

CACTUS-Clustering Categorical Data Using Summaries

Venkatesh Ganti* Johannes Gehrket Raghu Ramakrishnant
Department of Computer Sciences, University of Wisconsin-Madison

{vganti, johannes, raghu} @cs.wisc.edu

Abstract

Clustering is an important data mining problem. Most of the earlier
work on clustering focussed on numeric attributes which have a
natural ordering on their attribute values. Recently, clustering data
with categorical attributes, whose attribute values do not have a
natural ordering, has received some attention. However, previous
algorithms do not give a formal description of the clusters they
discover and some of them assume that the user post-processes the
output of the algorithm to identify the final clusters.

In this paper, we introduce a novel formalization of a cluster for
categorical attributes by generalizing a definition of a cluster for
numerical attributes. We then describe a very fast summarization-
based algorithm called CACTUS that discovers exactly such clusters
in the data. CACTUS has two important characteristics. First, the
algorithm requires only two scans of the dataset, and hence is very
fast and scalable. Our experiments on a variety of datasets show that
CACTUS outperforms previous work by a factor of 3 to 10. Second,
CACTUS can find clusters in subsets of all attributes and can thus
perform a subspace clustering of the data. This feature is important
if clusters do not span all attributes, a likely scenario if the number
of attributes is very large. In a thorough experimental evaluation, we
study the performance of CACTUS on real and synthetic datasets.

1 Introduction

Clustering is an important data mining problem. The goal of
clustering, in general, is to discover dense and sparse regions
in a dataset. Most previous work in clustering focussed
on numerical data whose inherent geometric properties can
be exploited to naturally define distance functions between
points. However, many datasets also consist of categorical

‘Supported by a Microsoft Graduate Fellowship.
bupported by an IBM Graduate Fellowship.
*his research was supported by Grant 2053 from the IBM corporation.

~~TI~SS~OII 10 make digital or hard copies ofall or paa ot’this work lbr
pclsonal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To CO~,Y
otherwise, 10 republish, to post on servers or to redistribute lo lists.
requires prior specific permission and/or a fee.
KDD-9c) San Diego CA USA
Cwyright ACM 1999 l-581 13-143-7/99/08...$5.00

attributes’ on which distance functions are not naturally
defined. Recently, the problem of clustering categorical data
started receiving interest [GKR98, GRS99].

As an example, consider the MUSHROOM dataset in the
popular UC1 Machine Learning repository [CBM98]. Each
tuple in the dataset describes a sample of gilled mushrooms
using twenty two categorical attributes. For instance, the cup
color attribute can take values from the domain {brown, bufJ;
cinnamon, gray, green, pink, purple, red, white, yellow}. It
is hard to reason that one color is “like” or “unlike” another
color in a way similar to real numbers.

An important characteristic of categorical domains is that
they typically have a small number of attribute values. For
example, the largest domain for a categorical attribute of
any dataset in the UC1 Machine Learning repository consists
of 100 attribute values (for an attribute of the Pendigits
dataset). Categorical attributes with large domain sizes
typically do not contain information that may be useful for
grouping tuples into classes. For instance, the Cus tomerId
attribute in the TPC-D database benchmark [Cou95] may
consist of millions of values; given that a record (or a set
of records) takes a certain CustomerId value (or a set of
values), we cannot infer any information that is useful for
classifying the records. Therefore, it is different from the age
or geographical location attributes which can be used to group
customers based on their age or location or both. Typically,
relations contain 10 to 50 attributes; hence, even though the
size of each categorical domain is small, the cross product
of all their domains and hence the relation itself can be very
large.

In this paper, we introduce a fast summarization-based
algorithm called CACTUS2 for clustering categorical data.
CACTUS exploits the small domain sizes of categorical at-
tributes. The central idea in CACTUS is that summary in-
formation constructed from the dataset is sufficient for dis-
covering well-defined clusters. The properties that the sum-
mary infoi-mation typically fits into main memory, and that
it can be constructed efficiently-typically in a single scan of
the dataset-result in significant performance improvements:

‘Attributes whose domain is totally ordered are called numeric, whereas
attributes whose domain is not ordered are called caregoricuf.

* CAtegorical ClusTering Using Summaries

73

a factor of 3 to 10 times over one of the previous algorithms.
Our main contributions in this paper are:

1.

2.

3.

4.

2

We formalize the concept of a cluster over categorical
attributes (Section 3).

We introduce a fast summarization-based algorithm CAC-
TUS for clustering categorical data (Section 4).

We then extend CACTUS to discover clusters in sub-
spaces, especially useful when the data consists of a large
number of attributes (Section 5).

In an extensive experimental study, we evaluate CAC-
TUS and compare it with earlier work on synthetic and
real datasets (Section 6).

Related Work

In this section, we discuss previous work on clustering cate-
gorical data. The EM (Expectation-Maximization) algorithm
is a popular iterative clustering technique [DLR77, CS96].
Starting with an initial clustering model (a mixture model) for
the data, it iteratively refines the model to fit the data better.
After an indeterminate number of iterations, it terminates at a
locally optimal solution. The EM algorithm assumes that the
entire data fits into main memory and hence is not scalable.
We now discuss two previous scalable algorithms STIRR and
ROCK for clustering categorical data.

Gibson et al. introduce STIRR, an iterative algorithm based
on non-linear dynamical systems [GKR98]. They represent
each attribute value as a weighted vertex in a graph. Multiple
copies bI, . b “, m> called basins, of this set of weighted
vertices are maintained; the weights on any given vertex
may differ across basins. bl is called the principal basin;
bS,... , b, are called non-principal basins. Starting with a
set of weights on all vertices (in all basins), the system is
“iterated” until a fixed point is reached. Gibson et al. argue
that when the fixed point is reached, the weights in one or
more of the basins bz, . . . , b, isolate two groups of attribute
values on each attribute: the first with large positive weights
and the second with small negative weights, and that these
groups correspond intuitively to projections of clusters on the
attribute. However, the automatic identification of such sets
of closely related attribute values from their weights requires
a non-trivial post-processing step; such a post-processing
step was not addressed in their work. Moreover, the post-
processing step will also determine what “clusters” are output.
Also, as we show in Section 3.2, certain classes of clusters are
not discovered by STIRR.

Guha et al. introduce ROCK, an adaptation of an agglom-
erative hierarchical clustering algorithm, which heuristically
optimizes a criterion function defined in terms of the number
of “links” between tuples [GRS99]. Informally, the number of
links between two tuples is the number of common neighbors3

3Given a similuriry funcrion, two tuples in the dataset are said to be
neighbors if the similarity between them is greater than a certain threshold.

they have in the dataset. Starting with each tuple in its own
cluster, they repeatedly merge the two closest clusters till the
required number (say, K) of clusters remain. Since the com-
plexity of the algorithm is cubic in the number of tuples in
the dataset, they cluster a sample randomly drawn from the
dataset, and then partition the entire dataset based on the clus-
ters from the sample. Beyond that the set of all “clusters”
together may optimize a criterion function, the set of tuples in
each individual cluster is not characterized.

3 Definitions

In this section, we formally define the concept of a cluster
over categorical attributes, and other concepts used in the
remainder of the paper. We then compare the class of clusters
allowed by our definition with those discovered by STIRR.

3.1 Cluster Definition

Intuitively, a cluster on a set of numeric attributes identifies
a “dense region” in the attribute space. That is, the region
consists of a significantly larger number of tuples than
expected. We generalize this intuitive notion for the class of
hyper-rectangular clusters to the categorical domain.4

As an illustrative example, the region [l, 21 x [2,4] x [3,5]
may correspond to a cluster in the 3-d space spanned by three
numeric attributes. In general, the class of rectangular regions
can be expressed as the cross product of intervals. Since
domains of categorical attributes are not ordered, the concept
of an interval does not exist. However, a straightforward
generalization of the concept of an interval to the categorical
domain is a set of attribute values. Consequently, the
generalization of rectangular regions in the numeric domain
to categorical domain is the cross product of sets of attribute
values. We call such regions interval regions.

Intuitively, a cluster consists of a significantly larger
number of tuples than the number expected if all attributes
were independent. In addition, a cluster also extends to as
large a region as possible. We now formalize this notion
for categorical domains by first defining the notion of a tuple
belonging to a region, and then the support of a region, which
is the number of tuples in the dataset that belong to the region.

Definition 3.1 Let Al, . . . , A, be a set of categorical at-
tributes with domains Q, . . . , YD,, respectively. Let the
dataset D be a set of tuples where each tuple t: t E Dr x

. . . x D,. We call S = Si x . . . x S, an interval region if for
alli E {l,..., n}, S; 5 ‘DD;. Let ai E Vi and aj E ‘oj, i # j.
The support UD (ai, aj) of the attribute value pair (ai, aj) with
respect to D is defined as follows:

oo(a;,aj) dsf [{t E D : t.Ai = ai and t.Aj = aj}l

4Classes of clusters that correspond to arbitrarily shaped regions in the
numeric domain cannot be generalized as cleanly to the categorical domain
because the categorical attributes do not have a natural ordering imposed on
their domains. Therefore, we only consider the class of hyper-rectangular
regions.

74

Atuplet = (t.Al,... ,t.A,) E D is said to belong to the
region S if for all i E { 1, . . . , n}, t.Ai E 5’;. The support
Do(S) of S is the number of tuples in D that belong to S.

If all attributes Al, . . . , A, are independent and the at-
tribute values in each attribute are equally likely (henceforth
referred to as the attribute-independence assumption) then the
expected support E[oo (S)] of a region S = Si x . . . x S,, is

] 01. r’;S: i z 1:: z I%‘\. As before, the expected support of (oi, aj)

E[oD (oi, aj)] is] D] .]& . Since the dataset D is under-
stood from the context, we write o(S) instead of go(S), and
a(ai, aj) instead of gD(Ui, aj). Finally, we note that the at-
tribute independence assumption can be modified to take any
prior information into account; e.g., the marginal probabilities
of attribute values.

Intuitively, a(~;, uj) captures the co-occurence, and hence
the similarity, of attribute values oi and uj. Values ui and
uj are said to be strongly connected if their co-occurrence
(~(ui, uj)) is significantly higher (by some factor (Y) than the
value expected under the attribute-independence.5 We now
define D* to formalize this intuition, and then give a formal
definition of a cluster.

Definition 3.2 Let a; E Di, uj E Vj, and Q > 1. The
attribute values ai and aj are strongly connected with respect

tODifaD(Ui,Uj) > @~&].Thefunctiono~(ui,uj)is
defined as follows:

fl&(Ui, Uj) dsf

I

aD(@7uj), if ai and uj are
strongly connected

0, otherwise

Let Si c 2)i and Sj C ‘Dj, i # j, be two sets of attribute
values. An element ai E Si is strongly connected with Sj if,
for all x E Sj, a; and x are strongly connected. Si and Sj
are said to be strongly connected if each oi E Si is strongly
connected with Sj and each uj E Sj is strongly connected
with Si.

Definition 3.3 For i = 1,. . . ,n, let Ci & Di,]Ci] > 1,
and a > 1. Then C = (Cl,. . . , Cn) is a cluster over
{AI,... , A,} if the following three conditions are satisfied.
(1) For all i,j E {l,... , n}, i # j, C’i and Cj are strongly
connected. (2) For all i, j E (1,. . . , n}, i # j, there exists
no C,! > Ci such that for all j # i, C,! and Cj are strongly
connected. (3) The support 00(C) of C is at least LY times
the expected support of C under the attribute-independence
assumption.

We call Ci the cluster-projection of C on Ai. C is called
a sub-cluster if it satisfies conditions (1) and (3). A cluster C
over a subset of all attributes S C {Al, . . . , A,} is called a
subspace cluster on S; if JSJ = k then C is called a k-cluster.

5Because a deviation of 2 or 3 times the expected value is usually
considered significant [BD76], typical values of a are between 2 and 3.

We now extend our notion of similarity to attribute value
pairs on the same attribute. Let al, us E Di and x E Dj.
If (ui, x) and (ua, x) are strongly connected then (ui, us)
are “similar” to each other with respect to Aj. The level
of similarity is the number of such distinct attribute values
x E Vj. We now formalize this intuition.

Definition 3.4 Let al, a2 E Di. The similarity yj(al, a~)
between ai and ua with respect to Aj (j # i) is defined as
follows.

yj(ui,ua) ef]{x E Vj : o*(ui,x) > Oanda*(us,x) > O}]

Below, we define the summary information which we need
later to describe the CACTUS algorithm. The summary in-
formation is of two types: (1) inter-attribute summaries and
(2) intra-attribute summaries. The inter-attribute summaries
consist of all strongly connected attribute value pairs where
each pair has attribute values from different attributes; the
intra-attribute summaries consist of similarities between at-
tribute values of the same attribute.

Definition 3.5 Let Al, . . . , A, be a set of categorical at-
tributes with domains VI,. . . ,V, respectively, and let D be
a dataset. The inter-attribute summary C~J is defined as:

CIJ dgf {Cij : i,j E (1,. . . , n}, i # j} where
Cij d!f

{(Ui~aj,O~(ai,aj)) : Ui E Vi,aj E Vj, anda$(oi,aj) > 0}

The intra-attribute summary CII is defined as:

CrrdEf{Cii:i,j~ {l,...,n}andi#j}where

{(oil, @a, yj(oii 7 a~!)) : oil, Uia E Vi, and ~‘(U,I, UCZ)) > 0.

3.2 Discussion

We now compare the class of clusters allowed by our
definition with the clusters discovered by STIRR. For the
comparison, we generate test data using the data generator
developed by Gibson et al. for evaluating STIRR [GKR98].
We consider three datasets shown in Figures 1, 2, and 3.
Each dataset consists of 100000 tuples. DSl and DS2 have
two attributes, DS3 has three attributes where each attribute
consists of 100 attribute values. These tuples are distributed
over all attribute values on each attribute according to the
attribute-independence assumption. We control the location
and the size of clusters in each dataset by distributing an
additional number of tuples (5% of the total number in the
dataset) in regions designated to be clusters thus increasing
their supports above the expected value under the attribute-
independence assumption. In Figures 1, 2, and 3, the cluster-
projection of each cluster is shown within an ellipse. The
boundaries of the cluster-projections (ellipses) of a cluster are
connected by lines of the same type (e.g., solid, dashed etc.).

75

7.0 :

99 : 99:

Figure 2: DS2

20 :

99 I 99:

Figure 5: DS2:STIRR’s O/P

We ran STIRR on the datasets shown in Figures 1,2, and 3,
and manually selected the basin that assigns positive and
negative weights respectively to attribute values in different
cluster-projections. To identify the cluster projections, we
observed the weights allocated by STIRR and isolated two
groups such that the weights in each group have large
magnitude and are close to each other. The cluster-projections
identified by STIRR are shown in Figures 4, 5, and 6.

STIRR recognized the cluster-projections for DSl on the
first non-principal basin (bs) for every attribute (as shown
in Figure 4). When run on the dataset DS2, the first
non-principal basin (bs) on Al identifies the two groups:
(0,. . . ,9} and (10,. . . , 17) (as shown in Figure 5). The
second non-principal basin (bs) on Al identifies the following
two groups: (0,. . . ,6} and (7,. . . ,17}. Thus, no basin
identifies the overlap between the cluster-projections. It may
be possible to identify such overlaps through a non-trivial post
processing step. However, it is not clear how many basins
are required and how to recognize that cluster-projections
overlap from the weights on attribute values. We believe
that any such post-processing step itself will be similar to the
CACTUS algorithm. The result of running STIRR on the
dataset DS3 is shown in Figure 6. STIRR merged the two
cluster-projections on the second attribute, possibly because
one of the cluster-projections participates in more than one
cluster.

20 : 20 : 20 :

99 I 99 : 99:

Figure 3: DS3

20 : 20 : m:

99 I 99, 99 1

Figure 6: DS3:STIRR’s O/P

A w.r.t. B B w.r.t. C C w.r.t. B
al, a2:2 bl, bz:2 cl, Cz:3

al,a3:2 bl, b3:2 cl, c3:2
al,a4:2 bz, b3:2
a2,a3:2
a2,a4:2
a3, a4:2

Figure 7: C~J Figure 8: CII

should be valid classes of clusters, and our cluster definition
includes these classes. CACTUS correctly discovers all
the implanted clusters from the datasets DSl, DS2, and
DS3. Thus, our definition of a cluster and hence CACTUS,
which discovers all clusters allowed by our definition, seems
to identify a broader class of clusters than that discovered
by STIRR. Since it is not possible to characterize clusters
discovered by STIRR, we could not construct any example
datasets from which CACTUS does not retrieve the expected
clusters and STIRR does. However, it is possible that such
types of clusters exist.

From these experiments, we observe that STIRR fails
to discover the following classes of clusters: (1) clusters

4 CACTUS

consisting of overlapping cluster-projections on any attribute, In this section, we describe our three-phase clustering algo-
(2) clusters where two or more clusters share the same cluster- rithm CACTUS. The central idea behind CACTUS is that a
projection. However, intuitively, these two classes of clusters summary of the entire dataset is sufficient to compute a set

76

of “candidate” clusters which can then be validated to deter-
mine the actual set of clusters. CACTUS consists of three
phases: summarization, clustering, and validation. In the
summarization phase, we compute the summary information
from the dataset. In the clustering phase, we use the sum-
mary information to discover a set of candidate clusters. In
the validation phase, we determine the actual set of clus-
ters from the set of candidate clusters. We introduce a hy-
pothetical example which we use throughout the paper to
illustrate the successive phases in the algorithm. Consider
a dataset with three attributes A, B, and C with domains
{a17a2Ta37a4}, {hTb2,b3,b4}, and {C1~~2~c3rc4}9 respec-

tively. Let the strongly connected attribute value pairs be as
shown in Figures 7 and 8.

4.1 Summarization Phase

In this section, we describe the summarization phase of
CACTUS. We show how to efficiently compute the inter-
attribute and the ii-ma-attribute summaries, and then describe
the resource requirements for maintaining these summaries.

Categorical attributes usually have small domains. Typical
categorical attribute domains considered for clustering consist
of less than a hundred or, rarely, a thousand attribute values.
An important implication of the compactness of categorical
domains is that the inter-attribute summary Cij for any pair
of attributes Ai and Aj fits into main memory because the
number of all possible attribute value pairs from A; and A,
equals]DiJ .]Ioj]. For the rest of this section, we assume
that the inter-attribute summary of any pair of attributes fits
easily into main memory. (We will give an example later
to support this assumption, and to show that typically inter-
attribute summaries for many pairs of attributes together fit
into main memory.) However, for the sake of completeness,
we extend our techniques in Section 5 to handle cases where
this trait is violated. The same argument holds for the intra-
attribute summaries as well.

4.1.1 Inter-attribute Summaries

We now discuss the computation of the inter-attribute sum-
maries. Consider the computation of Cij, i # j. We initialize
a counter to zero for each pair of attribute values (ai, aj) E
2)i x Vj, and start scanning the dataset D. For each tuple
t E D, we increment the counter for the pair (t.A;,t.Aj).
After the scan of D is completed, we compute g* by set-
ting to zero all counters whose value is less than the threshold

“ij =a.*. Thu s, counts of only the strongly con-
nected pairs are reiained. The number of strongly connected
pairs is usually much smaller than]23i] .]Dj 1. Therefore, the
set of strongly connected pairs can be maintained in special-
ized data structures designed for sparse matrices [DER86].6

We now present a hypothetical example to illustrate the
resource requirements of the simple strategy described above.
Consider a dataset with 50 attributes each consisting of 100

% our current implementation, we maintain the counts of strongly
connected pairs in an array and do not optimize for space.

attribute values. Suppose we have 100 MB of main memory
(easily available on current desktop systems). Assuming that
each counter requires 4 bytes we can maintain counters for
2500 (= ,~~~~&r~,) attribute pairs simultaneously. With 50
attributes, we have to evaluate 1225 attribute pairs. Therefore,
we can compute all inter-attribute summaries together in
just one scan of the dataset. The computational and space
requirements here are similar to that of obtaining counts of
pairs of items while computing frequent itemsets [AMS+96].

Quite often, a single scan is sufficient for computing Cr J.

In some cases, we may need to scan D multiple times-
each scan computing Y&j for a different set of (i, j) pairs.
The computation of the inter-attribute summaries is CPU-
intensive, especially when the number of attributes n is high,
because for each tuple in the dataset, we have to increment
9 counters. Even if we require multiple scans of the
dataset, the I/O time for scanning the dataset goes up but the
total CPU time-for incrementing the counters-remains the
same. Since the CPU time dominates the overall summary-
construction time, the relative increase due to multiple scans
is not significant. For instance, consider a dataset of 1 million
tuples defined on 50 attributes, each consisting of 100 attribute
values. Experimentally, we found that the total time for
computing the inter-attribute summaries of the dataset with 1
million tuples is 1040 seconds, whereas a scan of the dataset
takes just 28 seconds. Suppose we partition all the 1225 pairs
of attributes into three groups consisting of 408, 408, and
409 pairs respectively. The computation of the inter-attribute
summaries of attribute pairs in each group requires a scan
of the dataset. The total computation time will be around
1096 seconds, which is only slightly higher than computing
the summary in one scan.

4.1.2 Intra-attribute Summaries

In this section, we describe the computation of the intra-
attribute summaries. We again exploit the characteristic
that categorical domains are very small and thus assume
that the intra-attribute summary of any attribute Ai fits in
main memory. Our procedure for computing Cii reflects the
evaluation of the following SQL query:

Select Tl.A, T2.A, count(*)
From Cij as Tl(A,B), Cij as T2(A,B)
Where Tl .A # T2.A and Tl .B = T2.B
Group by Tl .A, T2.A
Having count > 0;

The above query joins Cij with itself to compute the set of
attribute value pairs of Ai strongly connected to each other
with respect to Aj.’ Since Cij fits in main memory the self-
join and hence the computation of C$ is very fast. We will
observe in the next section that, at any stage of our algorithm,
we only require C$ for a particular pair of attributes Ai and

7For an exposition of join processing, see any standard textbook on
database systems, e.g., [Ram97].

77

Aj. Therefore, we compute Cii, (j # i), for each (i,j) pair
whenever it is required.

Consider the example shown in Figure 7. (We use the
notation CXY to denote the inter-attribute summary between
attributes X and Y.) The inter-attribute summaries CAB,
CBC, and CAC correspond to the edges between attribute
values in the figure. The intra-attribute summaries CzA,

%J3* % are shown in Figure 8.

4.2 Clustering Phase

In this section, we describe the two-step clustering phase
of CACTUS that uses the attribute summaries to compute
candidate clusters in the data. In the first step, we analyze
each attribute to compute all cluster-projections on it. In the
second step, we synthesize, in a level-wise manner, candidate
clusters on sets of attributes from the cluster-projections on
individual attributes. That is, we determine candidate clusters
on a pair of attributes, then extend the pair to a set of three
attributes, and so on. We now describe each step in detail.

4.2.1 Computing Cluster-Projections on Attributes

Let Al, . . . , A, be the set of attributes and Di, . . . , D, be
their domains. The central idea for computing all cluster-
projections on an attribute is that a cluster (Cl,. . . , Cn)
over the set of attributes {AI, . . . , A,} induces a sub-cluster
over any attribute pair (A;, Aj), i # j. In addition, the
cluster-projection Ci on Ai of the cluster C is the intersection
of the cluster-projections on Ai of 2-clusters over attribute
pairs (Ai, Aj), j # i. For example, the cluster-projection
{bi, ba} on the attribute B in Figure 7 is the intersection
of {bi, ba, bs} (the cluster-projection on B of the 2-cluster
({ bi , ba, ba}, { ci , ~2))) and { bi , ba} (the cluster-projection on
B of the 2-cluster ({al, a2, as, ad}, {bi, bz})). We formalize
the idea in the following lemma.

Lemma 4.1 Let C = (Ci, . . . , Cn) be a cluster on the set of
attributes {Al, . . . , An}. Then,
(1) For all i # j, i, j E (1,. . . , n}, (Ci, Cj) is a sub-cluster
over the pair of attributes (Ai, Aj).

(2) There exists a set {Ci : j # i and (C!, Cj) is a 2-cluster

over (Ai, Aj)} such that Ci = nj+Cf.

Lemma 4.1 motivates the following two-step approach. In
the first pairwise cluster-projection step, we cluster each at-
tribute Ai with respect to every other attribute Aj, j # i to
find all cluster-projections on Ai of 2-clusters over (Ai, Aj).
In the second intersection step, we compute all the cluster-
projections on Ai of clusters over {Al, . . . , A,} by inter-
secting sets of cluster-projections from a-clusters computed
in the first step. However, the problem of computing cluster-
projections of P-clusters in the pairwise cluster-projection step
is at least as hard as the NP-complete clique problem [GJ79].*

sA clique in @ is a set of vertices that are connected to each other by
edges with non-zero weights. Given a graph E = (V, E) and a constant J,
the clique problem determines if p consists of a clique of size at least J.

B

b4 ;------;

t k3: I

%
. . . ,

bl iti ----

al a2 a3 a4
A

Figure 9: Extending {ai, aa} w.r.t. B

The following lemma formalizes the computational complex-
ity. The proof is given in the full paper [GGR99].

Lemma 4.2 Let Ai and A, be two attributes. The problem
of computing all cluster-projections on Ai of 2-clusters over
(Ai, Aj) is NP-complete.

To reduce the computational complexity of the cluster-
projection problem, we exploit the following property which,
we believe, is usually exhibited by clusters in the categorical
domain. If a cluster-projection Ci on Ai of one (or more)
cluster(s) is larger than a fixed positive integer, called the
distinguishing number (denoted K), then it consists of a small
identifying set-which we call the distinguishing set-of
attribute values such that they will not together be contained
in any other cluster-projection on A;. Thus, the distinguishing
set distinguishes C; from other cluster-projections on Ai.
Note that a proper subset of the distinguishing set may still
belong to another cluster-projection, and that two distinct
clusters may share an identical cluster-projection (as in
Figure 1).

We believe that the distinguishing subset assumption holds
in almost all cases. Even for the most restrictive version,
which occurs when the distinguishing number is 1 and all
cluster-projections of the set of clusters are distinct, the as-
sumption only requires that each cluster consist of a set of
attribute values-one on each attribute-that does not belong
to any other cluster. For the example in Figure 7, the sets
{ai} or {aa} identify the cluster-projection {ai, aa} on the
attribute A. We now formally state the assumption.

Distinguishing Subset Assumption: Let Ci and Ci each of
size greater than IE be two distinct cluster-projections on the
attribute Ai. Then there exist two sets Si and S;l such that

We call K the distinguishing number.

Paitwise Cluster-Projections

We compute cluster-projections on Ai of 2-clusters over the
attribute pair (Ai, Aj) in two steps. In the first step, we find
all possible distinguishing sets (of size less than or equal to K)
on A;. In the second step, we extend with respect to Aj some

78

of these distinguishing sets to compute cluster-projections on
Ai. Henceforth, we write “cluster-projection on Ai” instead
of a “cluster-projection on Ai of a 2-cluster over (Ai, Aj) .”

Distinguishing Set Computation: In the first step, we rely on
the following two properties to find all possible distinguishing
sets on Ai. (1) All pairs of attribute values in a distinguishing
set are strongly connected; that is the distinguishing set forms
a clique. (2) Any subset of a distinguishing set is also a clique
(monotonic@ property). These two properties allow a level-
wise clique generation similar to the candidate generation in
apriori [AMS+96]. That is, we first compute all cliques of
size 2, then use them to compute cliques of size 3, and so on
until we compute all cliques of size less than or equal to K.

Let Ck denote the set of all cliques of size equal to k. We
give an inductive description of the procedure to generate the
set Ck. The base case C’s when k = 2 consists of all pairs
of strongly connected attribute values in Di. These pairs can
easily be found from C$. The set Ck+i is computed from the
set CI, (k 2 2) by ‘joining” Ck with itself. The join is the sub-
set join-used in the candidate generation step of the frequent
itemset computation in the apriori algorithm [AMS+96]. We
also remove all the candidates in C’k+l that contain a proper
k-subset not in Ck (a la subset pruning in apriori).

Extension Operation: In the second step, we “extend” some
of the candidate distinguishing sets computed in the first
step to compute cluster-projections on Ai of 2-clusters on
(Ai, Aj). The intuition behind the extension operation is
illustrated in Figure 9. Suppose we want to extend {ui , us} on
A with respect to B. We compute the set {bi, ba} of attribute
values on B strongly connected with {ai, us}. We then extend
{ai, ua} with the set of all other values {us, ~4) on A that is
strongly connected with {bit bs}.

Informally, the extension of a distinguishing set S c Di
adds to S all attribute values in Vi that are strongly connected
with the set of all attribute values in Vj that S is strongly
connected with. We now introduce the concepts of sibling set,
subsetflug, and the participation count to formally describe
the extension operation.

Definition 4.1 Let Ai and Aj be two attributes with domains
Vi and Vj. Let CS(be the set of cluster-projections on A’i
of 2-clusters over (Ai, Aj). Let VS{ be a set of candidate
distinguishing sets, with respect to Aj, on attribute Ai. The
sibling set 5’; of Si E VS{ with respect to the attribute Aj is
defined as follows:

I!$ = {Uj E Vj : for all ui E Si, U*(Ui, Uj) > 0)

I$] is called the sibling strength of Si with respect to Aj.

The subset Jug of Si E VSf with respect to a collection of
sets C, is said to be set (to 1) if there exists a set S E C, such
that Si c S. Otherwise, the subset flag of Si is not set.
The participation count of Si E VS{ with respect to C, is the
sum of the sibling strengths with respect to Aj of all supersets
OfSiinC,.

Informally, the subset flag and the participation count serve
the following two purposes. First, a cluster-projection may
consist of more than one distinguishing set in VSf . Therefore,
if we extend each set in VS{ a particular cluster-projection
may be generated several times, once for each distinguishing
set it contains. To avoid the repeated generation of the
same cluster-projection, we associate with each distinguishing
set a subset flag. The subset flag indicates whether the
distinguishing set is a subset of an existing cluster-projection
in CSS. Therefore, if the subset flag is set then the
distinguishing set need not be extended. For the example
shown in Figure 7, the distinguishing sets {ui} and {us} on
A can both be extended to the ,cluster-projection {al, ~2).
Second, the distinguishing subset assumption applies only to
cluster-projections of size greater than K. Therefore, a clique
of size less than or equal to K may be a cluster-projection on
its own even though it may be a subset of some other cluster-
projection. To recognize such small cluster-projections, we
associate a participation count with each distinguishing set.
If the participation count of a distinguishing set with respect
to CSS is less than its sibling strength then it may be a small
cluster-projection.

Algorithm 4.1 Extend(VSi , Cij)
/* output: csi */
/* Initialization */
csi = cp
Reset the subset flags and the participation counts of all

distinguishing sets in VSS to zero
foreach Si E VSi

if the subset flag of Si is not set then
Extend Si to C,”
Set the subset flags and increment by the sibling

strength of Si the participation counts of all subsets
of CS in VS!

end /*if*2
2’

end /*for*/
Identify and add small cluster-projections (of size 5 K) to CS!

The pseudocode for the computation of CS: is shown in Al-
gorithm 4.1. Below, we describe each step in detail.

Initialization: The first two steps initialize the procedure:
we set CS: = 4, and the subset flags and their participation
counts of all distinguishing sets in VS: to zero.
Extending Si: Let 5’: be the sibling set of Si with respect to
Aj . Let Cf be the sibling set of Sf with respect to Ai. Then,
we extend Si to the cluster-projection CF. Add CF to CS{ .
Prune subsets of Cf : Suppose CF was extended from Si.
Then, by definition, subsets of Cf cannot be the distinguish-
ing sets of other cluster projections on Ai. Therefore, we set
(to 1) all subset flags of subsets of Cf (including Si) in VSi.
The participation count of each of these subsets is also in-
creased by IS,” J-the sibling strength of Si.

79

Identifying small cluster-projections: While extending dis-
tinguishing sets, we only choose sets whose subset flags are
not set. We check if each unextended distinguishing set Si
whose subset flag is set can be a small (of size less than K)
cluster-projection. If the participation count of S; equals its
sibling strength, then Si cannot be a cluster-projection on its
own. Otherwise, S; may be a cluster-projection. Therefore,
we add Si to CS: .

Note that the computation of cluster-projections on Ai
requires only the inter-attribute summary Cij and the intra-
attribute summary Cji. Since CQ and C$ fit into main
memory, the computation is very fast.

Intersection of Cluster-projections

Informally, the intersection step computes the set of cluster-
projections on Ai of clusters over {A,, . . . , A,} by succes-
sively joining sets of cluster-projections on Ai of 2-clusters
over attribute pairs (A;, Aj), j # i. For describing the proce-
dure, we require the following definition.

Definition 4.2 Let Si and Ss be two collections of sets of
attribute values on Ai. We define the intersection join S1 n S2

between & and Sa as follows: St fl Sa dgf

{s : 3~ E Si and sa E Sa such that s = si nsa and IsI > 1)

Let CS{ be the set of cluster-projections on Ai with respect
to Aj, j # i. Let ji = 1 if i > 1, else jr = 2. Starting
with S = CS:‘, the intersection step executes the following
operation for all k # i.

S=SllC$, ifk#i

The resulting set S is the set of cluster-projections on Ai of
clusters over {Al, . . . , A,}. Besides being a main-memory
operation, the number of cluster-projections on Ai with re-
spect to any other attribute Aj is usually small; therefore, the
intersection step is quite fast.

Further optimizations are possible over the basic strategy
described above for computing cluster projections. For
instance, we can combine the computation of C$ and that of
CS: because, for each cluster-projection in CS: , we compute

its sibling set which is a cluster-projection in CS:. However,
we do not consider such optimizations because the clustering
phase takes a small fraction (less than 10%) of the time taken
by the summarization phase. (Our experiments in Section 6
confirm this observation.)

4.2.2 Level-wise Synthesis of Clusters

In this section, we describe the synthesis of candidate clus-
ters from the cluster-projections on individual attributes (com-
puted as described in Section 4.2). The central idea is that a

cluster on a set of attributes induces a sub-cluster on any sub-
set of the attributes (monotonicity property). The monotonic-
ity property follows directly from the definition of a cluster.
We also exploit the fact that we want to compute clusters over
the set of all attributes {Al, . . . , A,}. Informally, we start
with cluster-projections on AI and then extend them to clus-
ters over (Al, AZ), then to clusters over (Al, AZ, As), and so
on.

Let Ci be the set of cluster-projections on the attribute Ai,
i = l,...,n. Let C” denote the set of candidate clusters
defined over the set of attributes Al, . . . , Ak. Therefore,
Cl = Ci. We successively generate C”+l from C’” until
C” is generated or C”+l is empty for some lc + 1 < 12.
The generation of C k+1 from C” proceeds as follows. Set
c”+l = 4. For each element ck = (cl,. . . , ck) E c”, we
attempt to augment ck with a cluster projection ck+l on the
attribute &+I. If for all i E { 1,. . . , /c}, (c;, ck+l) is a sub-
cluster on (Ai, A k+l)-which can be checked by looking up
&(k+l)-we augment ck to ck+’ = (cl,. . . , ck+l) and add
Ck+l to c”+1.

For the example in Figure 7, the computation of the set
of candidate clusters proceeds as follows. We start with
the set {ai, aa} on A. We then find the candidate 2-cluster
{({%,az), @l,b2))) over the attribute pair (A, B), and then
the candidate 3-cluster {({al, aa}, { bi , bz }, {cl, CZ}) } over
{A, B, C).

4.3 Validation

We now describe a procedure to compute the set of actual
clusters from the set of candidate clusters. Some of the
candidate clusters may not have enough support because some
of the 2-clusters that combine to form a candidate cluster may
be due to different sets of tuples. To recognize such false
candidates, we check if the support of each candidate cluster
is greater than the required threshold. Only clusters whose
support on D passes the threshold requirement are retained.

After setting the supports of all candidate clusters to zero,
we start scanning the dataset D. For each tuple t E D,
we increment the support of the candidate cluster to which t
belongs. (Because the set of clusters correspond to disjoint
interval regions, t can belong to at most one cluster.) At
the end of the scan, we delete all candidate clusters whose
support in the dataset D is less than the required threshold: (Y
times the expected support of the cluster under the attribute-
independence assumption.

By construction, CACTUS discovers all clusters that satisfy
our cluster definition, and hence the following theorem holds.

Theorem 4.1 Given that the distinguishing subset assump-
tion holds, CACTUS finds all and only those clusters that sat-
isfy Definition 3.3.

5 Extensions

In this section, we extend CACTUS to handle unusually
large attribute value domains as well as to identify clusters
in subspaces.

80

5.1 Large Attribute Value Domains

Until now, we assumed that the domains of categorical
attributes are such that the inter-attribute summary of any pair
of attributes and the intra-attribute summary of any attribute
fits in main memory. For the sake of completeness, we modify
the summarization phase of CACTUS to handle arbitrarily
large domain sizes.

Recall that the summary information only consists of
strongly connected pairs of attribute values. For large domain
sizes, the number of strongly connected attribute value pairs
(either from the same or from different attributes) relative to
the number of all possible attribute value pairs is very small.
We exploit this observation to collapse sets of attribute values
on each attribute into a single attribute value thus creating a
new domain of smaller size. The intuition is that if a pair of
attribute values in the original domain are strongly connected,
then the corresponding pair of transformed attribute values
are also strongly connected, provided the threshold for strong
connectivity between attribute values in the transformed
domain is the same as that for the original domain.

Let Ai be an attribute with an unusually large domain Di.
Without loss of generality, let ‘Di be the set (1,. . . , IDi/). Let
M < IDil be the maximum number of attribute values per
attribute so that the inter-attribute summaries and the intra-
attribute summaries fit into main memory. Let c = [%I.
We construct Do: of size M from Vi by mapping for a given
2 E (0,. . . ,M-l},thesetofattributevalues{a.c+l,...,a.
c + c} to the value z + 1. Formally,

27:: = {f(l), . . . 7 f(lVil>}, where f(i) = [i] + 1

We set the threshold for the strong connectivity involving
attribute values in DoI as if Vi was being used. We then
compute the inter-attribute summaries involving Ai using the
transformed domain Vi. For each attribute value ai E Vi
that participates in a strongly connected pair (ai,aj) (aj E

. . Vj, 3 # z), we expand ai to the set of all attribute values
{a: . c + 1,. . . , a!, . c + c} C Vi that map into ai and form
thepairs(ai.c+l,aj),.. .,(ai.c+c,aj). Wethenscanthe
dataset D to count the supports of all these pairs, and select
the strongly connected pairs among them; they constitute the
inter-attribute summary Cij.

The number of new pairs whose supports are to be counted
is less than or equal to c . (Cij (where (Cij 1 represents the
number of strongly connected pairs in Vi x Vj. If this set of
pairs is still larger than main memory, we can repeat the above
transformation trick. However, we believe that such repeated
application will be rare.

5.2 Clusters in Subspaces

CACTUS does not discover clusters in subspaces for the
following reason. The order Al, . . . , A, in which cluster-
projections on individual attributes are combined may not be
the right order to find a subspace cluster C. For instance, if C
spans the subspace defined by a set of attributes {As, As, A4}

(when n > 4) then the level-wise synthesis described in
Section 4.2.2 will not find C.

The extension to find subspace clusters exploits the mono-
tonicity property of subspace clusters. That is, a cluster
in a subspace S induces a subcluster on any subset of S.
The monotonicity property again motivates the apriori-style
level-wise synthesis of candidate clusters from the cluster-
projections on individual attributes. The algorithm differs in
two ways from the algorithm to find clusters over all attributes.
The first difference is that we do not restrict that a cluster-
projection on an attribute should participate in Z-cluster with

‘every other attribute. The second difference is in the proce-
dure for generating the set of candidate clusters. We now dis-
cuss both differences.

We skip the intersection of cluster-projections on each
attribute Ai with respect to every other attribute Aj (j # i)
for the following two reasons. First, a cluster in subspace
S may not induce a 2-cluster on a pair of attributes not
in S, and hence the intersection of cluster-projections on
an attribute in S with respect to every other attribute may
return an empty set. Second, the intersection may cause
the loss of maximality (condition (2) in Definition 3.3) of
a subspace cluster. For instance, a cluster-projection on Ai
with respect to Aj corresponds to a a-cluster over (A;, Aj)
which, by definition, is a subspace cluster; truncating such a
cluster-projection in the intersection step will no longer yield
a maximal cluster on (Ai, Aj).

In the candidate generation algorithm, we let C” denote the
set of candidate clusters defined on any set of k-attributes
(not necessarily {Al, . . . , Ak}). Otherwise, the candidate
generation proceeds exactly as in Section 4.2.2. The reason
is that a subspace cluster on k attributes may not always be in
the first k attributes.

For a cluster c E C” in a subspace consisting of k attributes,
the above candidate generation procedure examines 2” - (k +
1) candidates. Depending on the value of k (say, larger than
15), the number of candidate clusters can be prohibitively
high. The problem of examining a large number of candidate
clusters has been addressed by Agrawal et al. [AGGR98].
They use the minimum description length principle to prune
the number of candidate clusters. Their techniques apply
directly in our scenario as well. Therefore, we do not address
this problem; instead, we refer the reader to the original
paper [AGGR98].

6 Performance Evaluation

In this section, we show the results of a detailed evaluation
of the speed and scalability of CACTUS on synthetic and
real datasets. We also compared the performance of CAC-
TUS with the performance of STIRR.’ Our results show that
CACTUS is very fast and scalable; it outperforms STIRR by
a factor between 3 and 10.

gWe intend to compare CACTUS and ROCK after our ongoing implemen-
tation of ROCK is complete.

81

Time vs.Xtuples

2000 CACTUS c
STIRR .*...

_I
.I

F

?
1500.

,,....,'

/.I
8 ./ /"

D ,/
g lwo- /

E" ./
/'

F ,/"

500. /"
,I

01 7--7YYY 1 2 3 4 5
auples (in Millions)

Figure 10: Time vs. #Tuples

First Author First Author (contd.) Second Author
Katz, Stonebraker, Wong
Dewitt, Hsiao -

Ceri, Navathe Katz, Wong
Abiteboul, Grumbach Dewitt, David

Dewitt, Ghandeharizadeh Korth, Levy Dewitt, Ghandeharizadeh
Kanellakis, Beeri, Vardi Agrawal, Gehani Abiteboul, Beeri
Ramakrishnan, Beeri Chen, Hua, Su Beeri, Srivastava
Bancilhon, Kifer Chen, Hua, Lam Ramakrishnan, Kim
Afrati, Cosmadakis Collmeyer, King, Shemer Papadimitriou, Cosmadakis
Alonso, Barbara, GarciaMolina Copeland, Lipovski, Su GarciaMolina, Barbara
Devor, Elmasri

;\
Cornell, Dan, Iyer, Yu Devor, ElMasri, Weeldreyer

Barsolou, Keller, Wiederhol Chang, Gupta Keller, Wiederhold
Barsalou, Keller, Shalom Fischer, Griffeth, Lynch Keller, Wiederhold

CACTUS +
STIRR .+---

04
0 200 400 600 800 1CCQ

XAnribuIevalues

5o - I
Figure 11: Time vs. #Attributes Figure 12: Time vs. #Attr-values

Second Author (contd.)
Ceri, Navathe
Vianu, Grumbach
Silbershatz, Levy
Jagadish, Gehani
Su, Chen, Chu
Su, Lee
Collmeyer, Shemer
Su, Lipovski, Copeland
Yu, Dias
Lee, Cheng
Griffeth, Fischer

Table 1: 2-clusters on the pair of first author and second author attributes

6.1 Synthetic Datasets

We first present our experiments on synthetic datasets. The
test datasets were generated using the data generator devel-
oped by Gibson et al. [GKR98] to evaluate STIRR. (See Sec-
tion 3.2 for a description of the data generator.) We set the
number of tuples to 1 million, the number of attributes to 10
and the number of attribute values for each attribute to 100.
In all datasets, the cluster-projections on each attribute were
[0,9] and [lo, 191 (as shown in Figure 1). We fix the value
of (Y at 3, and the value of the distinguishing number K at 2.
For STIRR, we fixed the number of iterations to be lo-as
suggested by Gibson et al. [GKR98].

CACTUS discovered the clusters in the input datasets
shown in Figures 1,2, and 3.

Figure 10 plots the running time while increasing the
number of tuples from 1 to 5 million. Figure 11 plots the
running time while increasing the number of attributes from
4 to 50. Figure 12 plots the running time while increasing
the number of attribute values from 50 to 1000 while fixing
the number of attributes at 4. While varying the number of
attribute values, we assumed that until 500 attribute values,
the inter-attribute summaries would fit into main memory; for
a larger number of attribute values we took the multi-layered
approach described in Section 5. In all cases, CACTUS is 3
to 10 times faster than STIRR.

6.2 Real Datasets

In this section, we discuss an application of CACTUS to a
combination of two sets of bibliographic entries. The results
from the application show that CACTUS finds intuitively
meaningful clusters from the dataset thus supporting our
definition of a cluster.

The first set consists of 7766 bibliographic entries for arti-
cles related to database research [Wie] and the second set con-
sists of 30919 bibliographic entries for articles related to The-
oretical Computer Science and related areas [Sei]. For each
article, we use the following four attributes: the first author,
the second author, the conference or the journal of publication,
and the year. If an article is singly-authored then the author’s
name is repeated in the second author attribute as well. The
sizes of the first author, the second author, the conference, and
the year attribute domains for the database-related, the theory-
related, and the combined sets are {3418,3529,1631,44},
{8043,8190,690,42}, and { 10212,10527,2315,52} respec-
tively. We combined the two sets together to check if CAC-
TUS is able to identify the differences and the overlap be-
tween the two communities. Note that for these domains,
some of the inter-attribute summaries and the intra-attribute
summaries-especially those involving the first author and the
second author dimensions-do not fit in main memory. HOW-
ever, we choose this particular dataset because it is easier to
verify the validity of the resulting clusters (than for some other

82

ACMSIGMOD Management, VLDB, ACM TODS, ICDE, ACMSIGMOD Record
ACMTG, COMPGEOM, FOCS, GEOMETRY, ICALP, IPL, JCSS, JSCOMP, LIBTR, SICOMP, TCS, TR
PODS, ALGORITHMICA, FOCS, ICALP, INFCTRL, IPL, JCSS, SCT, SICOMP, STOC

Table 2: Cluster-projections on Conference w.r.t. the First Author

publicly available datasets, e.g., the MUSHROOM dataset
from the UC1 Machine Learning repository).

Table 5.1 shows some of the 2-clusters on the first au-
thor and the second author attribute pair. We only present
the database-related cluster-projections to illustrate that CAC-
TUS identifies the differences between the two communities.
We verified the validity of each cluster-projection by querying
on the Database Systems and Logic Programming bibliogra-
phy at the web site maintained by Michael Ley [Ley]. Sim-
ilar cluster-projections identifying groups of theory-related
researchers as well as groups that contribute to both fields
also exist. Due to space constraints, we show some cluster-
projections corresponding to the latter two types in the full
paper [GGR99].

Table 2 shows some of the cluster-projections on the con-
ference attribute computed with respect to the first author
attribute. The first row consists exclusively of a group of
database-related conferences, the second consists exclusively
of theory-related conferences, and the third a mixture of both
reflecting a considerable overlap between the two communi-
ties.

7 Conclusions and Future Work

In this paper, we formalized the definition of a cluster when
the data consists of categorical attributes, and then introduced
a fast summarization-based algorithm CACTUS for discover-
ing such clusters in categorical data. We then evaluated our
algorithm against both synthetic and real datasets.

In future, we intend to extend CACTUS in the following
three directions. First, we intend to relax the cluster definition
by allowing sets of attribute values on each attribute which are
“almost” strongly connected to each other. Second, motivated
by the observation that inter-attribute summaries can be in-
crementally maintained under addition and deletion of tuples,
we intend to derive an incremental clustering algorithm from
CACTUS. Third, we intend to “rank” the clusters based on a
measure of interestingness, say, some function of the support
of a cluster.

AcknowIedgements: We thank Prabhakar Raghavan for
sending us the bibliographic data.

References
[AGGR98] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopu-

los, and Prabhakar Raghavan. Automatic subspace clus-
tering of high dimensional data for data mining. In Pro-
ceedings of the ACM SIGMOD Conference on Manage-
ment of Data, 1998.

[AMS+96]

[BD76]

[CBM98]

[Cou95]

[CS96]

[DER86]

[DLR77]

[GGR99]

[GJ79]

[GKR98]

[GRS99]

[WI

[Ram971

[Sei]

[Wie]

Rakesh Agrawal, Heikki Mannila, Ramakrishnan
Srikant, Hannu Toivonen, and A. Inkeri Verkamo. Fast
Discovery of Association Rules. In Usama M. Fayyad,
Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ra-
masamy Uthurusamy, editors, Advances in Knowledge
Discovery and Data Mining, chapter 12, pages 307-328.
AAAIiMIT Press, 1996.

Peter J. Bickel and Kjell A. Doksum. Mathematical
Statistics: Basic Ideas and Selected Topics. Prentice
Hall, 1976.

E. Keogh C. Blake and C.J. Merz. UC1 repository of
machine learning databases, 1998.

Transaction Processing Performance Council, May
1995. http://www.tpc.org.

P. Cheeseman and J. Stutz. Bayesian classification (au-
toclass): Theory and results: In U. Fayyad, G. Piatetsky-
Shapiro, P. Smyth, and R. Uthurusamy, editors, Ad-
vances in Knowledge Discovery and Data Mining, pages
153-180. MITPress, 1996.

IS. Duff, A.M. Erisman, and J.K. Reid. Direct Methods
for Sparse Matrices. Oxford University Press, 1986.

A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum
likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society, 1977.

Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakr-
ishnan. Cactus-clustering categorical data using sum-
maries. http://www.cs.wisc.edu/ vganti/demon/cactus-
fullps, March 1999.

M. R. Garey and D. S. Johnson. Computers
and intractability - A guide to the theory of NP-
completeness. Freeman; Bell Lab, Murray Hill NJ,
1979.

David Gibson, Jon Kleinberg, and Prabhakar Raghavan.
Clustering categorical data: An approach based on dy-
namical systems. In Proceedings of the 24th Intema-
tional Conference on Very Large Databases, pages 31 l-
323, New York City, New York, August 24-27 1998.

Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim.
Rock: A robust clustering algorithm for categorical
attributes. In Proceedings of the IEEE International
Conference on Data Engineering, Sydney, March 1999.

Michael Ley. Computer science bibliography.
http://www.informatik.uni-trier.de/ ley/db/index.html.

Raghu Ramakrishnan. Database Management Systems.
McGraw Hill, 1997.

J. Seiferas. Bibliography on theory of computer science.
http://liinwww.ira.uka.de/bibliography~eory/Seiferas.

G. Wiederhold. Bibliography on database systems.
http:/niinwww.ira.uka.delbibliography/Databas~iederhold.

83

