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Abstract 


Clustering is an important data mining problem. Most of the earlier 
work on clustering focussed on numeric attributes which have a 
natural ordering on their attribute values. Recently, clustering data 
with categorical attributes, whose attribute values do not have a 
natural ordering, has received some attention. However, previous 
algorithms do not give a formal description of the clusters they 
discover and some of them assume that the user post-processes the 
output of the algorithm to identify the final clusters. 


In this paper, we introduce a novel formalization of a cluster for 
categorical attributes by generalizing a definition of a cluster for 
numerical attributes. We then describe a very fast summarization- 
based algorithm called CACTUS that discovers exactly such clusters 
in the data. CACTUS has two important characteristics. First, the 
algorithm requires only two scans of the dataset, and hence is very 
fast and scalable. Our experiments on a variety of datasets show that 
CACTUS outperforms previous work by a factor of 3 to 10. Second, 
CACTUS can find clusters in subsets of all attributes and can thus 
perform a subspace clustering of the data. This feature is important 
if clusters do not span all attributes, a likely scenario if the number 
of attributes is very large. In a thorough experimental evaluation, we 
study the performance of CACTUS on real and synthetic datasets. 


1 Introduction 


Clustering is an important data mining problem. The goal of 
clustering, in general, is to discover dense and sparse regions 
in a dataset. Most previous work in clustering focussed 
on numerical data whose inherent geometric properties can 
be exploited to naturally define distance functions between 
points. However, many datasets also consist of categorical 
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attributes’ on which distance functions are not naturally 
defined. Recently, the problem of clustering categorical data 
started receiving interest [GKR98, GRS99]. 


As an example, consider the MUSHROOM dataset in the 
popular UC1 Machine Learning repository [CBM98]. Each 
tuple in the dataset describes a sample of gilled mushrooms 
using twenty two categorical attributes. For instance, the cup 
color attribute can take values from the domain {brown, bufJ; 
cinnamon, gray, green, pink, purple, red, white, yellow}. It 
is hard to reason that one color is “like” or “unlike” another 
color in a way similar to real numbers. 


An important characteristic of categorical domains is that 
they typically have a small number of attribute values. For 
example, the largest domain for a categorical attribute of 
any dataset in the UC1 Machine Learning repository consists 
of 100 attribute values (for an attribute of the Pendigits 
dataset). Categorical attributes with large domain sizes 
typically do not contain information that may be useful for 
grouping tuples into classes. For instance, the Cus tomerId 
attribute in the TPC-D database benchmark [Cou95] may 
consist of millions of values; given that a record (or a set 
of records) takes a certain CustomerId value (or a set of 
values), we cannot infer any information that is useful for 
classifying the records. Therefore, it is different from the age 
or geographical location attributes which can be used to group 
customers based on their age or location or both. Typically, 
relations contain 10 to 50 attributes; hence, even though the 
size of each categorical domain is small, the cross product 
of all their domains and hence the relation itself can be very 
large. 


In this paper, we introduce a fast summarization-based 
algorithm called CACTUS2 for clustering categorical data. 
CACTUS exploits the small domain sizes of categorical at- 
tributes. The central idea in CACTUS is that summary in- 
formation constructed from the dataset is sufficient for dis- 
covering well-defined clusters. The properties that the sum- 
mary infoi-mation typically fits into main memory, and that 
it can be constructed efficiently-typically in a single scan of 
the dataset-result in significant performance improvements: 


‘Attributes whose domain is totally ordered are called numeric, whereas 
attributes whose domain is not ordered are called caregoricuf. 
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a factor of 3 to 10 times over one of the previous algorithms. 
Our main contributions in this paper are: 


1. 


2. 


3. 


4. 


2 


We formalize the concept of a cluster over categorical 
attributes (Section 3). 


We introduce a fast summarization-based algorithm CAC- 
TUS for clustering categorical data (Section 4). 


We then extend CACTUS to discover clusters in sub- 
spaces, especially useful when the data consists of a large 
number of attributes (Section 5). 


In an extensive experimental study, we evaluate CAC- 
TUS and compare it with earlier work on synthetic and 
real datasets (Section 6). 


Related Work 


In this section, we discuss previous work on clustering cate- 
gorical data. The EM (Expectation-Maximization) algorithm 
is a popular iterative clustering technique [DLR77, CS96]. 
Starting with an initial clustering model (a mixture model) for 
the data, it iteratively refines the model to fit the data better. 
After an indeterminate number of iterations, it terminates at a 
locally optimal solution. The EM algorithm assumes that the 
entire data fits into main memory and hence is not scalable. 
We now discuss two previous scalable algorithms STIRR and 
ROCK for clustering categorical data. 


Gibson et al. introduce STIRR, an iterative algorithm based 
on non-linear dynamical systems [GKR98]. They represent 
each attribute value as a weighted vertex in a graph. Multiple 
copies bI, . b “, m> called basins, of this set of weighted 
vertices are maintained; the weights on any given vertex 
may differ across basins. bl is called the principal basin; 
bS,... , b, are called non-principal basins. Starting with a 
set of weights on all vertices (in all basins), the system is 
“iterated” until a fixed point is reached. Gibson et al. argue 
that when the fixed point is reached, the weights in one or 
more of the basins bz, . . . , b, isolate two groups of attribute 
values on each attribute: the first with large positive weights 
and the second with small negative weights, and that these 
groups correspond intuitively to projections of clusters on the 
attribute. However, the automatic identification of such sets 
of closely related attribute values from their weights requires 
a non-trivial post-processing step; such a post-processing 
step was not addressed in their work. Moreover, the post- 
processing step will also determine what “clusters” are output. 
Also, as we show in Section 3.2, certain classes of clusters are 
not discovered by STIRR. 


Guha et al. introduce ROCK, an adaptation of an agglom- 
erative hierarchical clustering algorithm, which heuristically 
optimizes a criterion function defined in terms of the number 
of “links” between tuples [GRS99]. Informally, the number of 
links between two tuples is the number of common neighbors3 


3Given a similuriry funcrion, two tuples in the dataset are said to be 
neighbors if the similarity between them is greater than a certain threshold. 


they have in the dataset. Starting with each tuple in its own 
cluster, they repeatedly merge the two closest clusters till the 
required number (say, K) of clusters remain. Since the com- 
plexity of the algorithm is cubic in the number of tuples in 
the dataset, they cluster a sample randomly drawn from the 
dataset, and then partition the entire dataset based on the clus- 
ters from the sample. Beyond that the set of all “clusters” 
together may optimize a criterion function, the set of tuples in 
each individual cluster is not characterized. 


3 Definitions 


In this section, we formally define the concept of a cluster 
over categorical attributes, and other concepts used in the 
remainder of the paper. We then compare the class of clusters 
allowed by our definition with those discovered by STIRR. 


3.1 Cluster Definition 


Intuitively, a cluster on a set of numeric attributes identifies 
a “dense region” in the attribute space. That is, the region 
consists of a significantly larger number of tuples than 
expected. We generalize this intuitive notion for the class of 
hyper-rectangular clusters to the categorical domain.4 


As an illustrative example, the region [l, 21 x [2,4] x [3,5] 
may correspond to a cluster in the 3-d space spanned by three 
numeric attributes. In general, the class of rectangular regions 
can be expressed as the cross product of intervals. Since 
domains of categorical attributes are not ordered, the concept 
of an interval does not exist. However, a straightforward 
generalization of the concept of an interval to the categorical 
domain is a set of attribute values. Consequently, the 
generalization of rectangular regions in the numeric domain 
to categorical domain is the cross product of sets of attribute 
values. We call such regions interval regions. 


Intuitively, a cluster consists of a significantly larger 
number of tuples than the number expected if all attributes 
were independent. In addition, a cluster also extends to as 
large a region as possible. We now formalize this notion 
for categorical domains by first defining the notion of a tuple 
belonging to a region, and then the support of a region, which 
is the number of tuples in the dataset that belong to the region. 


Definition 3.1 Let Al, . . . , A, be a set of categorical at- 
tributes with domains Q, . . . , YD,, respectively. Let the 
dataset D be a set of tuples where each tuple t: t E Dr x 


. . . x D,. We call S = Si x . . . x S, an interval region if for 
alli E {l,..., n}, S; 5 ‘DD;. Let ai E Vi and aj E ‘oj, i # j. 
The support UD (ai, aj) of the attribute value pair (ai, aj) with 
respect to D is defined as follows: 


oo(a;,aj) dsf [{t E D : t.Ai = ai and t.Aj = aj}l 


4Classes of clusters that correspond to arbitrarily shaped regions in the 
numeric domain cannot be generalized as cleanly to the categorical domain 
because the categorical attributes do not have a natural ordering imposed on 
their domains. Therefore, we only consider the class of hyper-rectangular 
regions. 
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Atuplet = (t.Al,... ,t.A,) E D is said to belong to the 
region S if for all i E { 1, . . . , n}, t.Ai E 5’;. The support 
Do(S) of S is the number of tuples in D that belong to S. 


If all attributes Al, . . . , A, are independent and the at- 
tribute values in each attribute are equally likely (henceforth 
referred to as the attribute-independence assumption) then the 
expected support E[oo (S)] of a region S = Si x . . . x S,, is 


] 01. r’;S: i z 1:: z I%‘\. As before, the expected support of (oi, aj) 


E[oD (oi, aj)] is ] D ] . ]& . Since the dataset D is under- 
stood from the context, we write o(S) instead of go(S), and 
a(ai, aj) instead of gD(Ui, aj). Finally, we note that the at- 
tribute independence assumption can be modified to take any 
prior information into account; e.g., the marginal probabilities 
of attribute values. 


Intuitively, a(~;, uj) captures the co-occurence, and hence 
the similarity, of attribute values oi and uj. Values ui and 
uj are said to be strongly connected if their co-occurrence 
(~(ui, uj)) is significantly higher (by some factor (Y) than the 
value expected under the attribute-independence.5 We now 
define D* to formalize this intuition, and then give a formal 
definition of a cluster. 


Definition 3.2 Let a; E Di, uj E Vj, and Q > 1. The 
attribute values ai and aj are strongly connected with respect 


tODifaD(Ui,Uj) > @~&].Thefunctiono~(ui,uj)is 
defined as follows: 


fl&(Ui, Uj) dsf 


I 


aD(@7uj), if ai and uj are 
strongly connected 


0, otherwise 


Let Si c 2)i and Sj C ‘Dj, i # j, be two sets of attribute 
values. An element ai E Si is strongly connected with Sj if, 
for all x E Sj, a; and x are strongly connected. Si and Sj 
are said to be strongly connected if each oi E Si is strongly 
connected with Sj and each uj E Sj is strongly connected 
with Si. 


Definition 3.3 For i = 1,. . . ,n, let Ci & Di, ]Ci] > 1, 
and a > 1. Then C = (Cl,. . . , Cn) is a cluster over 
{AI,... , A,} if the following three conditions are satisfied. 
(1) For all i,j E {l,... , n}, i # j, C’i and Cj are strongly 
connected. (2) For all i, j E (1,. . . , n}, i # j, there exists 
no C,! > Ci such that for all j # i, C,! and Cj are strongly 
connected. (3) The support 00(C) of C is at least LY times 
the expected support of C under the attribute-independence 
assumption. 


We call Ci the cluster-projection of C on Ai. C is called 
a sub-cluster if it satisfies conditions (1) and (3). A cluster C 
over a subset of all attributes S C {Al, . . . , A,} is called a 
subspace cluster on S; if JSJ = k then C is called a k-cluster. 


5Because a deviation of 2 or 3 times the expected value is usually 
considered significant [BD76], typical values of a are between 2 and 3. 


We now extend our notion of similarity to attribute value 
pairs on the same attribute. Let al, us E Di and x E Dj. 
If (ui, x) and ( ua, x) are strongly connected then (ui, us) 
are “similar” to each other with respect to Aj. The level 
of similarity is the number of such distinct attribute values 
x E Vj. We now formalize this intuition. 


Definition 3.4 Let al, a2 E Di. The similarity yj(al, a~) 
between ai and ua with respect to Aj (j # i) is defined as 
follows. 


yj(ui,ua) ef ]{x E Vj : o*(ui,x) > Oanda*(us,x) > O}] 


Below, we define the summary information which we need 
later to describe the CACTUS algorithm. The summary in- 
formation is of two types: (1) inter-attribute summaries and 
(2) intra-attribute summaries. The inter-attribute summaries 
consist of all strongly connected attribute value pairs where 
each pair has attribute values from different attributes; the 
intra-attribute summaries consist of similarities between at- 
tribute values of the same attribute. 


Definition 3.5 Let Al, . . . , A, be a set of categorical at- 
tributes with domains VI,. . . ,V, respectively, and let D be 
a dataset. The inter-attribute summary C~J is defined as: 


CIJ dgf {Cij : i,j E (1,. . . , n}, i # j} where 
Cij d!f 


{(Ui~aj,O~(ai,aj)) : Ui E Vi,aj E Vj, anda$(oi,aj) > 0} 


The intra-attribute summary CII is defined as: 


CrrdEf{Cii:i,j~ {l,...,n}andi#j}where 


{(oil, @a, yj(oii 7 a~!)) : oil, Uia E Vi, and ~‘(U,I, UCZ)) > 0. 


3.2 Discussion 


We now compare the class of clusters allowed by our 
definition with the clusters discovered by STIRR. For the 
comparison, we generate test data using the data generator 
developed by Gibson et al. for evaluating STIRR [GKR98]. 
We consider three datasets shown in Figures 1, 2, and 3. 
Each dataset consists of 100000 tuples. DSl and DS2 have 
two attributes, DS3 has three attributes where each attribute 
consists of 100 attribute values. These tuples are distributed 
over all attribute values on each attribute according to the 
attribute-independence assumption. We control the location 
and the size of clusters in each dataset by distributing an 
additional number of tuples (5% of the total number in the 
dataset) in regions designated to be clusters thus increasing 
their supports above the expected value under the attribute- 
independence assumption. In Figures 1, 2, and 3, the cluster- 
projection of each cluster is shown within an ellipse. The 
boundaries of the cluster-projections (ellipses) of a cluster are 
connected by lines of the same type (e.g., solid, dashed etc.). 
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7.0 : 


99 : 99: 


Figure 2: DS2 


20 : 


99 I 99: 


Figure 5: DS2:STIRR’s O/P 


We ran STIRR on the datasets shown in Figures 1,2, and 3, 
and manually selected the basin that assigns positive and 
negative weights respectively to attribute values in different 
cluster-projections. To identify the cluster projections, we 
observed the weights allocated by STIRR and isolated two 
groups such that the weights in each group have large 
magnitude and are close to each other. The cluster-projections 
identified by STIRR are shown in Figures 4, 5, and 6. 


STIRR recognized the cluster-projections for DSl on the 
first non-principal basin (bs) for every attribute (as shown 
in Figure 4). When run on the dataset DS2, the first 
non-principal basin (bs) on Al identifies the two groups: 
(0,. . . ,9} and (10,. . . , 17) (as shown in Figure 5). The 
second non-principal basin (bs) on Al identifies the following 
two groups: (0,. . . ,6} and (7,. . . ,17}. Thus, no basin 
identifies the overlap between the cluster-projections. It may 
be possible to identify such overlaps through a non-trivial post 
processing step. However, it is not clear how many basins 
are required and how to recognize that cluster-projections 
overlap from the weights on attribute values. We believe 
that any such post-processing step itself will be similar to the 
CACTUS algorithm. The result of running STIRR on the 
dataset DS3 is shown in Figure 6. STIRR merged the two 
cluster-projections on the second attribute, possibly because 
one of the cluster-projections participates in more than one 
cluster. 


20 : 20 : 20 : 


99 I 99 : 99: 


Figure 3: DS3 


20 : 20 : m: 


99 I 99, 99 1 


Figure 6: DS3:STIRR’s O/P 


A w.r.t. B B w.r.t. C C w.r.t. B 
al, a2:2 bl, bz:2 cl, Cz:3 


al,a3:2 bl, b3:2 cl, c3:2 
al,a4:2 bz, b3:2 
a2,a3:2 
a2,a4:2 
a3, a4:2 


Figure 7: C~J Figure 8: CII 


should be valid classes of clusters, and our cluster definition 
includes these classes. CACTUS correctly discovers all 
the implanted clusters from the datasets DSl, DS2, and 
DS3. Thus, our definition of a cluster and hence CACTUS, 
which discovers all clusters allowed by our definition, seems 
to identify a broader class of clusters than that discovered 
by STIRR. Since it is not possible to characterize clusters 
discovered by STIRR, we could not construct any example 
datasets from which CACTUS does not retrieve the expected 
clusters and STIRR does. However, it is possible that such 
types of clusters exist. 


From these experiments, we observe that STIRR fails 
to discover the following classes of clusters: (1) clusters 


4 CACTUS 


consisting of overlapping cluster-projections on any attribute, In this section, we describe our three-phase clustering algo- 
(2) clusters where two or more clusters share the same cluster- rithm CACTUS. The central idea behind CACTUS is that a 
projection. However, intuitively, these two classes of clusters summary of the entire dataset is sufficient to compute a set 
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of “candidate” clusters which can then be validated to deter- 
mine the actual set of clusters. CACTUS consists of three 
phases: summarization, clustering, and validation. In the 
summarization phase, we compute the summary information 
from the dataset. In the clustering phase, we use the sum- 
mary information to discover a set of candidate clusters. In 
the validation phase, we determine the actual set of clus- 
ters from the set of candidate clusters. We introduce a hy- 
pothetical example which we use throughout the paper to 
illustrate the successive phases in the algorithm. Consider 
a dataset with three attributes A, B, and C with domains 
{a17a2Ta37a4}, {hTb2,b3,b4}, and {C1~~2~c3rc4}9 respec- 


tively. Let the strongly connected attribute value pairs be as 
shown in Figures 7 and 8. 


4.1 Summarization Phase 


In this section, we describe the summarization phase of 
CACTUS. We show how to efficiently compute the inter- 
attribute and the ii-ma-attribute summaries, and then describe 
the resource requirements for maintaining these summaries. 


Categorical attributes usually have small domains. Typical 
categorical attribute domains considered for clustering consist 
of less than a hundred or, rarely, a thousand attribute values. 
An important implication of the compactness of categorical 
domains is that the inter-attribute summary Cij for any pair 
of attributes Ai and Aj fits into main memory because the 
number of all possible attribute value pairs from A; and A, 
equals ]DiJ . ]Ioj]. For the rest of this section, we assume 
that the inter-attribute summary of any pair of attributes fits 
easily into main memory. (We will give an example later 
to support this assumption, and to show that typically inter- 
attribute summaries for many pairs of attributes together fit 
into main memory.) However, for the sake of completeness, 
we extend our techniques in Section 5 to handle cases where 
this trait is violated. The same argument holds for the intra- 
attribute summaries as well. 


4.1.1 Inter-attribute Summaries 


We now discuss the computation of the inter-attribute sum- 
maries. Consider the computation of Cij, i # j. We initialize 
a counter to zero for each pair of attribute values (ai, aj) E 
2)i x Vj, and start scanning the dataset D. For each tuple 
t E D, we increment the counter for the pair (t.A;,t.Aj). 
After the scan of D is completed, we compute g* by set- 
ting to zero all counters whose value is less than the threshold 


“ij =a.*. Thu s, counts of only the strongly con- 
nected pairs are reiained. The number of strongly connected 
pairs is usually much smaller than ]23i] . ]Dj 1. Therefore, the 
set of strongly connected pairs can be maintained in special- 
ized data structures designed for sparse matrices [DER86].6 


We now present a hypothetical example to illustrate the 
resource requirements of the simple strategy described above. 
Consider a dataset with 50 attributes each consisting of 100 


% our current implementation, we maintain the counts of strongly 
connected pairs in an array and do not optimize for space. 


attribute values. Suppose we have 100 MB of main memory 
(easily available on current desktop systems). Assuming that 
each counter requires 4 bytes we can maintain counters for 
2500 (= ,~~~~&r~,) attribute pairs simultaneously. With 50 
attributes, we have to evaluate 1225 attribute pairs. Therefore, 
we can compute all inter-attribute summaries together in 
just one scan of the dataset. The computational and space 
requirements here are similar to that of obtaining counts of 
pairs of items while computing frequent itemsets [AMS+96]. 


Quite often, a single scan is sufficient for computing Cr J. 


In some cases, we may need to scan D multiple times- 
each scan computing Y&j for a different set of (i, j) pairs. 
The computation of the inter-attribute summaries is CPU- 
intensive, especially when the number of attributes n is high, 
because for each tuple in the dataset, we have to increment 
9 counters. Even if we require multiple scans of the 
dataset, the I/O time for scanning the dataset goes up but the 
total CPU time-for incrementing the counters-remains the 
same. Since the CPU time dominates the overall summary- 
construction time, the relative increase due to multiple scans 
is not significant. For instance, consider a dataset of 1 million 
tuples defined on 50 attributes, each consisting of 100 attribute 
values. Experimentally, we found that the total time for 
computing the inter-attribute summaries of the dataset with 1 
million tuples is 1040 seconds, whereas a scan of the dataset 
takes just 28 seconds. Suppose we partition all the 1225 pairs 
of attributes into three groups consisting of 408, 408, and 
409 pairs respectively. The computation of the inter-attribute 
summaries of attribute pairs in each group requires a scan 
of the dataset. The total computation time will be around 
1096 seconds, which is only slightly higher than computing 
the summary in one scan. 


4.1.2 Intra-attribute Summaries 


In this section, we describe the computation of the intra- 
attribute summaries. We again exploit the characteristic 
that categorical domains are very small and thus assume 
that the intra-attribute summary of any attribute Ai fits in 
main memory. Our procedure for computing Cii reflects the 
evaluation of the following SQL query: 


Select Tl.A, T2.A, count(*) 
From Cij as Tl(A,B), Cij as T2(A,B) 
Where Tl .A # T2.A and Tl .B = T2.B 
Group by Tl .A, T2.A 
Having count > 0; 


The above query joins Cij with itself to compute the set of 
attribute value pairs of Ai strongly connected to each other 
with respect to Aj.’ Since Cij fits in main memory the self- 
join and hence the computation of C$ is very fast. We will 
observe in the next section that, at any stage of our algorithm, 
we only require C$ for a particular pair of attributes Ai and 


7For an exposition of join processing, see any standard textbook on 
database systems, e.g., [Ram97]. 
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Aj. Therefore, we compute Cii, (j # i), for each (i,j) pair 
whenever it is required. 


Consider the example shown in Figure 7. (We use the 
notation CXY to denote the inter-attribute summary between 
attributes X and Y.) The inter-attribute summaries CAB, 
CBC, and CAC correspond to the edges between attribute 
values in the figure. The intra-attribute summaries CzA, 


%J3* % are shown in Figure 8. 


4.2 Clustering Phase 


In this section, we describe the two-step clustering phase 
of CACTUS that uses the attribute summaries to compute 
candidate clusters in the data. In the first step, we analyze 
each attribute to compute all cluster-projections on it. In the 
second step, we synthesize, in a level-wise manner, candidate 
clusters on sets of attributes from the cluster-projections on 
individual attributes. That is, we determine candidate clusters 
on a pair of attributes, then extend the pair to a set of three 
attributes, and so on. We now describe each step in detail. 


4.2.1 Computing Cluster-Projections on Attributes 


Let Al, . . . , A, be the set of attributes and Di, . . . , D, be 
their domains. The central idea for computing all cluster- 
projections on an attribute is that a cluster (Cl,. . . , Cn) 
over the set of attributes {AI, . . . , A,} induces a sub-cluster 
over any attribute pair (A;, Aj), i # j. In addition, the 
cluster-projection Ci on Ai of the cluster C is the intersection 
of the cluster-projections on Ai of 2-clusters over attribute 
pairs (Ai, Aj), j # i. For example, the cluster-projection 
{bi, ba} on the attribute B in Figure 7 is the intersection 
of {bi, ba, bs} (the cluster-projection on B of the 2-cluster 
({ bi , ba, ba}, { ci , ~2))) and { bi , ba} (the cluster-projection on 
B of the 2-cluster ({al, a2, as, ad}, {bi, bz})). We formalize 
the idea in the following lemma. 


Lemma 4.1 Let C = (Ci, . . . , Cn) be a cluster on the set of 
attributes {Al, . . . , An}. Then, 
(1) For all i # j, i, j E (1,. . . , n}, (Ci, Cj) is a sub-cluster 
over the pair of attributes (Ai, Aj). 


(2) There exists a set {Ci : j # i and (C!, Cj) is a 2-cluster 


over (Ai, Aj)} such that Ci = nj+Cf. 


Lemma 4.1 motivates the following two-step approach. In 
the first pairwise cluster-projection step, we cluster each at- 
tribute Ai with respect to every other attribute Aj, j # i to 
find all cluster-projections on Ai of 2-clusters over (Ai, Aj). 
In the second intersection step, we compute all the cluster- 
projections on Ai of clusters over {Al, . . . , A,} by inter- 
secting sets of cluster-projections from a-clusters computed 
in the first step. However, the problem of computing cluster- 
projections of P-clusters in the pairwise cluster-projection step 
is at least as hard as the NP-complete clique problem [GJ79].* 


sA clique in @ is a set of vertices that are connected to each other by 
edges with non-zero weights. Given a graph E = (V, E) and a constant J, 
the clique problem determines if p consists of a clique of size at least J. 


B 


b4 ;------; 


t k3: I 


% 
. . . , 


bl iti ---- 


al a2 a3 a4 
A 


Figure 9: Extending {ai, aa} w.r.t. B 


The following lemma formalizes the computational complex- 
ity. The proof is given in the full paper [GGR99]. 


Lemma 4.2 Let Ai and A, be two attributes. The problem 
of computing all cluster-projections on Ai of 2-clusters over 
(Ai, Aj) is NP-complete. 


To reduce the computational complexity of the cluster- 
projection problem, we exploit the following property which, 
we believe, is usually exhibited by clusters in the categorical 
domain. If a cluster-projection Ci on Ai of one (or more) 
cluster(s) is larger than a fixed positive integer, called the 
distinguishing number (denoted K), then it consists of a small 
identifying set-which we call the distinguishing set-of 
attribute values such that they will not together be contained 
in any other cluster-projection on A;. Thus, the distinguishing 
set distinguishes C; from other cluster-projections on Ai. 
Note that a proper subset of the distinguishing set may still 
belong to another cluster-projection, and that two distinct 
clusters may share an identical cluster-projection (as in 
Figure 1). 


We believe that the distinguishing subset assumption holds 
in almost all cases. Even for the most restrictive version, 
which occurs when the distinguishing number is 1 and all 
cluster-projections of the set of clusters are distinct, the as- 
sumption only requires that each cluster consist of a set of 
attribute values-one on each attribute-that does not belong 
to any other cluster. For the example in Figure 7, the sets 
{ai} or {aa} identify the cluster-projection {ai, aa} on the 
attribute A. We now formally state the assumption. 


Distinguishing Subset Assumption: Let Ci and Ci each of 
size greater than IE be two distinct cluster-projections on the 
attribute Ai. Then there exist two sets Si and S;l such that 


We call K the distinguishing number. 


Paitwise Cluster-Projections 


We compute cluster-projections on Ai of 2-clusters over the 
attribute pair (Ai, Aj) in two steps. In the first step, we find 
all possible distinguishing sets (of size less than or equal to K) 
on A;. In the second step, we extend with respect to Aj some 
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of these distinguishing sets to compute cluster-projections on 
Ai. Henceforth, we write “cluster-projection on Ai” instead 
of a “cluster-projection on Ai of a 2-cluster over (Ai, Aj) .” 


Distinguishing Set Computation: In the first step, we rely on 
the following two properties to find all possible distinguishing 
sets on Ai. (1) All pairs of attribute values in a distinguishing 
set are strongly connected; that is the distinguishing set forms 
a clique. (2) Any subset of a distinguishing set is also a clique 
(monotonic@ property). These two properties allow a level- 
wise clique generation similar to the candidate generation in 
apriori [AMS+96]. That is, we first compute all cliques of 
size 2, then use them to compute cliques of size 3, and so on 
until we compute all cliques of size less than or equal to K. 


Let Ck denote the set of all cliques of size equal to k. We 
give an inductive description of the procedure to generate the 
set Ck. The base case C’s when k = 2 consists of all pairs 
of strongly connected attribute values in Di. These pairs can 
easily be found from C$. The set Ck+i is computed from the 
set CI, (k 2 2) by ‘joining” Ck with itself. The join is the sub- 
set join-used in the candidate generation step of the frequent 
itemset computation in the apriori algorithm [AMS+96]. We 
also remove all the candidates in C’k+l that contain a proper 
k-subset not in Ck (a la subset pruning in apriori). 


Extension Operation: In the second step, we “extend” some 
of the candidate distinguishing sets computed in the first 
step to compute cluster-projections on Ai of 2-clusters on 
(Ai, Aj). The intuition behind the extension operation is 
illustrated in Figure 9. Suppose we want to extend {ui , us} on 
A with respect to B. We compute the set {bi, ba} of attribute 
values on B strongly connected with {ai, us}. We then extend 
{ai, ua} with the set of all other values {us, ~4) on A that is 
strongly connected with {bit bs}. 


Informally, the extension of a distinguishing set S c Di 
adds to S all attribute values in Vi that are strongly connected 
with the set of all attribute values in Vj that S is strongly 
connected with. We now introduce the concepts of sibling set, 
subsetflug, and the participation count to formally describe 
the extension operation. 


Definition 4.1 Let Ai and Aj be two attributes with domains 
Vi and Vj. Let CS( be the set of cluster-projections on A’i 
of 2-clusters over (Ai, Aj). Let VS{ be a set of candidate 
distinguishing sets, with respect to Aj, on attribute Ai. The 
sibling set 5’; of Si E VS{ with respect to the attribute Aj is 
defined as follows: 


I!$ = {Uj E Vj : for all ui E Si, U*(Ui, Uj) > 0) 


I$ ] is called the sibling strength of Si with respect to Aj. 


The subset Jug of Si E VSf with respect to a collection of 
sets C, is said to be set (to 1) if there exists a set S E C, such 
that Si c S. Otherwise, the subset flag of Si is not set. 
The participation count of Si E VS{ with respect to C, is the 
sum of the sibling strengths with respect to Aj of all supersets 
OfSiinC,. 


Informally, the subset flag and the participation count serve 
the following two purposes. First, a cluster-projection may 
consist of more than one distinguishing set in VSf . Therefore, 
if we extend each set in VS{ a particular cluster-projection 
may be generated several times, once for each distinguishing 
set it contains. To avoid the repeated generation of the 
same cluster-projection, we associate with each distinguishing 
set a subset flag. The subset flag indicates whether the 
distinguishing set is a subset of an existing cluster-projection 
in CSS. Therefore, if the subset flag is set then the 
distinguishing set need not be extended. For the example 
shown in Figure 7, the distinguishing sets {ui} and {us} on 
A can both be extended to the ,cluster-projection {al, ~2). 
Second, the distinguishing subset assumption applies only to 
cluster-projections of size greater than K. Therefore, a clique 
of size less than or equal to K may be a cluster-projection on 
its own even though it may be a subset of some other cluster- 
projection. To recognize such small cluster-projections, we 
associate a participation count with each distinguishing set. 
If the participation count of a distinguishing set with respect 
to CSS is less than its sibling strength then it may be a small 
cluster-projection. 


Algorithm 4.1 Extend(VSi , Cij) 
/* output: csi */ 
/* Initialization */ 
csi = cp 
Reset the subset flags and the participation counts of all 


distinguishing sets in VSS to zero 
foreach Si E VSi 


if the subset flag of Si is not set then 
Extend Si to C,” 
Set the subset flags and increment by the sibling 


strength of Si the participation counts of all subsets 
of CS in VS! 


end /*if*2 
2’ 


end /*for*/ 
Identify and add small cluster-projections (of size 5 K) to CS! 


The pseudocode for the computation of CS: is shown in Al- 
gorithm 4.1. Below, we describe each step in detail. 


Initialization: The first two steps initialize the procedure: 
we set CS: = 4, and the subset flags and their participation 
counts of all distinguishing sets in VS: to zero. 
Extending Si: Let 5’: be the sibling set of Si with respect to 
Aj . Let Cf be the sibling set of Sf with respect to Ai. Then, 
we extend Si to the cluster-projection CF. Add CF to CS{ . 
Prune subsets of Cf : Suppose CF was extended from Si. 
Then, by definition, subsets of Cf cannot be the distinguish- 
ing sets of other cluster projections on Ai. Therefore, we set 
(to 1) all subset flags of subsets of Cf (including Si) in VSi. 
The participation count of each of these subsets is also in- 
creased by IS,” J-the sibling strength of Si. 
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Identifying small cluster-projections: While extending dis- 
tinguishing sets, we only choose sets whose subset flags are 
not set. We check if each unextended distinguishing set Si 
whose subset flag is set can be a small (of size less than K) 
cluster-projection. If the participation count of S; equals its 
sibling strength, then Si cannot be a cluster-projection on its 
own. Otherwise, S; may be a cluster-projection. Therefore, 
we add Si to CS: . 


Note that the computation of cluster-projections on Ai 
requires only the inter-attribute summary Cij and the intra- 
attribute summary Cji. Since CQ and C$ fit into main 
memory, the computation is very fast. 


Intersection of Cluster-projections 


Informally, the intersection step computes the set of cluster- 
projections on Ai of clusters over {A,, . . . , A,} by succes- 
sively joining sets of cluster-projections on Ai of 2-clusters 
over attribute pairs (A;, Aj), j # i. For describing the proce- 
dure, we require the following definition. 


Definition 4.2 Let Si and Ss be two collections of sets of 
attribute values on Ai. We define the intersection join S1 n S2 


between & and Sa as follows: St fl Sa dgf 


{s : 3~ E Si and sa E Sa such that s = si nsa and IsI > 1) 


Let CS{ be the set of cluster-projections on Ai with respect 
to Aj, j # i. Let ji = 1 if i > 1, else jr = 2. Starting 
with S = CS:‘, the intersection step executes the following 
operation for all k # i. 


S=SllC$, ifk#i 


The resulting set S is the set of cluster-projections on Ai of 
clusters over {Al, . . . , A,}. Besides being a main-memory 
operation, the number of cluster-projections on Ai with re- 
spect to any other attribute Aj is usually small; therefore, the 
intersection step is quite fast. 


Further optimizations are possible over the basic strategy 
described above for computing cluster projections. For 
instance, we can combine the computation of C$ and that of 
CS: because, for each cluster-projection in CS: , we compute 


its sibling set which is a cluster-projection in CS:. However, 
we do not consider such optimizations because the clustering 
phase takes a small fraction (less than 10%) of the time taken 
by the summarization phase. (Our experiments in Section 6 
confirm this observation.) 


4.2.2 Level-wise Synthesis of Clusters 


In this section, we describe the synthesis of candidate clus- 
ters from the cluster-projections on individual attributes (com- 
puted as described in Section 4.2). The central idea is that a 


cluster on a set of attributes induces a sub-cluster on any sub- 
set of the attributes (monotonicity property). The monotonic- 
ity property follows directly from the definition of a cluster. 
We also exploit the fact that we want to compute clusters over 
the set of all attributes {Al, . . . , A,}. Informally, we start 
with cluster-projections on AI and then extend them to clus- 
ters over (Al, AZ), then to clusters over (Al, AZ, As), and so 
on. 


Let Ci be the set of cluster-projections on the attribute Ai, 
i = l,...,n. Let C” denote the set of candidate clusters 
defined over the set of attributes Al, . . . , Ak. Therefore, 
Cl = Ci. We successively generate C”+l from C’” until 
C” is generated or C”+l is empty for some lc + 1 < 12. 
The generation of C k+1 from C” proceeds as follows. Set 
c”+l = 4. For each element ck = (cl,. . . , ck) E c”, we 
attempt to augment ck with a cluster projection ck+l on the 
attribute &+I. If for all i E { 1,. . . , /c}, (c;, ck+l) is a sub- 
cluster on (Ai, A k+l)-which can be checked by looking up 
&(k+l)-we augment ck to ck+’ = (cl,. . . , ck+l) and add 
Ck+l to c”+1. 


For the example in Figure 7, the computation of the set 
of candidate clusters proceeds as follows. We start with 
the set {ai, aa} on A. We then find the candidate 2-cluster 
{({%,az), @l,b2))) over the attribute pair (A, B), and then 
the candidate 3-cluster {({al, aa}, { bi , bz }, {cl, CZ}) } over 
{A, B, C). 


4.3 Validation 


We now describe a procedure to compute the set of actual 
clusters from the set of candidate clusters. Some of the 
candidate clusters may not have enough support because some 
of the 2-clusters that combine to form a candidate cluster may 
be due to different sets of tuples. To recognize such false 
candidates, we check if the support of each candidate cluster 
is greater than the required threshold. Only clusters whose 
support on D passes the threshold requirement are retained. 


After setting the supports of all candidate clusters to zero, 
we start scanning the dataset D. For each tuple t E D, 
we increment the support of the candidate cluster to which t 
belongs. (Because the set of clusters correspond to disjoint 
interval regions, t can belong to at most one cluster.) At 
the end of the scan, we delete all candidate clusters whose 
support in the dataset D is less than the required threshold: (Y 
times the expected support of the cluster under the attribute- 
independence assumption. 


By construction, CACTUS discovers all clusters that satisfy 
our cluster definition, and hence the following theorem holds. 


Theorem 4.1 Given that the distinguishing subset assump- 
tion holds, CACTUS finds all and only those clusters that sat- 
isfy Definition 3.3. 


5 Extensions 


In this section, we extend CACTUS to handle unusually 
large attribute value domains as well as to identify clusters 
in subspaces. 
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5.1 Large Attribute Value Domains 


Until now, we assumed that the domains of categorical 
attributes are such that the inter-attribute summary of any pair 
of attributes and the intra-attribute summary of any attribute 
fits in main memory. For the sake of completeness, we modify 
the summarization phase of CACTUS to handle arbitrarily 
large domain sizes. 


Recall that the summary information only consists of 
strongly connected pairs of attribute values. For large domain 
sizes, the number of strongly connected attribute value pairs 
(either from the same or from different attributes) relative to 
the number of all possible attribute value pairs is very small. 
We exploit this observation to collapse sets of attribute values 
on each attribute into a single attribute value thus creating a 
new domain of smaller size. The intuition is that if a pair of 
attribute values in the original domain are strongly connected, 
then the corresponding pair of transformed attribute values 
are also strongly connected, provided the threshold for strong 
connectivity between attribute values in the transformed 
domain is the same as that for the original domain. 


Let Ai be an attribute with an unusually large domain Di. 
Without loss of generality, let ‘Di be the set (1,. . . , IDi/). Let 
M < IDil be the maximum number of attribute values per 
attribute so that the inter-attribute summaries and the intra- 
attribute summaries fit into main memory. Let c = [%I. 
We construct Do: of size M from Vi by mapping for a given 
2 E (0,. . . ,M-l},thesetofattributevalues{a.c+l,...,a. 
c + c} to the value z + 1. Formally, 


27:: = {f(l), . . . 7 f(lVil>}, where f(i) = [i] + 1 


We set the threshold for the strong connectivity involving 
attribute values in DoI as if Vi was being used. We then 
compute the inter-attribute summaries involving Ai using the 
transformed domain Vi. For each attribute value ai E Vi 
that participates in a strongly connected pair (ai,aj) (aj E 


. . Vj, 3 # z), we expand ai to the set of all attribute values 
{a: . c + 1,. . . , a!, . c + c} C Vi that map into ai and form 
thepairs(ai.c+l,aj),.. .,(ai.c+c,aj). Wethenscanthe 
dataset D to count the supports of all these pairs, and select 
the strongly connected pairs among them; they constitute the 
inter-attribute summary Cij. 


The number of new pairs whose supports are to be counted 
is less than or equal to c . (Cij ( where (Cij 1 represents the 
number of strongly connected pairs in Vi x Vj. If this set of 
pairs is still larger than main memory, we can repeat the above 
transformation trick. However, we believe that such repeated 
application will be rare. 


5.2 Clusters in Subspaces 


CACTUS does not discover clusters in subspaces for the 
following reason. The order Al, . . . , A, in which cluster- 
projections on individual attributes are combined may not be 
the right order to find a subspace cluster C. For instance, if C 
spans the subspace defined by a set of attributes {As, As, A4} 


(when n > 4) then the level-wise synthesis described in 
Section 4.2.2 will not find C. 


The extension to find subspace clusters exploits the mono- 
tonicity property of subspace clusters. That is, a cluster 
in a subspace S induces a subcluster on any subset of S. 
The monotonicity property again motivates the apriori-style 
level-wise synthesis of candidate clusters from the cluster- 
projections on individual attributes. The algorithm differs in 
two ways from the algorithm to find clusters over all attributes. 
The first difference is that we do not restrict that a cluster- 
projection on an attribute should participate in Z-cluster with 


‘every other attribute. The second difference is in the proce- 
dure for generating the set of candidate clusters. We now dis- 
cuss both differences. 


We skip the intersection of cluster-projections on each 
attribute Ai with respect to every other attribute Aj (j # i) 
for the following two reasons. First, a cluster in subspace 
S may not induce a 2-cluster on a pair of attributes not 
in S, and hence the intersection of cluster-projections on 
an attribute in S with respect to every other attribute may 
return an empty set. Second, the intersection may cause 
the loss of maximality (condition (2) in Definition 3.3) of 
a subspace cluster. For instance, a cluster-projection on Ai 
with respect to Aj corresponds to a a-cluster over (A;, Aj) 
which, by definition, is a subspace cluster; truncating such a 
cluster-projection in the intersection step will no longer yield 
a maximal cluster on (Ai, Aj). 


In the candidate generation algorithm, we let C” denote the 
set of candidate clusters defined on any set of k-attributes 
(not necessarily {Al, . . . , Ak}). Otherwise, the candidate 
generation proceeds exactly as in Section 4.2.2. The reason 
is that a subspace cluster on k attributes may not always be in 
the first k attributes. 


For a cluster c E C” in a subspace consisting of k attributes, 
the above candidate generation procedure examines 2” - (k + 
1) candidates. Depending on the value of k (say, larger than 
15), the number of candidate clusters can be prohibitively 
high. The problem of examining a large number of candidate 
clusters has been addressed by Agrawal et al. [AGGR98]. 
They use the minimum description length principle to prune 
the number of candidate clusters. Their techniques apply 
directly in our scenario as well. Therefore, we do not address 
this problem; instead, we refer the reader to the original 
paper [AGGR98]. 


6 Performance Evaluation 


In this section, we show the results of a detailed evaluation 
of the speed and scalability of CACTUS on synthetic and 
real datasets. We also compared the performance of CAC- 
TUS with the performance of STIRR.’ Our results show that 
CACTUS is very fast and scalable; it outperforms STIRR by 
a factor between 3 and 10. 


gWe intend to compare CACTUS and ROCK after our ongoing implemen- 
tation of ROCK is complete. 
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Second Author (contd.) 
Ceri, Navathe 
Vianu, Grumbach 
Silbershatz, Levy 
Jagadish, Gehani 
Su, Chen, Chu 
Su, Lee 
Collmeyer, Shemer 
Su, Lipovski, Copeland 
Yu, Dias 
Lee, Cheng 
Griffeth, Fischer 


Table 1: 2-clusters on the pair of first author and second author attributes 


6.1 Synthetic Datasets 


We first present our experiments on synthetic datasets. The 
test datasets were generated using the data generator devel- 
oped by Gibson et al. [GKR98] to evaluate STIRR. (See Sec- 
tion 3.2 for a description of the data generator.) We set the 
number of tuples to 1 million, the number of attributes to 10 
and the number of attribute values for each attribute to 100. 
In all datasets, the cluster-projections on each attribute were 
[0,9] and [lo, 191 ( as shown in Figure 1). We fix the value 
of (Y at 3, and the value of the distinguishing number K at 2. 
For STIRR, we fixed the number of iterations to be lo-as 
suggested by Gibson et al. [GKR98]. 


CACTUS discovered the clusters in the input datasets 
shown in Figures 1,2, and 3. 


Figure 10 plots the running time while increasing the 
number of tuples from 1 to 5 million. Figure 11 plots the 
running time while increasing the number of attributes from 
4 to 50. Figure 12 plots the running time while increasing 
the number of attribute values from 50 to 1000 while fixing 
the number of attributes at 4. While varying the number of 
attribute values, we assumed that until 500 attribute values, 
the inter-attribute summaries would fit into main memory; for 
a larger number of attribute values we took the multi-layered 
approach described in Section 5. In all cases, CACTUS is 3 
to 10 times faster than STIRR. 


6.2 Real Datasets 


In this section, we discuss an application of CACTUS to a 
combination of two sets of bibliographic entries. The results 
from the application show that CACTUS finds intuitively 
meaningful clusters from the dataset thus supporting our 
definition of a cluster. 


The first set consists of 7766 bibliographic entries for arti- 
cles related to database research [Wie] and the second set con- 
sists of 30919 bibliographic entries for articles related to The- 
oretical Computer Science and related areas [Sei]. For each 
article, we use the following four attributes: the first author, 
the second author, the conference or the journal of publication, 
and the year. If an article is singly-authored then the author’s 
name is repeated in the second author attribute as well. The 
sizes of the first author, the second author, the conference, and 
the year attribute domains for the database-related, the theory- 
related, and the combined sets are {3418,3529,1631,44}, 
{8043,8190,690,42}, and { 10212,10527,2315,52} respec- 
tively. We combined the two sets together to check if CAC- 
TUS is able to identify the differences and the overlap be- 
tween the two communities. Note that for these domains, 
some of the inter-attribute summaries and the intra-attribute 
summaries-especially those involving the first author and the 
second author dimensions-do not fit in main memory. HOW- 
ever, we choose this particular dataset because it is easier to 
verify the validity of the resulting clusters (than for some other 
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ACMSIGMOD Management, VLDB, ACM TODS, ICDE, ACMSIGMOD Record 
ACMTG, COMPGEOM, FOCS, GEOMETRY, ICALP, IPL, JCSS, JSCOMP, LIBTR, SICOMP, TCS, TR 
PODS, ALGORITHMICA, FOCS, ICALP, INFCTRL, IPL, JCSS, SCT, SICOMP, STOC 


Table 2: Cluster-projections on Conference w.r.t. the First Author 


publicly available datasets, e.g., the MUSHROOM dataset 
from the UC1 Machine Learning repository). 


Table 5.1 shows some of the 2-clusters on the first au- 
thor and the second author attribute pair. We only present 
the database-related cluster-projections to illustrate that CAC- 
TUS identifies the differences between the two communities. 
We verified the validity of each cluster-projection by querying 
on the Database Systems and Logic Programming bibliogra- 
phy at the web site maintained by Michael Ley [Ley]. Sim- 
ilar cluster-projections identifying groups of theory-related 
researchers as well as groups that contribute to both fields 
also exist. Due to space constraints, we show some cluster- 
projections corresponding to the latter two types in the full 
paper [GGR99]. 


Table 2 shows some of the cluster-projections on the con- 
ference attribute computed with respect to the first author 
attribute. The first row consists exclusively of a group of 
database-related conferences, the second consists exclusively 
of theory-related conferences, and the third a mixture of both 
reflecting a considerable overlap between the two communi- 
ties. 


7 Conclusions and Future Work 


In this paper, we formalized the definition of a cluster when 
the data consists of categorical attributes, and then introduced 
a fast summarization-based algorithm CACTUS for discover- 
ing such clusters in categorical data. We then evaluated our 
algorithm against both synthetic and real datasets. 


In future, we intend to extend CACTUS in the following 
three directions. First, we intend to relax the cluster definition 
by allowing sets of attribute values on each attribute which are 
“almost” strongly connected to each other. Second, motivated 
by the observation that inter-attribute summaries can be in- 
crementally maintained under addition and deletion of tuples, 
we intend to derive an incremental clustering algorithm from 
CACTUS. Third, we intend to “rank” the clusters based on a 
measure of interestingness, say, some function of the support 
of a cluster. 


AcknowIedgements: We thank Prabhakar Raghavan for 
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