revealed by  a reference to a recently replaced block (a block 
in R). Thus,  in  studying misguided replacement decisions, we 
can limit the investigation to references to blocks in R. 

As a first approximation for our calculations, we assume that 
there  are c distinct blocks in R, i.e., the complete set R is in 
external  storage.  Then we can pair the blocks in R with  their 
associates in memory. We order  these  pairs  in the same  order 
in which they  are being  formed-the first replacement producing 
the oldest pair, the next replacement the next younger pair, etc. 
This is illustrated  in  Figure 2. 

A reference to  the oldest block in R does not reveal a previous 
poor replacement choice, because the block’s associate is-by 
definition-the oldest block in  memory; hence, none of the  other 
blocks now in memory could have been considered as an alternate 
choice. 

A reference to  any younger block in R indicates a previous 
poor choice if at  least one of the blocks now in memory has not 
been referenced since the replacement under consideration. (Act- 
ually, it is sufficient to check merely those blocks in memory 
that  are older than  the  appropriate associate, because all younger 
blocks  were pulled into memory later  than  the associate and 
referenced at  that time.) If there is such a non-referenced block 
in memory, it would have been better  to replace that block rather 
than  the block in R under consideration, thus avoiding one pull 
operation. 

We can conclude that there  are c - 1 blocks in R to which 
a reference can reveal a possible previous bad choice. This  area 
of interest to us is shown in Figure 2. For the  ith such element, 
the probability that there  has been at least one better  candidate is 

where 

ki = (c - i) __ 
C 

s - c  

and 1 - l/c is the probability that a particular block in memory 
has  not been referenced by a repetition; kc is the number of 
repetitions since the replacement of the  ith block (the oldest 
being the  0th block). For the  ith block, there were i possible 
better block candidates; hence the exponent i. Since there  are 
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s - c blocks to which a reference causes a replacement, the 
probability that-at replacement time-a previous bad choice 
shows up is 

c-' [ ( ;)"'Ii 
( c - l ) - C  1 -  1" 

i -1 

s - c  

still assuming that R consists of c distinct blocks. 
Actually, the number of distinct blocks in R is reduced if one 

of its blocks is pulled again, even though that block  does not 
lose its membership in R. Such a block may become a duplicate 
block of R if it is pushed again. Assuming i 2 1, the probability 
that a block in R also appears  in memory or has at  least one higher- 
order duplicate in R is l/(s - c)  for one single replacement. 
Hence 1 - l / ( s  - c )  is the probability that  the block in R is 
not pulled again. For the  ith block in R (1 _< i < c - l ) ,  the 
probability of again being pulled during  its  most  recent presence 
in R is 

( c - 1 1 - i  

(1 - s5) 
The (c  - 1)th block of R certainly exists and  has at  most only 
lower-order duplicates. With this, we can refine our formula for 
the probability of choosing a wrong block for replacement to 

s - c  

Conversely, the probability of being right is (1 - w ) ,  which is 
the efficiency of any replacement algorithm processing a random 
sequence of vsc references. For a  length I of the random  string, 
the optimal replacement scheme MIN discussed later in this  paper 
would-over a long  period-generate 

I (1 - w) 
S 

replacements, where ( s  - c ) / s  is the probability of referencing 
a block not  in memory. For given s and c (s > c), MIN could 
optimize the random reference &ring to have a replacement for 
only  every jth reference,  where 

. s - c  
3 = -(l - w) 

S 

Figure 3 is a family of curves of w values, each curve computed 
for fixed c and  steps of s/c. In spite of our primitive assumption 
that  the references are at random over s, it is still  interesting 
to see the tendencies. By increasing s /c  (larger programs relative 
to memory capacity), w decreases and  the efficiency increases. 
In other words, RAND does a reasonably good job if the problem 
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program must be  “squeezed” into a  relat,ively  much  smaller 
memory. By increasing c and keeping s/c constant, the efficiency 
goes down. 

The above  probabilistic model assures  us that RAND gives 
class 1 reasonably  consistent results:  with large s/c, the high relative 
algorithms frequency of replacements is somewhat  compensated by a better 

efficiency; with small s/c, this  frequency is low anyway.  This is 
the justification  for RAND, which is the most  representative 
member  in  Class 1 of the replacement  algorithms  because  it) 
does not use any special information-it has a static rule.  Such 
static rules  can  be  justified by  the random-reference  assump- 
tion  (in which case they  are as good or bad  as  any  other  rule); 
however, it is hard  to imagine their usefulness while consider- 
ing true program  behavior as described later.  Another Class-1 
algorithm, called FIFO (first in,  first out),  has been  investigated. 
FIFO always  replaces the block having  spent  the longest time 
in memory. The strongest  argument  for FIFO is the fact that  it  is 
easier to  step a cyclic counter than  to generate a random  number. 
As to  its logical justification, the notion of locality  should  first 
be  introduced. 

I n  our  primitive model, references are unifornlly distributed 
over the range of all  problem  program blocks. This  assumption 
is certainly  not  true  for a large collection of possible programs; 
the number of references to memory  between  two successive 
replacements is actually  high.  Suppose now that, for a given 
program  section, we let f denote the  number of repetitions between 
two successive replacements. Now increase c to c + A ;  then f 
also increases, say  by 6. Calling c and c + A localities of the 
program, both  starting at   the same  point, f and f + 6 express 
the respective  lifetimes of these localities. Now if  

f C 

we can  assume that  the primitive  random  assumption  holds. 
However, if 

f C 

two possibilities exist:  either the proportion of references to  the 
additional A blocks was relatively  high, or the additional 6 repeti- 
tions were distributed roughly  over  all c + A blocks. Thus,  in 
the case of inequality, we cannot  assume with confidence that 
the references are uniformly distributed. 

The idea  behind FIFO is this switching  from  one  locality to 
another, a t  which time a certain block is  abandoned  and  another 
block is picked up for a new interlude of c block replacements. 
It is hoped that  the probability of the oldest block in  memory 
being the abandoned block exceeds l/c. 

In  Class-2 replacement  algorithms,  one  hopes to improve  re- 



placement decisions by  anticipating  future references on  the basis class 2 
of previous references. We try  to improve the techniques of FIFO, algorithms 
which selects the blocks according to  their  age  in memory, but 
does not provide  information about  the  distribution of references. 

The  idea is to dynamically  order the blocks in memory accord- 
ing to  the sequence of references to  them.  When a  replacement 
becomes necessary, we replace the block to which reference has 
not been made  for the longest  time.  We  hope that  the  fact  that 
this block has  not been needed during the recent  past  indicates 
that it will not be referenced in the  near  future.  This is a  significant 
refinement relative to  FIFO, since now frequency of use rather 
than  stay in  memory is the decisive factor. 

The dynamic  reordering of all blocks in memory may  be a 
costly  procedure;  moreover, we are  not  particularly  interested 
in the  entire order. Of interest,  rather,  is a split of blocks into 
two  subsets: the one to which recent references have occurred 
and  the  other  to which no  recent reference has been made.  There 
is a  relatively easy way to facilitate the  split:  any  time a reference 
is made to a block, a status  bit (which we call the “P bit”) is 
set  to 1 for the particular block. For pushes, unmarked blocks 
(for which P is 0) are preferred.  However, it  may  happen  that  the 
set of unmarked blocks vanishes; a t  this  instant, all P bits  are 
reset to 0, except the just-marked block, and  the procedure starts 
afresh.  Variation  in the relative size of each  subset resembles a 
sawtooth  function of timc. Because on  the  average  there is more 
than one  element in the unmarked  set, an additional  subrule is 
needed to pick a specific block from the set.  Subrule  variations 
can easily lead to a wide variety of replacement  algorithms, all 
based on  the idea of marking references. 

Class-2 algorithms  can  be  justified  by the following reasoning. 
All blocks encountered  in  a  program  can  be  divided,  very  roughly, 
into  two  main groups. The first  group  is  characterized by high- 
frequency  usage;  most of its blocks contain  program loops. The 
second group  contains blocks used with  relatively low frequency 
(initializing  programs, low-frequency data blocks, sometimes I/O 

or other service  routines).  Using a Class-2 replacement  algorithm, 
one may hope that mostly blocks of the second group will be 
pushed; RAND or FIFO usually  do not  justify  such hope. 

It is convenient to introduce  another  status  bit,  the A bit, 
which is used to  mark  whether  the  content of a block has  changed 
during the block’s most  recent stay in  memory. In  contrast  to 
P bits, A bits  are not, resettable  by the replacement  algorithm. 
We refer to  the P and A status  bits  in  this (P,A) order; e.g., 
(1 ,O)  indicates that a block has  been  referenced  one or more 
times, but  that  the block content  has  not been changed. 

For simulation  purposes, the following Class-2 algorithms were 
chosen as reasonably  distinct and sufficiently representative of 
parameter influences (block and memory sizes). 

5-3: Blocks in  memory  are classified in  subsets  according to 
(P,A) values ( O , O ) ,  ( O , l ) ,  ( l ,O) ,  and ( 1 , l ) ;  this  order is significant. 



At replacement time, P bits are reset only if all of them are 
found to be 1. A block is chosen a t  random from the lowest order 
(leftmost) non-empty (P,A) subset. 

An-1: Same as s-3, but the reset occurs immediately and auto- 
matically whenever the last P bit is set to 1. This implies that 
the (0,O) and (0,l) subsets are never empty a t  the same time. 

T: Same as AR-1, but instead of choosing a block a t  random 
from the relevant subset, a sequential search is started from the 
last-replaced block. 

ML: Same as AR-1, but ignoring the A bit. 
LT: Chooses the block to which no reference has been made 

for the longest time. No status bits are used; instead, all blocks 
are dynamically reordered. 

Class-3 replacement algorithms represent an extension of the 
Class-2 algorithms. Dynamic information is kept about blocks 
in external storage as well as in memory. Here, for a typical 
algorithm, we may refer to the one used on the Ferranti Atlas.2 
The ATLAS algorithm features a buffer block-an empty memory 
block that permits a pull without waiting for the corresponding 
push. Because the buffer leaves only c - 1 usable blocks in 
memory, the buffer may-for very low c-have a significant 
deteriorating influence on replacement efficiency. Only the pub- 
lished version of the ATLAS algorithm was simulated, and no 
other Class-3 algorithms were postulated. 

The algorithms described herein are meant to typify rather 
than exhaust the set of all algorithms that try to anticipate 
future references by observing summary information on past 
references. Some proposals, suggesting elaborate age-measuring 
schemes using digital counters or electrical analogs, are not 
treated here. 

class 3 
algorithms 

general 
remarks 

Optimal replacement algorithm 
All the replacement algorithms discussed thus far attempt to 
minimize the number of block replacements. However, none of 
these algorithms can reach the actual optimum because a t  push 
time nothing is known about the subsequent block references. 
For an optimal replacement algorithm, which must be based on 
such information, the necessary complete sequence of block refer- 
ences can be supplied by a pre-run of the program to be used. 
Although this is impractical for most applications, an optimal 
replacement algorithm is of value for system study purposes. 
Such an algorithm, let us call it MIN, is described after an introduc- 
tion to the underlying principles. 

The optimal solution can be found by storing the program’s 
entire sequence of references and then working backward to re- 
construct a minimum-replacement sequence. This is a two-pass 
job; moreover, an excessive number of tapes is necessary to store 
the sequence for a long program. Fortunately, the amount of 
information to be stored can be reduced. First of all, it suffices 

principles 
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to  store reference information by block rather  than  by word. 
Furthermore,  as long as  the memory is not  entirely filled, a 
pulled block can be assigned to  any free location, no replacement 
decision is necessary, and  information need not be recorded. How- 
ever, once the memory becomes full, information must be collected. 
When another block in external storage is then referenced and 
must be pulled, a decision  delay starts because no block  is an 
obvious push  candidate. However, if a block in memory is  now 
referenced (previously defined as  a repetition), this block should 
be kept  in memory and is therefore  temporarily disqualified as 
a push candidate, thus reducing the number of candidates. When 
c - 1 blocks in memory have been disqualified, uncertainty 
decreases to zero because only one block remains as a push candi- 
date.  Thus, we can now make the delayed push decision; we  know 
which  block should have been pushed to make room for the new 
pull. Together  with the new pull, the c - 1 disqualified blocks 
form a complete  set  of c blocks that define a new memory state. 

The above case assumes that  the delayed push decision can 
be made before a second pull is necessary. In  general, however, 
not enough repetitions occur between two pulls to make the 
decision that early. Then, the decision must be further delayed 
while we continue to investigate the sequence of program refer- 
ences as explained below. Usually, many push decisions are being 
delayed at  the same time because each new pull requires another 
push. The maximum decision delay ends with the program run; 
usually, however, the delay terminates much earlier. If not enough 
repetitions  have occurred by that time, the program picks blocks 
for replacement in a simple manner-either repeatedly from a 
relatively small number of blocks, or by straight-line sequencing. 

The MIN algorithm, applicable to  the general case of many MIN 
delayed push decisions,  is based on  the elimination of complete algorithm 
sets  as push candidates. Whenever a complete set exists between 
consecutive pulls, a new memory state has been defined and all 
remaining blocks are pushed. This is  now explained in  detail. 

I n  processing the  string of block references for a given pro- 
gram, pulls are numbered consecutively by MIN. Let p denote 
the integer that identifies the most recent pull and hold p in 
the current  register. Whenever a block is referenced, its associated 
index-stored in  a  table and  updated  by Mm-is set  to p .  For 
example, if Blocks A through E are referenced and pulled, their 
respective index values are 1 through 5 (assuming an empty 
memory to start with) ; if Blocks B  and  C  are now referenced 
again, their index values are  both changed to 5, not  to 6 and 7. 
Thus, at  this point of reference, blocks 2, 3, and 5 have the same 
index value. This is shown in Column 5 of Table 1. 

Assuming c = 3 for our example, we  now have a complete 
set for a new memory state. For explanatory purposes only, the 
indices of pulls and  repetitions (including blocks saved for  later 
repetition)  are encircled in  Table 1. Going from  left to  right 
in the table, a complete set is defined whenever c encircled index 
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example, the  table would actually show only the  latest of the 
columns  in Table 1. 

Step I. Pick the next block reference and check the index of 
the corresponding block in the table. If the block index is lower 
than  the complete  register,  increase the current  register by one, 
set  the block’s index equal to the  current register and go back 
to  the beginning of Step 1. If the index is equal  to  the  current 
register, go back to  the beginning of Step 1. If the index is lower 
than  the  current regist]er but not lower than  the complete  register, 
set the index equal  to  the  current register, set  the  temporary 
register  equal to the  current register,  reset the counter  to zero 
and go to  Step 2. 

Step 2 .  Add to  the counter the number of blocks having an index 
equal  to  the tempor:u-y register. If the  content of the counter 
is equal  to c ,  or if t,he  temporary  register is equal  to  the complete 
register, set  the conlplcte  register  equal to  the temporary  register 
and go back to  Step 1. If the content of the  counter is less than c, 
decrease the content, of t,hc  counter  by 1, decrease the temporary 
register  by 1 and go back to  the beginning of Step 2. 

After the  last reference, the current  register shows the minimum 
number of pulls  required, IC. For s > c, the  number of pushes 
is k - c, discounting c inputs for the initial  load of the memory. 
For s 5 c, no pushes occur. 

It is possible for MIX to  mark a block in memory as “active” special 
whenever its information  content has been changed In  this version 
application  a  memory block selected for  replacement is pushed 
only if active; otherwise i t  is simply  overwritten. 

In  contrast  to  the previously described regular MIN, which 
minimizes only  the  number of pulls, a special version of MIN min- 
imizes the sum of all  pulls and Since  in some rare cases, 
the elimination of one  or  more  pushes by overwriting may  later 
necessitate an extra  pull, the number of actual pulls may slightly 
exceed that of the  regular MIN. 

Both versions of the MIN algorithms  are also capable of de- 
fining the sequence of blocks to  be pushed. This would be  done 
during the processing of the program’s reference sequence.  When- 
ever the complete  register is increased, all blocks having lower 
index values  than  this register are collected in  ascending  order 
and form the sequence of pushes. In  other words, MIN is  now 
a compression box with the reference sequence as input  and a 
replacement  sequence as  output. 

MIN can  be used for  general  system  studies and specifically 
for  an investigation of the heuristic  replacement  algorithms pre- 
sented  earlier. We define replacement eficiency as  the  ratio of 
MIN pulls to  the pulls  generated  by a particular  algorithm.  There- 
fore, the efficiency of any algorithm is non-zero and never exceeds 
1-the efficiency of MIN. 
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System  simulation 
It is obvious that  the behavior (running time, etc.) of a vsc 
machine depends upon the problem programs using it. Con- 
versely, a program run is  influenced by  the  vsc. Although vsc 
machines and programs specifically written for them  are presently 
scarce, system behavior can be studied by simulation. 

Given an IBM 7094 and a specific problem program written 
for it, we assume for simulation purposes that  the memory is too 
small for the program’s requirements. This means that whenever 
the program needs information that is by assumption not in 
memory but in  “external” storage, vsc  activity is necessary. 
Each  simulated block replacement is counted as  part of the 
sequence pattern we are looking for. The counting is continued 
until all memory references have been considered. The final count 
gives the number of block replacements necessary to  run  the 
specific program in  the hypothetical machine. Since usage of 
different replacement algorithms stimulates different sequence 
counts, the number of replacements is influenced by  the algorithm 
used. By  varying  both design parameters (block  size and memory 
size) as well as  the replacement algorithm, a three-dimensional 
response surface can be constructed. 

The tool for this  simulation work is a family of programs 
called SIM (Statistical  Interpretive M ~ n i t o r ) . ~  SIM is capable of 
executing 7090/94 object programs by handling the  latter  as  data 
and reproducing a program’s sequence of references. This sequence, 
in turn, is an  input  to a replacement algorithm that determines 
the block replacement sequence. 

The simulation procedure starts with decoding of the first 
executable instruction of the object program to be tested. A 
CONVERT  instruction is  used to transfer control to  the proper 
section of SIM which-depending upon the word being tested- 
changes the contents of the simulated registers, computes the 
virtual address, or executes a  load/store.  A program counter pIays 
the role of an instruction counter for the problem program being 
tested. A simulated  branch,  for example, changes the program 
counter. By defining  some artificial constraints on the sequence 
of instruction  and  operand references, it is easy to keep track 
of different events, because SIM has control and can enter  statistics- 
gathering  routines at  predefined points. One SIM program examines 
at each reference the location of the word  referenced-whether 
already in memory or still in external  storage. For non-trivial 
results, the simulated memory should of course be smaller than 
that of the machine being used. Figure 4 shows a block diagram 
Of SIM. 

Simulation  results 
The following  is a  summary  and  evaluation of SIM run  outputs. 
Sample programs for simulation were picked at  random; some of 
them were hand-coded, others  written  in FORTRAN. Almost all 
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Figure 4 Non-detailed block diagram of SIM 
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of them  are sufficiently long  to justify confidence i n  the significance 
and applicability of their rc:spect.ivc: results. A brief description 
of the sample  programs is listed  in the Appendix. As in  any 
simulation, the  number of samples  represents  a  compromise 
between statistical confidence and  study costs; the results  are 
reasonably  uniform and  can therefore be considered satisfactory. 

The simulation  results  contain  a  large  amount of useful 
information.  More  evaluation  and  plotting  is possible, and  future 
behavior  studies could be  based on the results  presented  here. 
The following figures and  tables represent  a high degree of data 
compression; they show only the most important  results a ~ l d  are 
used as a basis  for the following evaluations. 

Depending  upon the associated data set,  some  program paths 
and buffer areas  are bypassed and never used in a  particular run; 
the program could produce the  same  results by loading  only the 
information  actually used.  Provided that  the change in  instruction 
sequencing and  data referencing is taken  care of, the program 
could run  in a  smaller  memory than  the one  originally  claimed. 
This is true for vsc which  pulls blocks only if and when  needed. 
I n  addition to  the words  actually  used,  these blocks include, 
of course, unused  words that happen to be in the blocks. Since 
these words-whether actually used or not-are affected by pulls 
and use up  memory space, we call them afected words. In  contrast, 
unu$ected words are  in blocks not pulled  during  a  particular 
program run.  In similar  manner, we speak  about unaffected in- 
formation,  program  areas,  and data areas. 

Since vsc brings  only affected words into memory,  this  nleans 
a  saving of memory  space  in  comparison to conventional com- 
puters, which must fit the entire  program  into  memory.  The 
tendency  observed  in the  vsc results of sample  program A, shown 
in  Figure 5, has been found  typical for any problem  program. 
It shows that  the number of words affected during  a  part’icular 
program run decreases with  decreasing block size. The use of 
medium block sizes (e.g., 256 words) generally  results in a 20 
to 30 percent  storage  saving. 

Although the main  objective of vsc is corlvenicrlt address- 
ing  for oversized programs, the saving of memory  space is an 
important  by-product.  This  by-product is best  illustrated  by  a 
program that exceeds memory  space and therefore  can  be run 
on a  conventional  computer  only  with the help of programmer- 
initiated  techniques. On a vsc,  automatic block exchange is  ex- 
pected  during the run between  memory and  external  storage. 
However, once  initially  loaded, the program may  not ueed any 
replacement if the number of words affected does not exceed 
memory  space.  Neglecting vsc mapping  time, the program  behaves 
in this case as if on a  conventional  machine. Block linkages are 
supplied by  the mapping  device  and  the blocks in  memory may 
be in  any  order.  This  can ease multiprogramming since the space 
allocated to a  given  program need not be  contiguous. 

Figure 6 shows the memory  space  requirements of several 
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Figure 8 Frequency of full  memory load 
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contains 64 blocks of equal size). The frequency is always propor- 
tional to  the number of replacements in the problem program. 
Considering the logarithmic scale, it is striking how abruptly  the 
number of replacements is reduced by decreasing the block  size. 
The curves of different memory sizes  differ little; moreover, their 
slopes hardly differ at all. A linear approximation based on  half 
a dozen unrelated programs suggests that  the number of block 
replacements is proportional to u/ck where u varies considerably 
with the individual program and is  also a function of the memory 
size, and IC (although a  function of the program) is mostly in 
the  interval 1.5 < k < 2.5. 

The considerable improvement accomplished by finer block 
structuring (relatively fewer replacements when more, but smaller, 
blocks are used) can only partially be due  to  the smaller affected 
program area  itself;  this is evident from comparing Figure 8 
with Figures 5 and 6. The predominant  factor is that more useful 
information can be stored  in memory, thus is directly accessible, 
resulting in a new, extended locality of the program. Neverthe- 
less, vsc  system efficiency  is not necessarily optimized with 
minimum block  size because the number of entries in the mapping 
table may eventually exceed technological feasibilities, and  the 
effective data  rate of external  storage depends upon block  size. 
The Iatency effect of a drum is evident from the numerical example 
of Figure 9, which  gives data transmission rates for different block 
sizes  on a drum. If disks are used, seek time  must also be con- 
sidered, and  very small block  sizes  become prohibitive. 

The work with the MIN algorithm suggests some statistical 
other measures that may possess  significance for future program-be- 
replacement havior studies. Recalling the previous description of MIN, let  us 
statistics define three of the derived statistics : delay in replacement decision 
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Figure 9 latency effect of a drum 
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(A,), average number of replacements between successive  com- 
plete sets as defined earlier (A2), and cumulative frequency of 
decision points. 

The size of A, is affected by the distribution of repetitive 
references to memory blocks. If the repetitions between replace- 
ments  extend over the entire memory, A, consists of only one 
block. Another  interpretation of A, views it as  a measure of 
uncertainty;  on  the average, A, is the number of replacement 
candidate blocks to which  no  references have been made between 
successive replacements. Hence c - A, is the local need of the 
program before it switches to another locality by causing a new 

Figure 10 shows typical A, values for a single problem program. 
The tendency is for A, to decrease as block  size increases, because 
larger areas  are affected by  repetition references and  the degree 
of uncertainty is reduced. To a degree, increases in memory size 
have a reverse effect. Starting from a small memory, A2 first 
increases; but a further increase in memory size changes this 
tendency. A possible explanation for this is that  the program 
has blocks with high repetition frequency, and  it changes to 
another locality by using some transitional blocks. With  an in- 
crease in memory size, the increased number of transitional blocks 
generally leads to a higher degree of uncertainty. However, beyond 
a  certain limit, the memory becomes large enough to reduce the 
vsc traffic to such a rate  that time between replacements becomes 
very long and repetitive references cover a large area, hence 
reducing the degree of uncertainty. 

Figure 11 shows values of f = (Al + A2)/(s - c )  for the 
same problem program. Clearly, f 5 1 since the limiting case 
exists when all s - c blocks in external storage  have been collected 
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prefer a nonactive block for replacement. With only a few blocks 
in memory, AR-1’s saving in pushes can be significant. This is 
also the explanation for the interesting  fact that sometimes the 
combined push  and pull efficiency of AR-1 for very large blocks 
exceeded unity because MIN minimizes only the pulls. Reruns  with 
the special version of MIN showed that  the minimum of the  sum 
is such that  the adjusted efficiency actually does not exceed 
unity. The fact that AR-1 produces relatively more pushes than 
MIN for very small block  sizes suggests that  the use of A bits 
is not only irrelevant  in  this case but might even be detrimental 
to  the efficiency. 

Summary comment 

This  paper groups replacement algorithms into  three  major 
classes according to their use of relevant information, and develops 
an optimal replacement algorithm for system study purposes. 
Simulation of typical programs on a postulated  virtual-storage 
computer reveals the behavior of several algorithms for varying 
block and memory sizes. 

In most cases, the simulated algorithms generated only two 
to  three times as  many replacements as  the theoretical minimum. 
The simulated  system was found to be sensitive to changes in 
block  size and memory size. From the viewpoint of replacement 
efficiency  (which disregards the operational effects of external- 
storage access times), small block  sizes appear to be preferable. 
In  spite of the obvious advantages of a large memory, the algo- 
rithms achieved reasonable efficiency even for large program-to- 
memory ratios. 

The results of the  study suggest that a good algorithm is one 
that strikes  a balance between the simplicity of randomness and 
the complexity inherent in cumulative  information. In  some cases, 
too much reliance on cumulative information actually resulted 
in lower  efficiency. 

The virtual-storage concept appears  to be of special relevance 
to time-sharing/multiprogramming environments. Here, it enables 
the user to deal with a larger and  private  virtual  storage of his 
own, even though the computer’s memory is shared  with  other 
users. Because of the capability of loading small program parts 
(blocks), the memory can be densely packed with currently needed 
information of unrelated programs. 
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Appendix-list of sample programs 

Program  size 
Number of (without COMMON, 
executed system,  and  library 

Description  instructions  routines)  Remarks 

A Integer  Programming 
(of the class of linear 
programming) 

H SIMC (a version o f  SIM, 

iuterpretively exe- 
cuting  sample 
program A) 

C Pre-processor (for 
FORTRAN language 
programs) 

D Logical manipulations 
on bits  (study for 
logical connectives) 

E Arithmetic translator 
(an experimental 
compiler module) 

F Numerical  integration 
G WISP (list processor) 
H SNOBOL 

11 000  000 

‘325 000 

59 000 

8 500  000 

1 900  000 
20  000  000 

= 15 000  000 
= I  300  000 

3.2K FORTRAN 

ti.tiK PAP 

12.5K FAP 

18. OK FAP 

16.5K PAP 

1.8K FORTRAN 

= a .  OK 
=x. OK 
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