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Abstract 


Association rules are a key data-mining tool and as such 


have been well researched. So far, this research has 
focused predominantly on databases containing categorical 


data only. However, many real-world databases contain 
quantitative attributes and current solutions for this case 


are so far inadequate. We introduce a new definition of 
quantitative association rules based on statistical inference 
theory. Our definition reflects the intuition that the 
goal of association rules is to find extraordinary and 
therefore interesting phenomena in databases. We present 


rigorous experimental evaluation on real-world datasets, 
demonstrating the usefulness and characteristics of rules 
mined according to our definition. 


1 Introduction 


Association Rules. The goal of data mining is to 
extract higher level information from an abundance of 
raw data. Association rules are a key tool used for 
this purpose. An association rule is a rule of the form 
X + Y, where X and Y are events, which states that 
when X occurs in the database so does Y, with a certain 
probability (coined the confidence of the rule). A well- 
known application of association rules is in market 
basket data analysis. 


The problem of mining association rules was first 
introduced by Agrawal et. al. in [l], and later broadened 
by Agrawai et. al. in [2], for the case of databases 
consisting of categorical attributes alone. Categorical 
association rules are rules where the events X and Y, 
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on both sides of the rule, are the appearance of given 
categorical items. In this case, we wish to find all 
rules with confidence and support above user-defined 
thresholds (minconf and minsup). Several efficient 
algorithms for mining categorical association rules have 
been published (see [2], [6], [S] for just a few examples). 
A variation of categorical association rules was recently 
introduced by Brin et. al. in [3]. Their new definition 
is based on relating to associations as statistically 
interesting correlations. In all, the problem of mining 
categorical association rules is well understood and 
extensively researched, on both the algorithmic and 
conceptual levels. 


Quantitative Association Rules. In practice the 
information in many, if not most, databases is not 
limited to categorical attributes, but also contains much 
quantitative data. Unfortunately, the definition of 
categorical association rules does not translate directly 
to the case of quantitative attributes. It is therefore 
necessary to provide a definition of association rules 
for the case of a database containing quantitative 
attributes. Srikant et. al. [7] extended the categorical 
definition to include quantitative data. The basis 
for their definition is to build categorical events from 
the quantitative data by considering intervals of the 
numeric values. Thus, each basic event is either a 
categorical item or a range of numerical values. An 
example of a rule according to this definition would be: 


sex = female and age E [20,30] + 


wage E [$5, $101 (conf. 85%) 


Given this definition, [7] provides an algorithm which 
approximately finds all rules by employing a discretiza- 
tion technique. In addition, [7] provides an interest 
filter, aimed at reducing the problem of many similar 
rules. 


While the [7] definition and algorithm for quantita- 
tive association rules provides a strong tool for mining 
quantitative data, there are also several drawbacks to 
their approach. First and foremost, the use of inter- 
vals as the basic means for describing the distribution 
of quantitative values can be limited and, at times, mis- 
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leading. For example, the rule “height E [lOOcm,150cm] 
=s age E [0,14] (70%)” may be true even though few, if 
any, children under the age of one are 100cm tall (see 
Section 4.3 for real-world examples). In addition, the [7] 
definition often results in an exponential blowup of the 
number of rules, as the left-hand side of any given rule 
can always be enlarged. Hence, they place an a priori 
restriction on the maximum support of a rule (ma~~p), 
partially solving this problem. Finally, the discretiza- 
tion employed in the mining algorithm results in loss 
of information. In particular, the algorithm can only 
approximate the best rules (see [7] for details). 


Other work on this problem includes Zhang et. 
al. in [lo] who use clustering methods to improve 
the partitioning of the quantitative attributes in the 
algorithm. Fukuda et. al. in [4] and Yoda et. al. in [9] 
also worked on the quantitative associations problem. 
However, their work is related to a different version of 
the problem and is focused more on prediction, rather 
than association rules. 


A New Definition. In this paper we introduce a new 
definition of quantitative association rules, based on 
the distribution of values of the quantitative attributes. 
The new definition is a natural generalization of the 
categorical definition, when interpreted in the proper 
statistical terms. An example of a rule according to our 
new definition would be: 


sex = female + Wage: mean = $7.90 p/hr 
(overall mean wage = $9.02) 


saying that the average wage for females is $7.90 
dollars per hour. This rule is interesting as it reveals 
a group of people earning a significantly lower than 
average wage ($9.02 p/hr). Our definition captures 
the notion of finding “interesting behavior”, generating 
rules revealing extraordinary phenomena. We use 
accepted statistical tests to confirm the validity of the 
discovered rules. We present algorithms that do not 
use discretization, but rather view the quantitative 
attributes as continuous. Finally, we validate our 
definition through an in-depth evaluation of results. 


Before giving our new definition, it would be helpful 
to backtrack a little and discuss the goal and structure 
of association rules in general. Association rules are 
designed to help us discover “interesting” phenomena or 
behavior in databases. This is accomplished by locating 
sets of transactions containing unexpected behavior. 
Each rule is comprised of a left-hand side and a right- 
hand side: 


l The left-hand side of the rule is a description of a 
subset of the population. 


l The right-hand side of the rule is a description of 
interesting behavior particular to the population 
described on the left-hand side. 


Thus, the general structure of an association rule is: 


population-subset + interesting-behavior 


It is necessary to define what denotes “interesting 
behavior”. In the categorical case, interesting behavior 
is a higher than usual incidence of certain attributes. 
Thus, for categorical attributes, behavior is naturally 
described by a list of items and the probability of 
their appearance. Statistically, this description is the 
probability distribution of the set of items, for the 
given population. So too, we argue, for a set of 
quantitative values the best description of its behavior 
is its distribution. For numerical values, mean and 
variance are comprehensive measures for describing 
a distribution. We therefore choose to describe the 
behavior of a set of quantitative values by calculating 
their mean and variance. 


In order to ensure that we obtain rules that truly 
inform us of remarkable phenomena, we consider the 
behavior of a subset to be interesting if its distribution 
stands out from the rest of the population. We 
therefore say that a subset of the population displaying 
a distribution significantly different from that of its 
complement, either in terms of the mean or the 
variance, is recognized as interesting and noteworthy. 
For example, a possible association rule under the new 
definition would be: 


non-smoker and wine-drinker =S 
life expectancy = 85 (overall = 80) 


Here, the interesting behavior is expressed in a dramatic 
increase in the mean. We use standard statistical meth- 
ods to measure the significance of disparity between the 
distributions. 


In summary, an association rule under the new 
definition is a rule of the form: 


population-subset + 
mean or variance values for the subset 


A rigorous definition is provided in Section 2. In Section 
3 we show that this definition is also computationally 
workable. We need not use discretization and we have 
no exponential blowup in the number of rules. 


Other Statistical Measures. We note that a similar 
definition can be established using any other measure 
of the statistical distribution (e.g. median). Thus, 
our definition actually provides a framework for an 
entire family of association rules. Athough mean-based 
rules are the most natural, other measures provide 
important information. The variance of a subset, for 
example, points to the homogeneity of those included 
in the subset. We choose to focus on the mean and 
variance measures, as they are the most commonly used 
measures, and tend to provide most of the interesting 
information regarding the distribution. 
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Sample Results 
In the coming sections we will present exact definitions, 
algorithms and evaluation for our new concepts. How- 
ever, before delving into these details, we first present 
some sample results, obtained from an actual database. 


We applied our algorithm to a database called De- 
terminants of Wages from the 1985 Current Population 
Survey in the United States (the database may be found 
at http://lib.stat.cmu.edu/datasets). The database con- 
tains 534 transactions and 11 attributes (7 categorical 
and 4 quantitative). Here are some of the rules dis- 
covered with 95% statistical confidence. Note that the 
mean wage overall is $9.02 p/hr. 


Sex = female j 
Wage: mean = $7.90 p/hr 


Sex = female and South = Yes + 
Wage: mean = $6.30 p/hr 


The second rule is a sub-rule (defined in section 2.2) 
of the first and shows that although females overall are 
paid lower wages, in the South of the USA the situation 
is much worse. We hope that things have improved 
somewhat since 1985. The other side of the coin of 
these two rules is the next rule also found: 


Sex = male and Race = White + 
Wage: mean = $10.33 p/hr 


Other rules linked Education (as in years of formal 
education) to Wage and justify the argument that on 
average, education improves earning power: 


Education E [2, 131 years =+- 
Wage: mean = $7.52 p/hr 


Education E [14, 181 years + 
Wage: mean = $11.64 p/hr 


In a different and somewhat unexpected direction, a 
rule connecting Education to Age was found. The mean 
age of the population was 37 years. 


Education E [3, lo] years + 
Age: mean = 46 years old 


This rule shows us that those with very little schooling 
are on average far older, a sign of positive progress in so- 
ciety. Usually, most research on this database would be 
limited to factors affecting a person’s wage. Through 
our data-mining technique we exposed interesting in- 
formation which we would not initially have thought to 
look for. The Wages database provided us with inter- 
esting results. Clearly, this gives only a flavor of the 
rules. A rigorous evaluation of the quality of the rules 
discovered is provided in Section 4. 


Outline. In the next section we develop a formal 
framework for our definition. In section 3 we present 
efficient algorithms for some cases of quantitative rules 
and demonstrate the computational viability of mining 


for these rules. In section 4 we present experimental 
evaluation and analysis of results obtained, including 
comparisons to [7]. We use real-world databases and 
present evaluations by domain experts who provided 
us with the databases and used the results for their 
research. Finally, we present open questions and 
discussion for further work. 


2 Definitions 


An association rule contains a left-hand side and a 
right-hand side. In the most general form, the left- 
hand side of the rule is a description of a subset of 
the database, while the right-hand side provides a 
description of outstanding behavior of this subset. This 
general structure gives rise to many different concrete 
rule types, depending on the type of subset used in 
the left-hand side, and the description used for the 
right-hand side. In this paper we focus on two specific 
types, which we found to be most useful in practice, and 
algorithmically manageable. We also provide a general 
definition of sub-rules, which, as we shall see, are 
essential for providing both comprehensive and exact 
information. 


Notations. Let E = er, . . . . e, be the set of attributes 
(or fields) for a database D of transaction. Let EQ E E 
be the set of quantitative attributes, EC s E the set 
of categorical attributes, and C the set of all possible 
categorical values. Each transaction in D is an m- 
tuple t = (<er,wr>,..., <e,,w,>), of attributes and 
corresponding values (i.e. for each i, if ei is categorical 
then vi E C, and if ei is quantitative then vi E R. 


2.1 Basic Rule Types 


2.1.1 Categorical + Quantitative Rules 


The first type of rule we consider are rules where the 
left-hand side is a set of categorical attributes, and the 
right-hand side is the mean value for some quantitative 
attributes. 


The Left-Hand Side. The left-hand side of the rule is 
a set X C EC x C of categorical attributes and matching 
categorical values. The set X, which is the profile, 
defines a subset of the database. For a transaction t 
= (<el,q>,...,<e m,v,>), we say that t has profile X 
if X C_ t, i.e. t coincides with X whenever X is defined. 
We denote the set of transactions with profile X by TX. 


The Right-Hand Side. The right-hand side of a 
rule provides the mean values of part or all of the 
quantitative attributes, with the mean taken over the 
transactions which match the profile of the left-hand 
side. Formally, for a list of quantitative attributes J, 
and a set of transactions T, we denote by MeanJ(T) 
the vector of mean values of the attributes in j for the 
set T. The right-hand side of the rule is MeanJ(Tx) 
for some J C EQ. 
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Significance. A rule is only interesting if the mean for 
the subset TX is significantly different from the rest 
and is therefore unexpected. We therefore compare 
the mean in TX to the mean of the complement, i.e. 
D -TX. Note, however, that although the two means 
may be numerically different in the database, we may 
not have any statistical evidence to infer a difference 
in the real populations. Thus, we use statistical tests 
to establish the significance level of the difference. 
In the case of mean-values we use the standard Z- 
test, to establish significance of the inequality of the 
means. We test the hypothesis that the mean of the 
two subsets are not equal (the null hypothesis) against 
the hypothesis claiming a difference of means. A rule 
is then considered significant if the null hypothesis is 
rejected with confidence above a set threshold (usually 
95%). Formally, we say that MeanJ(Tx) is significantly 
different from MeanJ(Tr), denoted MeunJ(Tx) $ 
MeanJ(Ty), if for every e E J the means of attribute 
e in TX and Ty are different, based on the appropriate 
statistical test. 


We are now ready to define mean-based quantitative 
association rules. 


Definition 1 A (mean-based) categorical to quantita- 
tive association rule is of the form X + MeanJ(Tx), 
where X is a profile of categorical attributes (X C 
EC x C), J is a set of quantitative attributes (J s EQ), 
and MeanJ(Tx) $ MeunJ(D - TX). 


Minimum Difference. Sometimes, finding popula- 
tions for which the means are merely different does not 
lead to interesting information. If we were to discover, 
for example, a group of people with life expectancy 
three days more than the overall population, it may 
not be of interest to us even if it passes a statistical 
test. We therefore allow a user-defined minimum dif- 
ference parameter, denoted mindif, and we say that 
Meani $ Meani if there is statistical support 
for inferring that jMeuni(Tx)-Meani > mindif. 


Categorical =+ Quantitative Rules Based on 
other Distribution Measures. The rules defined 
here provide a tool to discover interesting behavior of 
the distribution with regards to its mean value. An 
analogous definition can be provided given any other 
measure of the distribution, e.g. variance, median. For 
a given measure M (e.g. M = Variance), an M-based 
association rule is of the form X + Mi(Tx). The rest of 
the definitions carry over directly from the basic mean- 
based rules by changing Mean to M throughout. For 
a given measure M, significance of inequality, denoted 
MJ(Tx) $ MJ(TY), is defined with the proper test for 
this measure, e.g. the F-test for variance. The algorithm 
outlined in section 3.2 is correct for any measure and 
has been implemented for variance-based rules as well. 


2.1.2 Quantitative + Quantitative Rules 


Next, we consider rules for which both the left-hand side 
and the right-hand side are comprised of quantitative 
attributes. We provide a definition for the case 
where both sides are comprised of a single quantitative 
attribute. 


The left-hand side of the rule is a triplet X = 
(e, rl, rs), where e is a quantitative attribute, and r1, 
rs are real values, r1 < ~2. We call X the profile. 
We say that a transaction t has profile X if the value 
of t for the attribute e is within the interval [ri,r2]. 
We denote by TX the transactions with profile X. 
The right-hand side of the rule is a quantitative 
attribute j (j # e) and its mean value Meunj(Tx). 
As before, significance is ensured by demanding that 
Meunj(Tx) $ Meunj(D - TX). 


At this stage we would like to simply define a rule as 
one of the form X + Meunj(Tx) where Meunj(Tx) + 
Meunj(D - TX). However, in this case, not all rules of 
this type are desirable. We thus introduce additional 
concepts. 


Consider the following (fictitious) database. Assume 
that the average weight of the entire population is 80 
kilograms. The rules-below may be 
database. 


deduced from the 


Age Weight Age Weight 
. . . . . . . . . . . . 
50 80 50 80 q q 60 90 60 90 
70 90 70 90 
80 90 80 90 


age E [60.80] =S average = 90.0 
age E [70,80] + average = 90.0 
age E [50,80] =S average = 87.5 


It is clear that the first rule is the only one we wish 
to obtain. The second rule is contained in the first rule 
adding no new information and is therefore superfluous. 
We point out that if the mean of two adjacent ranges 
is above average, then the union is definitely above 
average. We therefore wish to obtain the widest possible 
rule (if a part of the range contains a different average, 
then this will be revealed as a sub-rule). 


Notice that even though the third rule is even wider 
than the first one, it is nevertheless undesirable. This is 
because it is generated by appending a non-interesting 
region to another rule. This clearly detracts from the 
accuracy and leads to misleading rules. This motivates 
the following formal definitions. 


Irreducible and Maximal Rules. Consider a rule 
X + Meunj(Tx) with X = (e,u, b), and suppose 
that Meunj(Tx) is above average. We now define the 
notions irreducibility and maximality. Intuitively, the 
rule is irreducible if we cannot cut the interval [a, b] in 
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the middle and obtain an interval which is not above 
average. This property ensures that we do not have non- 
interesting regions appended to the edge of the rule (the 
third rule in the above example is reducible). A rule is 
maximal if we cannot enlarge the interval [a, b] either to 
the right or the left and still remain with an irreducible 
rule with above average distribution. Maximal rules 
are therefore the largest “good” rules and provide the 
most concise presentation (the second rule in the above 
example is not maximal). 


Formally, we say that the rule is irreducible if for any 
a < c < b, setting Y = (e,a,c), and 2 = (e,c, b), then 
both Meanj(Ty) and Meanj(Tz) are above average. 
We say that the rule is maximal if for any c < a (c > b) 
setting Y = (e,c, b) (Y = ( e,a,c)) then Meanj(Ty) is 
either not above average or reducible. The definition 
for below average rules is analogous. A rule of this type 
must be both maximal and irreducible. 


We now have all the necessary concepts to define rules 
of this type: 


Definition 2 A (mean-based) quantitative to quantita- 
tive association rule is a maximal and irreducible rule of 
the form X 3 Meanj(Tx) where X is a profile for a 
single quantitative attribute (X E EQ x R x R) , j is 
a quantitative attribute (j E EQ), and Meanj(Tx) $ 
Meanj(D - TX). 


Remark. The profile of a rule of this type is in the 
form of a range. The profile classifies the transactions 
for which the rule refers to and a range provides a 
clear partition into those belonging and those not. 
For example, by saying that a phenomenon occurs for 
people between the ages of 10 and 20, it is clear to 
whom it applies. However, if we were to say that a 
phenomenon occurs for people of average age 15, then 
it would not be clear exactly what population this rule 
is based on and who it describes. 


2.2 Sub-Rules 


We have so far provided a framework for defining rules, 
and definitions for two important categories of them. 
However, not all rules are desired. We are interested in 
finding the key factors of extraordinary behavior of a 
population. Consider the following set of rules, where 
the overall life expectancy is 70 years: 


As we have shown, contained rules which are not sub- 
rules (as their distribution measure is not significantly 
different) are undesirable. In the above example, the 
second rule is contained yet does not have a different 
mean, whereas the third rule is a sub-rule exactly 
because of its different mean with respect to the super- 
rule. We therefore wish to find all basic rules, their 
basic sub-rules, the basic sub-rules of these sub-rules, 
and so on. This set of rules is what we aim to find in 
the quantitative association rules problem. 


Definition 4 We recursively define desired rules (those 
which we wish to obtain): 
1. Any basic rule is desired. 
2. Any basic sub-rule of a desired rule is also desired. 


smoker * life expectancy = 60 
male and smoker + life expectancy = 60 
smoker and wine-drinker + life expectancy = 70 


In Section 3 we provide algorithms to find all desired 
rules. 


2.3 Generalizing Categorical Association 
Rules 


Both the second and third rules are more specific Our definition of association rules is actually a general- 
than the first rule and are therefore contained in it. ization of the definition of categorical association rules. 
Intuitively, it is clear to us that the second rule is In the categorical case, the left-hand and right-hand 
undesirable as it introduces a factor that does not sides are defined by lists of items X and Y. The mea- 
contribute to the interesting phenomenon, while the sures of significance used by [2] are support and con- 
third one is desirable as it adds new information. The fidence. Since the appearance of a set of items is a 


third rule qualifies as a sub-rule of the original rule as it 
is statistically different from the original rule. We now 
formalize these ideas. 


The concept of rule containment is defined as fol- 
lows. Let X and Y be profiles containing categorical 
attributes only (as in 2.1.1). Then we say that rule 
Y + Mean.r(Ty) contains rule X + MeanJ(Tx), if 
Y C_ X. If Y and X contain a single quantitative at- 
tribute only (as in 2.1.2) where Y = (e, a, b) then we 
say that Y + MeanJ(Ty) contains X + MeanJ(Tx) 
if X = (e,c, d) with a 5 c 5 d 5 b. The intuition is 
that Y covers a larger set of transactions. Containment 
with more complex profiles is generalized in the natural 
way. 


Definition 3 We now define basic rules, and sub-rules: 


1. A rule is a basic rule, if it is not contained in any 
other rule. 


2. A rule X + MeanJ(Tx) is a sub-rule of Y =S 
MeanJ(Ty) if: 


(a) Y j MeanJ(Ty) contains X =S MeanJ(Tx) 


(b) Meaw(Tx) ic: Meaw(Ty - TX) 


A sub-rule X + MeanJ(Tx) is a basic sub-rule if 
it is not contained in any other sub-rule of Y + 
MeanJ(Ty). 


Note that a basic sub-rule is a basic rule with regards 
to the database Ty. 
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Bernoulli random variable, the mean of “Y given X” is 
exactly the confidence of the rule. The rules defined by 
[3] are defined in the same way with a different signifi- 
cance measure (a statistical X2 test is used). 


3 Algorithms for Finding Rules 


Efficient algorithms for finding quantitative association 
rules are provided for two types of rules: 


1. Rules X + MeanJ(Tx) where both X and J 
contain a single quantitative attribute only. 


2. Rules X + MJ(T,Y.) where X C EC (only cate- 
gorical attributes) and J C EQ (only quantitative 
attributes). There is no limit on the number of at- 
tributes in X or J. The algorithm is correct for any 
measure M. 


3.1 Finding rules from one Numerical to 
one Numerical attribute 


In this section we introduce an algorithm that finds 
rules based on the mean distribution measure. Our 
algorithm finds rules between two given quantitative 
attributes. This is then applied for every pair, thereby 
obtaining all rules of this kind. We enable the user to 
specify a minimum support parameter here. This is 
not necessary at all for computational reasons as will 
be shown later. However, rules based on very few data 
points may be inconsequential, even if they are true. 
Furthermore, it can be shown that multiple hypothesis 
testing with a very small minimum support can lead to 
a high error (see section 5). 


Algorithm Motivation. Let i and j be a pair 
of quantitative attributes. Note that if we sort the 
database by attribute i, then any above or below- 
average continuous region of values in j is a rule 
(provided it passes the necessary statistical test). This 
is because attribute i is sorted, and therefore any 
continuous region is a range. However, we must also 
ensure that the rule is irreducible and maximal. 


Our algorithm is based on the following simple idea: 
if the regions [a, b] and [b, c] are both above or below 
average, then so too is the region [a, c]. It is completely 
symmetrical to search for above or below average 
regions, we will therefore refer only to above-average 
from now on. Further note than when we say “above- 
average” we mean above the overall mean plus mindif 


The Window Procedure. The following data-driven 
procedure, called “Window”, accepts as input an array 
of values and the average of the values in the array 
(plus mindifi. The input array is the array of values 
of attribute j, sorted by i. We execute a single pass to 
find all rules from i to j. The procedure works with two 
windows or regions: A and B. A is an irreducible above- 
average region (this remains invariant throughout). B 


is an adjacent region that may be joined to A if A u B 
will also be irreducible. 


To begin, we initialize A to the first above-average 
value in j (this is clearly irreducible) and B is empty. 
Given A and B, we add the next value in j to B. There 
are three possibilities at this stage: 


The average of the B region is above-average: we 
join B to A (emptying B). 


A is still irreducible: separating AU B into A and B 
or into Al and A2 u B obviously leaves two above- 
average regions. Separating A U B into two halves 
AU B1 and B2 also leaves two above-average regions 
because if A U BI is not above-average, step (2) 
below would already have happened, and if B2 is 
not above-average then BI must be above average 
and this step would have happened earlier. 


The average of the region including A and B 
together is not above-average: the A region is a 
potential rule (and not the B region). We continue 
by emptying B and initializing A to be the first 
above-average value after the region of the potential 
rule. 


Note that no rule can contain AUB at the beginning, 
as the rule would then be reducible. Furthermore, 
A certainly has maximal support by definition for if 
we expand A, either the region will not be above- 
average or it will be reducible. 


If neither of the above is true, then we simply 
continue by adding the next value in j to B. 


Window is shown in figure 1. We run Window twice 
in order to find both above and below average rules. 
Upon finding a potential rule, we execute a Z-test to 
determine whether or not we accept the rule or not. If 
yes, we call Window recursively with the input array as 
the j values supporting the accepted rule. The input 
average is the average of the rule (plus/minus mindif 
appropriately). This recursive call finds all sub-rules of 
the rule and so on. If the rule is not accepted, we simply 
continue searching for rules in the following regions. 


Complexity Analysis. For a given pair of attributes, 
the time taken for n transactions is O(nlogn) for the 
sort, plus the complexity of the Window algorithm. 
The complexity of Window is clearly upper-bound by 
O(n) times the number of levels of rules (i.e. the 
number of recursive calls). Since the number of levels 
is expected to be low (as experience has shown), 
we effectively maintain linear complexity. Note that 
minimum support has no effect on the running time, 
enabling us to find rules with very low support. For 
/C quantitative attributes, the time taken to find all 
rules of this type is therefore O(lc . n log n + lc2 . n). 







‘nput: an array Away and a number a = average + mindif 


Window (Away, a) 
current +- index of the beginning of Away 
While (current < end-of-Away) 


1 
current + next above average value 


Initialize parameters for A and B regions 
While (AVERAGE(A, B) 2 a) // Weighted average 


{ 
Update B to include Away[cuwent] 
cuwent + cuTTent + 1 


if (AVG(B) > a) 
Join A to B and empty B 


1 
If the values in region A pass a Z-test: 


Add the appropriate rule to the set of results 


Call Window(Array[A region], AVG(A) f mindif) 


current + first index after the A region 


1 


Figure 1: Window Procedure for finding “Numerical + 
Numerical” Rules 


We note that with very large databases, this sort may 
take considerably longer as it needs to be executed in 
secondary memory. 


3.2 Finding rules from Categorical to 
Numerical attributes 


Due to lack of space in this abstract we provide an 
outline for this algorithm only. We note that the left- 
hand side of a rule in this case is essentially a frequent 
set and this property forms the basis of our algorithm. 


Algorithm Outline. The algorithm has three distinct 
stages: 


1. Find all frequent sets of categorical items only, using 
known algorithms such as Apriori (see [2]). 


2. For all quantitative attributes, calculate the distri- 
bution measure (mean/variance) for each frequent 
set, using the hash-tree data structure presented in 
[2]. One pass over the database is sufficient. 


3. Find all non-contained rules and sub-rules. For 
every frequent set X and quantitative attribute 
e, it remains to check if X + Mean, and 
X + Variance,(Tx) are basic rules or sub-rules 
or neither. We do this by traversing a lattice of 
the frequent sets while keeping track of containment 
relations between sets and the sub-rule hierarchy. 


We note that the ideas in sections 3.1 and 3.2 may be 
combined in order to find rules with profiles containing 
many categorical and a single numerical attribute. For 
a given frequent set X, we run Window on TX. We 


may run Window in parallel on each frequent set and 
efficiently achieve the desired result. 


4 Experimental Evaluation 


4.1 A Rigorous Evaluation 


Measuring Success. A major problem confronting 
data mining researchers is the question of how to 
measure success. In any evaluation it is necessary to 
measure both the correctness of the rules obtained and 
the interestingness of those rules to the user. A rule 
saying that “abortion + female” is certainly true, but 
is completely uninteresting. 


We deal with the issue of correctness with statistical 
inference techniques. On the other hand, evaluating 
how interesting the rules obtained are is of great 
difficulty. We, as computer scientists, are certainly 
unable to judge whether rules found are of interest to 
the user or not. As our goal is to help the user, we 
believe that the only way to measure success is to ask 
the end user himself. He is not only the most objective 
judge, but the only one qualified to judge at all. He can 
inform us on whether or not the type of rule found is 
helpful, if it revealed information new to him and what 
percentage of the rules found are truly interesting. 


Our Evaluation. We therefore tested our concept on a 
real-world database and had a domain expert perform 
an in-depth evaluation of the results. The database 
we mined is from the field of linguistics and was built 
during a study on the English writing habits of non- 


native English speakers. The study was conducted by 
Prof. Joel Walters of the English Department in Bar- 
Ilan University. Previously Prof. Walters researched 
the database extensively using standard statistical tools 
such as SPSS. We presented Prof. Walters with the 
association rules we discovered, and asked him to 
evaluate the rules. For each rule, Prof. Walters 
categorized the rule as: non-interesting, interesting, 
or very-interesting. Among the interesting and very- 
interesting rules, he marked if he would have otherwise 
found them or not (e.g. using SPSS). 


Description of the Database. The database is 
based on a study involving essay writing under different 
conditions. Each transaction in the database contains 
data extracted from an essay and the background 
information on the author. The data extracted from the 
essay includes part-of-speech measures (as in percentage 
of words used which are nouns, adjectives etc.) and 
lexical measures (relating to the level of words used, the 
level of variation, originality and many others). The 
database contains 643 transactions and 42 attributes: 
15 categorical and 27 quantitative. With approximately 
27,000 entries and 42 different factors (making for many 
hundreds of possible patterns), the database is large and 
computerized tools are necessary. 
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Categorical + Numerical + Overall 
Numerical Numerical 


Number of Rules: 70 284 354 
Not Interesting: 50 or 71% 178 or 63% 228 or 64% 
Interesting: 16 or 23% (8) 86 or 30% (62) 102 or 29% (70) 
Very Interesting: 1 4 or 6% (4) 1 20 or 7% (18) ( 24 or 7% (22) ( 


Table 1: Interestingness classification of rules 


The Evaluation Results. The results of the quanti- 
tative evaluation by the domain expert are summarized 
in Table 1 (the numbers in brackets are the number of 
rules that would not have otherwise been found). 


Overall we see that 36% of rules were interesting or 
very interesting, 26% of all rules would not have been 
found using the standard hypothesis checking model. 
7% of the rules were graded very interesting and would 
not have otherwise been found. This is vemJ high for 
an automated tool and the result is critical to the 
usefulness of the method. Users are unlikely to use 
tools which provide interesting results hidden amongst 
endless junk. 


Rule Complexity. If we further look at the break- 
down of interesting rules within the Categorical =s- Nu- 
merical rules, more than 50% of rules with one cate- 
gorical attribute in the profile were graded interesting! 
On the other hand, those with more than one attribute 
in the profile were judged not-interesting in 86% of the 
cases. This is most likely due to the difficulty in under- 
standing complex rules and shows that most interesting 
rules have simple profiles. This supports our claim that 
our algorithms cover most of the interesting cases. 


A Qualitative Evaluation. The strength of our 
technique can be seen by viewing a number of results 
judged to be interesting by our evaluator. Due to lack 
of space, we bring only one example. Some participants 
in the study were given a source text and were asked 
to base their essay on it and others were not. We 
present a suprising rule regarding the effect of these 
source texts. Our evaluator judged the following rule 
to be interesting and claimed that he would not have 
found it using standard statistical tools: 


First Language = Russian AND No Source Text + 


Use of “the”: mean = 3.9% (overall mean = 6.7) 


This rule tells us that Russians who were not presented 
with a source text used the word the well below average. 
It is a known fact to Linguists that the Russian language 
has no definite article. Therefore, we are not surprised 
to see that Russians use the word the less. However, 
this was not inferred from the database. Rather, we 
found that only when the participants had no source 
text to base on, they fell back on their Russian habit 
of not using a definite article. On the basis of this rule 


Prof. Walters found that Russians given a source text 
used the word the 8.1% of the time in contrast to the 
3.9% result shown in the rule. His conclusion was that 
essay writing based on source texts should be used for 
teaching use of the definite article. 


This rule is an important example of where relying 
only on a priori hypotheses is not enough. We would not 
have found that Russians use the word the less and we 
would not have guessed that the source texts were the 
key. As a result, we learnt something new in discovering 
that having a text to base your writing on can also 
improve style. This discovery was of great importance 
to Prof. Walters. 


Running Time. We ran our tool on a Pentium- 
Pro with 128Mb RAM. With minimum support 40, 
the overall time taken on the Linguistics database (643 
transactions, 42 attributes) was just 10.1 seconds. Of 
this time, 0.79 seconds was spent on Window (finding 
rules: 1 Numerical =S 1 Numerical, not including time 
to load the data into memory). For a minimum support 
of 20, the overall time taken was 23.8 seconds, the time 
spent of Window was 0.81 seconds. 


The Statistical Tests. We found that the use of 
statistical tests to validate the accuracy of potential 
rules is crucial. In the Linguistics database, 29,959 
potential rules were discovered by the algorithm, but 
were rejected due to lack of statistical confidence (a 
confidence level of 95%). Only 354 rules were accepted. 
The difference was even more extreme for a minimum 
support of 20, where we accepted 1,018 rules and 
rejected 101,449. A person may view 600 rules in a 
reasonable amount of time. With 30,000 rules however, 
we have engaged in data explosion rather than data 
reduction and we cannot be of any help to the user. 


Summary. We found many rules determined to be 
truly interesting and revealing to the user. A very 
high percentage of these rules were not likely to have 
been discovered at all without our data mining tool. 
These two results show that our notion of quantitative 
associations fulfills the, ultimate goals of the data mining 
concept. Furthermore, our rules are easily understood 
and interpreted, concise even when they are complex 
and most of all really do describe exceptional and 
therefore noteworthy behavior. 
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4.2 Scalability 


We also checked the scalability of our algorithms. For 
this we used Synthetic Data Sets (created by the IBM 
Quest Synthetic Data Generation Code). We created a 
database with 9 attributes, 3 categorical, 6 quantitative. 
We used a minimum support of 40. The results are 
depicted in Table 2 below. 


Number of Overall Time for Number of 
transactions time Window rules found 


10,000 14.234 0.812 170 
20,000 32.204 1.829 272 
30,000 56.078 2.844 399 
40,000 86.657 3.922 548 
50,000 126.08 5.016 650 


Table 2: Scalability of the algorithm 


4.3 A Comparative Evaluation of [7] 


Remember that in [7] a quantitative association rule 
is defined as a rule X + Y with a certain support 
and confidence, where X and Y contain categorical 
items or numerical ranges. Their algorithm is based 
on mapping the problem to the categorical case by 
way of discretization, finding all association rules and 
then filtering superfluous nested rules. We now present 
an evaluation (rendered by our expert) of the rules 
generated by [7] and examples of some of the problems. 
We used the Linguistics dat,abase as our basis for the 
evaluation. 


A Quantitative Evaluation. In order to create a 
fair comparison of [7] rules to ours, we limited the 
search for rules with one attribute on each side of the 
rule. This was so we could choose a relatively high 
maximum support, low minimum support and low K 
(otherwise we would encounter extreme computational 
difficulties, especially with a database of 42 attributes). 
We also wished to limit the number of rules we found to 
something that could be realistically evaluated. In order 
to do this, we chose 10 pairs of attributes uniformly 
randomly (with the condition that at least one of the 
attributes was quantitative) and obtained rules from 
these pairs only. We then evaluated these rules as a 
sample of the set of all rules of this type. 
After some fine tuning we settled on the following input 
parameters: 


Minimum Support = 40 or 6% 
Maximum Support = 0.7 
Completeness Level (K) = 9 
Interest Level (R) = 1.5 
Minimum Confidence = 0.6 


The minimum support was chosen to be the same as 
for our algorithm and we chose K=9 in order to reduce 
the number of rules found. 


We obtained 81 rules in the output. As the number 
of possible pairs of attributes equals 756 (for 15 
categorical and 27 quantitative attributes) we expect 
approximately 6,000 rules from this limited type alone. 
This is a significant problem to anyone who must review 
the results (note that we obtain 354 rules in total with 
minsup = 40). 
The results of the evaluation are as follows: 


Number of rules: 81 (chosen randomly) 
Not interesting: 80 
Interesting: 1 
Very interesting: 0 


Overall, 1.2% of the rules were judged to be interesting. 


Discussion. We will now present two examples 
demonstrating some of the conceptual drawbacks to the 
[7] definition. As we have mentioned, range is a weak 
measure for describing a distribution. The following 
rule we found illustrates this point: 


Lexical Variation E [27.91, 62.021 =$ 


Lex. Originality E [4.27, 31.191 (sup 42%, conf 68%) 


Lexical variation measures the diversity of vocabulary 
used by the participants. Lexical originality is a 
measure of how many words the participant used 
that no other participants in the study used. The 
above rule tells us that those with average and below 
lexical variation (the average is 59.2) have high lexical 
originality (the average is 6.7, which is included in 
the interval, but the interval extends far to the right). 
This rule may seem interesting and surprising but in 
actuality is very misleading. It is true that 68% of the 
values are between 4.27 and 31.19 but nearly all of those 
are below 13! In fact, the following rule was also found: 


Lexical Variation E [27.91, 62.021 * 
Lex. Originality E [2.91. 12.541 (sup 42%, conf 68%) 


We checked the original data and found that only 39 
transactions within the Lexical Variation range, have a 
Lexical Originality value above 12.54. 


Another example of rules found to be misleading due to 
the distribution measure is the following: 


English Proficiency = Advanced + 


Length E [91, 2141 (sup 6%, conf 50%) 
English Proficiency = Fluent + 


Length E [91. 2141 (sup 25%, conf 50%) 


The “English Proficiency” categories ranked the stu- 
dent’s English,skills according to accepted levels. The 
above pair of rules gives us the feeling that the dif- 
ferent proficiencies “Advanced” and “Fluent” are actu- 
ally very similar regarding their writing ability (as essay 
length is a known predictor of writing ability). This is 
a surprising rule and would be very interesting. HOW- 
ever, consider the following statistics: the average essay 
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length in the entire study was 172, for “Advanced” was 
108 (way below average, i.e. low proficiency) and for 
“Fluent” was 222 (a strong sign that this group is well 
skilled). This example strongly confirms our claim that 
describing a numerical distribution with a range and 
probability may be very misleading. Not only may we 
not find interesting behavior, we may be presented with 
rules which lead us to erroneous conclusions. 


5 Discussion and Future Work 


Generalizing Quantitative Association Rules. 
We introduced a general definition for quantitative 
association rules in the form of “Profile + Significant 
Distribution”. However, we developed the definitions 
and algorithms necessary for rules of two specific cases 
only. These cases proved to be very useful and are 
important categories of rules. However, we would 
like to see a truly general definition of quantitative 
association rules, combining categorical attributes in 
the distribution as well. We note the difficulty 
in expanding the profile to include two quantitative 
attributes. Firstly, it is easily shown that it is not 
possible to use one-dimensional rules in order to find all 
two-dimensional rules. Secondly, a conceptual difficulty 
arises in that the union of two overlapping, above- 
average rules is not necessarily above-average. This may 
lead to the undesirable property of many overlapping 
rules. 


Multiple Hypothesis Testing. A general problem in 
data mining is that of multiple hypothesis testing. In 
statistical terms, these are called multiple comparison 
procedures and results are likely to be obtained even on 
random databases. We ran the following experiment 
in this context. We applied independent random 
permutations on each column of our test database 
(Linguistics) obtaining a database with no correlations, 
yet with the same original distributions for each 
attribute separately. This was done 50 times obtaining 
50 random databases. We then ran our algorithm 
on these databases and counted the number of rules 
obtained. We found that the random variable of the 
number of rules has a Poisson distribution with mean 
16.7. Thus the probability of obtaining more than 30 
rules if correlations do not really exist in the database is 
less than 0.001. As we found more than 300 rules this is 
overwhelming evidence that the results are not random. 
However, we stress that in-depth statistical research is 
still required in order to provide a strong theoretical 
background for these types of data-mining procedures. 


Other Statistical Tests. An interesting question for 
future work is that of the effect of the specific statistical 
tests used. We used the Z-test as it is the most natural 
mean test, especially as we need not assume anything 
about the distribution of the values. However, the 


effects of using other tests and methods, or even a 
combination of them, is an interesting and important 
issue for continuing research. 


6 Acknowledgments 


We would like to thank Ronen Feldman for his invalu- 
able contributions. The in-depth evaluation is due to 
Joel Walters and we thank him for his great invest- 
ment of time and effort. Finally, we thank Lawrence 
Freedman for his enlightening discussions regarding the 
statistical background necessary for our work. 


References 


PI 


PI 


131 


[41 


151 


if51 


PI 


PI 


PI 


WI 


R. Agrawal, T. Imielinski and A. Swami. Mining 
association rules between sets of items in large 
databases. Proc. of the 1993 ACM SIGMOD Intl. 
Conference on Management of Data, pp 207-216. 


R. Agrawal and R. Srikant. Fast algorithms for 


mining association rules in large databases. Proc. 
of the 20th Intl. Conference on VLDB, 1994. 


S. Brin, R. Motwani and C. Silverstein. Beyond 


Market Baskets: Generalizing Association Rules 
to Correlations. Proc. of the 1997 ACM SIGMOD 
Conference on Management of Data, 1997. 


T. Fukuda, Y. Morimoto, S. Morishita and T. 


Tokuyama. Data Mining Using Two-Dimensional 
Optimized Association Rules: Scheme, Algo- 
rithms and Visualisation. Proc. of the 1996 ACM 
SIGMOD Conference on Management of Data. 


Lindgren, Bernard W. Statistical Theory. Macmil- 


lan Publishing Co., Inc. New York, 1976. 


H. Mannila, H. Toivonen and A. I. Verkamo. 


Efficient Algorithms for discovering association 
rules. KDD-94: AAAI Workshop on Knowledge 
Discovery in Databases, pp 181-192, 1994. 


R. Srikant, R. Agrawal. Mining Quantitative As- 


sociation Rules in Large Relational Tables. Proc. 
of the ACM SIGMOD Conference on Manage- 
ment of Data, 1996. 


H. Toivonen. Sampling Large Databases for As- 
sociation Rules. Proc. of the 22nd VLDB Confer- 
ence, 1996. 


K. Yoda, T. Fukuda, Y. Morimoto, S. Morishita, 


T. Tokuyama. Computing Optimized Rectilinear 
Regions for Association Rules. Proc. of KDD ‘97, 
August 1997. 


Z. Zhang, Y. Lu and B. Zhang. An Effective 


Partitioning-Combining Algorithm for Discover- 


ing Quantitative Association Rules. Proc. of the 
First Pacific-Asia Conference on Knowledge Dis- 
covery and Data Mining, 1997. 


270 






