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Abstract 


The clustering problem is well known in the database 
literature for its numerous applications in problems such 
as customer segmentation, classification and trend analysis. 
Unfortunately, all known algorithms tend to break down in 
high dimensional spaces because of the inherent sparsity 
of the points. In such high dimensional spaces not all 
dimensions may be relevant to a given cluster. One way 
of handling this is to pick the closely correlated dimensions 
and find clusters in the corresponding subspace. Traditional 
feature selection algorithms attempt to achieve this. The 
weakness of this approach is that in typical high dimensional 
data mining applications different sets of points may cluster 
better for different subsets of dimensions. The number of 
dimensions in each such cluster-specific subspace may also 
vary. Hence, it may be impossible to find a single small 
subset of dimensions for all the clusters. We therefore 
discuss a generalization of the clustering problem, referred 
to as the projected clustering problem, in which the subsets 
of dimensions selected are specific to the clusters themselves. 
We develop an algorithmic framework for solving the 
projected clustering problem, and test its performance on 
synthetic data. 


1 Introduction 


The clustering problem has been discussed extensively 
in the database literature as a tool for similarity 
search, customer segmentation, pattern recognition, 
trend analysis and classification. Various methods have 
been studied in considerable detail by both the statistics 
and database communities [3, 4, 7, 8, 9, 13, 21, 261. 
Detailed surveys on clustering methods can be found in 
[6, 17, 18, 20, 251. 


The problem of clustering data points is defined 
as follows: Given a set of points in multidimensional 
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space, find a partition of the points into clusters so 
that the points within each cluster are close to one 
another. (There may also be a group of outlier points.) 
Some algorithms assume that the number of clusters 
is prespecified as a user parameter. Various objective 
functions may be used in order to make a quantitative 
determination as to how well the points are clustered. 
Alternatively, distribution based methods [15, 241 may 
be used in order to find clusters of arbitrary shape. 


Most clustering algorithms do not work efficiently 
in higher dimensional spaces because of the inherent 
sparsity of the data [l, 221. In high dimensional 
applications, it is likely that for any given pair of 
points there exist at least a few dimensions on which 
the points are far apart from one another. So 
a clustering algorithm is often preceded by feature 
selection (see for example [19]). The goal is to find the 
particular dimensions on which the points in the data 
are correlated. Pruning away the remaining dimensions 
reduces the noise in the data. The problem of using 
traditional feature selection algorithms is that picking 
certain dimensions in advance can lead to a loss of 
information. Furthermore, in many real data examples, 
some points are correlated with respect to a given set 
of dimensions and others are correlated with respect to 
different dimensions. Thus it may not always be feasible 
to prune off too many dimensions without at the same 
time incurring a substantial loss of information. We 
demonstrate this with the help of an example. 


In Figure 1 we have illustrated two different projected 
cross sections for a set of points in 3-dimensional space. 
There are two patterns in the data. The first pattern 
corresponds to a set of points that are close to one 
another in the z-y plane, while the second pattern 
corresponds to a set of points that are close to one 
another in the c-z plane. We would like to have some 
way of discovering such patterns. Note that traditional 
feature selection does not work in this case, as each 
dimension is relevant to at least one of the clusters. At 
the same time, clustering in the full dimensional space 
will not discover the two patterns, since each of them is 
spread out along one of the dimensions. 
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Figure 1: Difficulties Associated with Feature Preselec- 
tion 


In this context .we now define what we call a 
projected cluster. Consider a set of data points in some 
multidimensional space. A projected cluster is a subset 
C of data points together with a subset p of dimensions 
such that the points in C are closely clustered in the 
subspace of dimensi,ons V. In Figure 1, two clusters 
exist in two different projected subpaces. Cluster 1 
exists in projected s-y space, while cluster 2 exists in 
projected z-z space. 


In this paper we focus on a method to find clusters in 
small projected subspaces for data of high dimension- 
ality. We call our algorithm PROCLUS to denote the 
fact that it is a PRO$ected CLUStering algorithm. We 
assume that the number k: of clusters to be found is an 
input para.meter. The output of the algorithm will be 
twofold: 


a (k: + 1)-way partition {Cl, ,.., Ck, 0) of the data, so 
that the points in each partition element except the 
last form a cluste:r. (The points in the last partition 
element are the outliers, which by definition do not 
cluster well.) 


a possibly different subset Vi of dimensions for each 
cluster Ci, 1 _< i 5 Ic, so that the points in Ci are 
correlated with respect to these dimensions. (The 
dimensions for the outlier set 0 can be assumed 


to be the empty set.) For different clusters, the 
cardinality of the corresponding set ‘Di can be 
different. 


In addition to the number of clusters Jz the algorithm 
takes as input the average number of dimensions 1 
in a cluster. The two parameters can be varied 
independently of one another. (The only restriction 
is that the total number of dimensions Ic . 1 must be 
integral.) 


1.1 Contributions of this paper 


The contributions of this paper are as follows: 


(1) We discuss the concept of projected clustering for 
finding clusters in multidimensional spaces. Thus, 
we compute clusters based not only on poi.nts 
but also on dimensions. For data ir. a la.rge 
number of dimensions this can result in a f,ignificant 
improvement in the quality of the clustering. 


(2) We propose an algorithm for the projected cluster- 
ing problem which uses the so-called metEoid tech- 
nique described in [21] to find the appropriate sets 
of clusters and dimensions. The algorithm uses a lo- 
cality analysis in order to find the set of di.mensions 
associated with each medoid. 


The fact that different points may cluster bet,ter 
for different subsets of dimensions has been observed 
for the first time by Agrawal et. al. in [l]. This 
paper presents an effective method for finding regions 
of greater density in high dimensional data in a way 
which has good scalability and usability. The work in [l] 
illustrates the merits of looking at different !bubspaces 
for different clusters as opposed to a full dimensional 
clustering. The algorithm, called CLIQUE, works 
from lower to higher dimensionality subspaces and 
discovers “dense” regions in each subspace. More 
precisely, each dimension is divided into a number of 
intervals t. For a given set of dimensions, a cross- 
product of such intervals (one on each dimension in 
the set) is called a unit in the respective subspace. 
Units are dense if the number of points the:{ contain 
is above a certain threshold 7. Both < and 7 are user 
parameters. The algorithm discovers all dense units 
in each b-dimensional subspace by building from the 
dense units in (h - 1)-dimensional subspaces, and then 
“connects” these axis-parallel units to form the reported 
rectangular regions. Although such an approach can 
discover interesting characteristics of the data, it does 
not produce a clustering in the accepted definition of the 
word, since the points are not partitioned int,, disjoint 
groups. Rather, there is a large overlap among the 
reported dense regions, due to the fact that fc’r a given 
dense region all its projections on lower dimensionahty 
subspaces are also dense and get reported. 
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While both CLIQUE and PROCLUS aim to discover 
interesting correlations among data in various subspaces 
of the original high dimensional space, their output 
is significantly different. CLIQUE is successful in 
exploring dense regions in all subspaces of some desired 
dimensionality. For many applications in customer 
segmentation and trend analysis, a partition of the 
points is required. Furthermore, partitions provide 
clearer interpretability of the results, as compared to 
reporting dense regions with very high overlap. In such 
cases, PROCLUS is preferable to CLIQUE. 


The remainder of this paper is organized as follows. 
Section 2 describes our clustering algorithm in detail. 
In Section 3 we provide a theoretical analysis of the 
robustness of PROCLUS. Empirical results based on 
synthetic data are presented in Section 4. Section 5 
contains conclusions and areas of future work. 


1.2 Definitions and Notations 


In order to describe our algorithm we introduce a few 
notations and definitions. Let iV denote the total 
number of data points, and d denote the dimensionality 
of the data space. Let C = (~1, ~2,. . . , ~1) be the set 
of points in a cluster. The cenfroid of a cluster is the 
algebraic average of all the points in the cluster. Thus, 
the centroid of the cluster C is given by 5~ = c,“,, rci/t. 
Given a specific distance function d(., e), we define the 
radius of a cluster to be the average distance of a point 
from the centroid of the cluster: rc = C,“=, d&, q)/t. 


Various distance functions have been used in full 
dimensional clustering algorithms, depending on the 
particular problem being solved. Two such well known 
functions are the Manhattan distance and the euclidean 
distance. The Manhattan distance between two points 
Zl = (q1, * * .I ZI,~) and 52 = (az,~, . . .,zz,~) is given 


by d:(xl,xz) = cfz, I 1c1,i - ~2~1, and the euclidean 


distance is given by da(al, 82) = d’&(zl,i - a~+)~. 


Both distance functions are derived from norms. In 
general, the distance corresponding to the so-called Lp 


norm is given by dk(al, 22) = (‘& Izl,i - ~2,il~)~lP. 
Thus the Manhattan distance corresponds to the Ll 
norm and the euclidean distance to the La norm. 


In this paper we will use a variant of the Manhattan 
distance, called Manhattan segmental distance, that is 
defined relative to some set of dimensions 2). Specif- 
ically, for any two points ~1 = (al,l, . . . , ZI,~) and 
3J2 = (CZ,I,- - *, XZ,~), and for any set of dimensions 
V, IDI 5 d, the Manhattan segmental distance be- 
tween xl and x2 relative to 2, is given by dp(xl, ~2) = 
(xi,=., Ixl,i-az,i1)/12)1. Employing the Manhattan seg- 
mental distance as opposed to the traditional Manhat- 
tan distance is useful when comparing points in two dif- 
ferent clusters that have varying number of dimensions, 
because the number of dimensions has been normalized 
away. There is no comparably easy normalized vari- 


ant for the euclidean metric. For many applications, 
the Manhattan segmental distance often has physical 
significance. One potential application is collaborative 
filtering [lo], where customers need to be partitioned 
into groups with similar interests for target marketing. 
Here one needs to be able to handle a large number of di- 
mensions (for different products or product categories) 
with an objective function representing the average dif- 
ference of preferences on the different objects. 


2 The Clustering Algorithm 


The problem of finding projected clusters is two-fold: 
we must locate the cluster centers and find the appro- 
priate set of dimensions in which each cluster exists. 
In the full dimensionality setting, the problem of find- 
ing cluster centers has been extensively investigated, 
both in the database and in the computational geome- 
try communities. A well known general approach is the 
so-called K-Medoids method (see, for example, [18] for 
a detailed discussion), which uses points in the original 
data set to serve as surrogate centers for clusters during 
their creation. Such points are referred to as medoids. 
One method which uses the K-Medoids approach, called 
CLARANS, was proposed by Ng and Han [21] for clus- 
tering in full dimensional space. We combine the greedy 
method of [14] with the local search approach of the 
CLARANS algorithm [21] to generate possible sets of 
medoids, and use some original ideas in order to find the 
appropriate dimensions for the associated clusters. The 
overall pseudocode for the algorithm is given in Figure 
2. 


The algorithm proceeds in three phases: an initial- 
ization phase, an iterative phase, and a cluster refine- 
ment phase. The general approach is to find the best 
set of medoids by a hill climbing process similar to the 
one used in CLARANS, but generalized to deal with 
projected clustering. By “hill climbing” we refer to 
the process of successively improving a set of medoids, 
which serve as the anchor points for the different clus- 
ters. The purpose of the initialization phase is to re- 
duce the set of points on which we do the hill climbing, 
while at the same time trying to select representative 
points from each cluster in this set. The second phase 
represents the hill climbing process that we use in or- 
der to find a good set of medoids. We also compute a 
set of dimensions corresponding to each medoid so that 
the points assigned to the medoid best form a cluster 
in the subspace determined by those dimensions. The 
assignment of points to medoids is based on Manhat- 
tan segmental distances relative to these sets of dimen- 
sions. Thus, we search not just in the space of possible 
medoids but also in the space of possible dimensions 
associated with each medoid. Finally, we do a cluster 
refinement phase in which we use one pass over the data 
in order to improve the quality of the clustering. 
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We detail each phase in the following. 


2.1 Initialization Phase 


We call a set of k medoids piercing if each point is 
drawn from a different cluster. Clearly, finding such a 
set together with appropriate sets of dimensions is the 
key objective of our algorithm. The initialization phase 
is geared towards finding a small enough superset of a 
piercing set, so that it is possible to efficiently perform 
hill-climbing on it, as opposed to the entire database of 
points. 


In full dimensional algorithms, one of the techniques 
for finding a piercing set of medoids is based on a greedy 
method. In this process medoids are picked iteratively, 
so that the current :medoid is well separated from the 
medoids that have been chosen so far. The greedy 
technique has been :proposed in [14] and is illustrated 
in Figure 3. In full dimensionality, if there are no 
outliers and if the clusters are well enough separated, 
this method always returns a piercing set of medoids. 
However, it does not guarantee a piercing set for the 
projected clustering problem. 


In our algorithm we will use the greedy technique 
in order to find a good superset of a piercing set of 
medoids. In other words, if we wish to find k clusters 
in the data, we will pick a set of points of cardinality a 
few times larger than. k. We will perform two successive 
steps of subset selection in order to choose our superset. 
In the first step, we choose a random sample of data 
points of size proportional to the number of clusters we 
wish to generate. (In Figure 2, we denote this size by 
A . k, where A is a constant.) We shall denote this 
sample by S. In the second step, we apply the above- 
mentioned greedy technique to S in order to obtain an 
even smaller final set of points on which to apply the 
hill climbing technique during the next phase. In our 
algorithm, the final iset of points has size B . k, where 
B is a small constant. We shall denote this set by M. 
The reasons for choosing this two-step method are as 
follows: 


(1) The greedy technique tends to pick many outliers 
due to its distance based approach. On the other 
hand, the set S probably contains only a very small 
number of outliers, and the greedy algorithm is likely 
to pick some representatives from each cluster. 


(2) The reduction to the sample set S significantly 
reduces the running time of the initialization phase. 


2.2 Iterative P’hase 


We start by choosing a random set of k medoids from 
M and progressively improve the quality of medoids by 
iteratively replacing ithe bad medoids in the current set 


with new points from M. The hill climbing technique 
can be viewed as a restricted search on the complete 


Algorithm PROCLUS(No. of Clusters: k, Avg. Dinmwiona: I) 
{ C; is the ith cluster ) 
{ Vi is the set of dimensions associated with cluster I!; } 


: tFnt 


is the set of medoids in current iteration 1, 
best 1s the best set of medoids found so far } 


{ N is the fmal set of medoids with associated dimensions } 
{ A, B are constant integers } 
begin 


{ 1. Initialization Phase} 
S = random sample of siz;e A . k 
M = GRBEDY(S, B.k) 


{ 2. Iterative Phase} 
BestObjective = 00 
M current = Random set of medoids {ml, m2, . . . mk} C M 
repeat 


{ Approximate the optimal set of dimensions } 
for each medoid mi E Mcvr+ent do 


begin 
Let 6; be distance to nearest medoid from rni 
L; = Points in sphere centered at m; with ratis 6; 
end; 


L={Ll,...,Lk} 


Pl,%l... Z)k) = FindDimensions( k,l, 13) 


{ Form the clusters } 


(Cl,..., Ck) = AssignPoints(D1,. . .2)k) 
ObjectiveFunction = EvaluateClustets(C~, . . Ck, D1 . . . Z)k) 
if ObjectiveFunction < Be&Objective then 
begin 


BestObjective = ObjectiveFunction 
M test = Mcuvrent 
Compute the bad medoids in i&*t 


end 


Compute Current by replacing the bad medoids in 


M beat with random points from M 
until (termination-criterion) 


{ 3. Refinement Phase} 
L = {C, r...tCk) 


V” 


2,. . . Dk) = FindDimensions(k,l, L) 
1,. . . , Ck) = AssignPoints(&, . . . Z)k) 


N = (Mbcstr VI, D2,. . . Dk) 
return(N) 
end 


Figure 2: The Clustering Algorithm 
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Algorithm Greedy(Set of points: S, Number of medoids: k) 
{ d(., .) is the distance function } 
begin 
M = {ml} { ml is a random point of S } 
{ compute distance between each point and medoid ml } 
for each t E S \ M 


d&(r) = d(z,ml) 
for i=2 to k 
begin 


{ choose medoid m; to be far from previous medoids } 
let m; E S \ M be s.t. dist(mi) = max{dist(z) 1 t E S \ M} 
M=Mu{mi} 
{ compute distance of each point to closest medoid } 
for eachxES\M 


d&(z) = min{dist(z), d(z, m;)} 
end 
return M 
end 


Figure 3: The Greedy Algorithm 


graph with vertex set defined by all sets of medoids of 
cardinality k. The current node in the graph, denoted 
Mt,,,t in Figure 2, represents the best set of medoids 
found so far. The algorithm tries to advance to another 
node in the graph as follows: It first determines the 
bad medoids in it!&,t using a criterion we discuss 
at the end of this subsection. Then it replaces the 
bad medoids with random points from M to obtain 
another vertex in the graph, denoted Mcurrent. If the 
clustering determined by Mcurrent is better than the 
one determined by Mbest, the algorithm sets Mbest = 
M eur,.ent. Otherwise, it sets Mcurre,,t to another vertex 
of the graph, obtained by again replacing the bad 
medoids in &tb,,t with random points of M. If it!ft,,,t 
does not change after a certain number of vertices have 
been tried, the hill climbing phase terminates and i&,t 
is reported. 


In what follows, we detail how we evaluate the 
clustering determined by a given set of k medoids. This 
implies solving two problems: finding the appropriate 
set of dimensions for each medoid in the set, and 
forming the cluster corresponding to each medoid. 


Finding Dimensions: Given a set of k medoids M = 


Cm, -*-I mk}, PROCLUS evaluates the locality of the 
space near them in order to find the dimensions that 
matter most. More exactly, for each medoid rn+ let 
Si be the minimum distance from any other medoid to 
rn+, i.e. & = minjgid(m+,mj). For each i, we define 
the locality Li to be the set of points that are within 
distance & from m+. (Note that the sets Cr, . . . . lk need 
not necessarily be disjoint, nor cover the entire set of 
data points). We then compute the average distance 
along each dimension from the points in .Ci to m. Let 
Xi,j denote this average distance along dimension j. To 
each medoid m we wish to associate those dimensions j 
for which the values Xi,j are as small as possible relative 


to statistical expectation, subject to the restriction that 
the total number of dimensions associated to medoids 
must be equal to Ice 1. We add the additional constraint 
that the number of dimensions associated with a medoid 
must be at least 2. Corresponding to each medoid 
i we compute the mean Yi = (Cf=,Xi,j)/d and the 


standard deviation ui = /F of the values 


Xi,j. Note that Yi represents in fact the average of the 
Manhattan segmental distances between the points in 
J$ andx?,T;&ive to the entire space. Thus the value 
Zi,j = *‘i, ’ indicates how the j-dimensional average 
distance associated with the medoid m is related to the 
average Manhattan segmental distance associated with 
the same medoid. A negative value of Zi,j indicates 
that along dimension j the points in Ci are more closely 
correlated to the medoid w. We want to pick the 
smallest values Zi,j so that a total of k - 2 values are 
chosen, and at least 2 values are chosen for any fixed 
i. This problem is equivalent to a so-called separable 
convex resource allocation problem, and can be solved 
exactly by a greedy algorithm [16]. Specifically, we sort 
all the Zi,j values in increasing order, preallocate the 
2 smallest for each i (giving a total of 21c values), and 
then greedily pick the remaining lowest k + (l- 2) values. 
(There are other algorithms for solving this problem 
exactly that are even faster from a complexity point 
of view. We employ a greedy algorithm here because 
it is sufficiently fast in light of the typically expected 
values of h and 1. However, see [16] for further details.) 
With each medoid i we associate those dimensions j 
whose corresponding Zi,j value was chosen by the above 
algorithm. We denote the sets of dimensions thus found 
by %,D,,... 2)k. This is illustrated in Figure 4. 


Forming Clusters: Given the medoids and their 
associated sets of dimensions, we assign the points to 
the medoids using a single pass over the database. For 
each i, we compute the Manhattan segmental distance 
relative to Vi between the point and the medoid w, and 
assign the point to the closest medoid. See Figure 5. 


We evaluate the quality of a set of medoids as the 
average Manhattan segmental distance from the points 
to the centroids of the clusters to which they belong 
(see Figure 6). Note that the centroid of a cluster will 
typically differ from the medoid. We also determine 
the bad medoids as follows: The medoid of the cluster 
with the least number of points is bad. In addition, 
the medoid of any cluster with less than (N/k) - 
minDeviation points is bad, where minDeviation is a 
constant smaller than 1 (in most experiments, we choose 
minDeviation = 0.1). 


We make the assumption that if a medoid forms 
a cluster with less than (N/k) . minDeviation points 
(where minDewiation is usually O.l), it is likely that 
the medoid is either an outlier, or it belongs to a cluster 
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that is pierced by at least one other medoid in the set. 
Conversely, we assume that an outlier is likely to form a 
cluster with very few points. We also assume that if the 
current set of medoids contains two or more medoids 
from the same natural cluster, one of these medoids 
(which is the most “central”) is likely to form a cluster 
containing most of the points in the natural cluster, 
while the remaining medoids that pierce that cluster 
will form clusters with few points. 


2.3 Refinement Phase 


After the best set of medoids is found, we do one more 
pass over the data to improve the quality of the cluster- 
ing. Let {Cl,. . . , Ck]. be the clusters corresponding to 
these medoids, formed during the Iterative Phase. We 
discard the dimensions associated with each medoid and 
compute new ones by a procedure similar to that in the 
previous subsection. The only difference is that in order 
to analyze the dimen.sions associated with each medoid, 
we use the distribution of the points in the clusters at 
the end of the iterative phase, as opposed to the local- 
ities of the medoids. In other words, we use Ci instead 
of .lZi. Once the new dimensions have been computed, 
we reassign the points to the medoids relative to these 
new sets of dimensions. The process is illustrated in 
Figure 2. 


Outliers are also handled during this last pass over 
the data. For each medoid RC and new set of dimensions 
Vi, we find the smallest Manhattan segmental distance 
Ai to any of the other (k - 1) medoids with respect to 
the set of dimensions ‘Di: 


Ai = minj#i dvi(nt+, mj) 
We also refer to ,Ai as the sphere of influence of 


the medoid m. A point is an outlier if its segmental 
distance to each medoid w, relative to the set of 
dimensions Vi, exceelds Ai. 


3 Analyzing the Robustness of 
PROCLUS 


To ensure good accuracy of the output, PROCLUS 
must be able to ac:hieve two essential results: find 
a piercing set of medoids, and associate the correct 
set of dimensions to each medoid. In our discussion 
of the Initialization .Phase, we gave some insight into 
why we expect the set M to contain a piercing set of 
medoids. In the following, we will discuss some issues 
related to the robustSness of the procedure for finding 
dimensions. It is important to note that since the 
locality of a medoid is used in order to determine the set 
of dimensions corresponding to it, a sufficient number 
of points must exists in the locality in order to have a 
robust algorithm. The total number of points in the 
localities of all the medoids is also useful in order to 
estimate the number of dimensions for a given cluster. 
To give some insight into how the localities of medoids 
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Algorithm FindDimensions(k,l, L) 
begin 
{ d is the total number of dimensions } 
{ X;J is the average distance from the points in I$ tc 
medoid m; , along dimension j} 
for each medoid i do 


begin 


for e&h dimension j do Zi,j = (Xi,j - Y~)/u; 
end 


Pick the k. 1 numbers with the least (most negative) ~~alues 
of Zi,j subject to the constraint that there are at least 2 
dimensions for each cluster 


if Z;#j is picked then add dimension j to Vi 


return(VL,Vz,. . . Vk) 
end 


Figure 4: Finding the Dimensions 


Algorithm AssignPoints(V1, V2, . . . Vk) 
begin 
foreachiE{l,...,k}doC;=+ 
for each data point p do 


begin 
Let dpi (p, m;) be Manhattan segmental distance of point p 


from medoid m; relative to dimensions V;; 
Find i with lowest value of dp,(p,m;) and add p to C;; 
end; 


return (Cl,. . . ,Ck) 
end; 


Figure 5: Assigning Points to the Various Clusters 


Algorithm EvaluateClusters(C1,. . . ,Ck, VI,. . . Vk) 
begin 
for each Ci do 


begin 
for each dimension j E 2); do 


begin 
Yi8j = Average distance of points in C; to 


centroid of C; along dimension j 
end 


ret;rn( C-f’- ) 
end 


Figure 6: Evaluating the Clusters 







look like, suppose 
randomly from the 
the more elaborate 
the following. 


first that the medoids are chosen 
entire set of points, rather than by 
procedure in PROCLUS. We prove 


Theorem 3.1 Let k be the number of medoids and N 
be the total number of data points. Then, for a random 
set of k me&ids (ml,. . . ,mk}, the ezpected number of 
points in J!I~ for the medoid m+ is N/k. 


Proof: Let d”,, d$, . . . d$ denote the distances of the N 
points from medoid mi. The problem is equivalent to 
the following standard result in order statistics (see [2] 
for details): 


Given a set of N values (dii, d$, . . ., d&}, suppose 
we choose k - 1 of them randomly. Then, the expected 
number of values in the set that are smaller than the 
k - 1 chosen values is equal to N/k. 


The k - 1 randomly chosen values correspond to the 
distances from the k - 1 other medoids to medoid rn+. 


I 
The above result shows that, if the medoids were 


chosen at random from the entire data set, the expected 
number of points in each locality would be sufficient 
to ensure the robustness of the FindDimensions 
procedure. Since our method for choosing the medoids 
is not random, but rather biased towards ensuring that 
the medoids are as far away from each other as possible 


( i.e. their localities have large radii), we expect the 
localities of the medoids to contain at least N/k points 
each. 


4 Empirical Results 
The simulations were performed on a 233-MHz IBM 
RS/SOOO computer with 128M of memory, running AIX 
4.1.4. The data was stored on a 2GB SCSI drive. 
We report results obtained for synthetic data. We 
evaluate the accuracy of PROCLUS on synthetic data 
and determine how the running time scales with: 


- size of database. 


- dimensionality of the data space. 


- average dimensionality of clusters. 


We also investigate the cases in which CLIQUE can be 
used to return a partition of the data set. For those 
cases, we compare its accuracy and running time to 
those of PROCLUS. 


4.1 Synthetic Data Generation 


In order to generate the data we used a method similar 
to that discussed by Zhang et. al. [26]. However, we 
added generalizations to the data generation process in 
order to take into account the possibility of different 
clusters occurring in different subspaces. The points 


have coordinates in the range [0, 1001 and are either 
cluster points or outliers. The maximum percentage of 
outliers is a simulation parameter and was chosen to be 
F ,,,,trier = 5%. Outliers were distributed uniformly at 
random throughout the entire space. 


In order to generate cluster points the program takes 
as input parameters the number of clusters k and a 
Poisson parameter k that determines the number of 
dimensions in each cluster, as we explain below. The 
algorithm proceeds by defining so-called anchor points 
around which the clusters will be distributed, as well as 
the dimensions associated with each such anchor point. 
Then, it determines how many points will be associated 
with each cluster and finally it generates the cluster 
points. We explain these steps in more detail below. 


The anchor points of clusters are obtained by generat- 
ing k uniformly distributed points in the d-dimensional 
space. We shall denote the anchor point for the ith 
cluster by ci. 


The number of dimensions associated with a cluster 
is given by the realization of a Poisson random variable 
with mean CL, with the additional restriction that this 
number must be at least 2 and at most d. Once the 
number of dimensions di for the cluster i is generated, 
the dimensions for each cluster are chosen using the 
following technique: The dimensions in the first cluster 
are chosen randomly. The dimensions for the ith 
cluster are then generated inductively by choosing 
min{di-1, di/2} d’ lmensions from the (i - l)st cluster 
and generating the other dimensions randomly. This 
iterative technique is intended to model the fact that 
different clusters frequently share subsets of correlated 
dimensions. 


To decide the number of points in each cluster, we 
generate k exponential random variables with mean 1 
and then assign to each cluster a number of points 
proportional to these realizations. More exactly, 
let 9, ~2,. . .rk be the realizations of the k random 
variables, and let N, = N. (1 - Foutlic,.) be the number 
of cluster points. Then, the number of points in cluster 
i is given by N, . =FL, ri. 


Finally, the points for a given cluster i are generated 
as follows: The coordinates of the points on the non- 
cluster dimensions are generated uniformly at random. 
For a cluster dimension j, the coordinates of the 
points projected onto dimension j follow a normal 
distribution with mean at the respective coordinate of 
the anchor point, and variance determined randomly in 
the following manner: Fix a spread parameter r and 
choose a scale factor sij E [l, s] uniformly at random, 
where s is user defined. Then the variance of the normal 
distribution on dimension j is (sij . T)“. For our data 
generation we chose r = s = 2. 
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Dimensions 


Found Dimensions 1 Points 


n 1 11 4. 6. 11. 13. 14. 17. 19 1 18701 11 


n Input I( Dimensions I Poinla Y 
R A B 11 2, 3, 4, 2, 9, 3, 11, 7 14, 18 


Dimensions 


1 Outliers 11 


Table 1: PROCLUS: Dimensions of the Input Clusters Table 2: PROCLUS: Dimensions of the Input Clusters 
(Top) and Output Clusters (Bottom) for Case 1 (Top) and Output Clusters (Bottom) for Case 2 


4.2 Accuracy Results 


To test how accurately the algorithm performs we 
compute the Confusion Mat& defined as follows: entry 
(i, j) is equal to the number of data points assigned to 
output cluster i, that were generated as part of input 
cluster j. The last row and column of the matrix 
represent output outliers, respectively input outliers, 
and their entries are similarly defined. Obviously, we 
want each row to have one entry that is much larger 
than the others, which indicates a clear correspondence 
between the input and output clusters. In the tables 
below, the input clusters are denoted by letters, while 
the output clusters are denoted by numbers. Another 
significant result is the set of dimensions computed 
for each output cluster, as compared to the set of 
dimensions of the corresponding input cluster. 


We divided the experiments in two classes. First, 
we used input files :for which all clusters had been 
generated in the same number of dimensions, but in 
different subspaces (Case 1). Then, we used input 
files containing clusters generated in different number 
of dimensions (Case 2). We report below the results 
for one experiment in each class. We obtained similar 
quality in all the other experiments we performed. Both 
files had iV = 100,000 data points in a 20dimensional 
space, with k: = 5. The first input file had 1 = 7 
(‘. . all input clust,ers were generated in some 7- 
diizensional subspace:), while the second file had 1 = 4, 
and the clusters were generated as follows: two clusters 
were generated in different 2-dimensional subspaces, 
one in a J-dimensional subspace, one in a 6-dimensional 
subspace, and one in a 7-dimensional subspace. 


In both cases PROCLUS discovers output clusters 


in which the majority of points comes from o:ne input 
cluster, as shown in Tables 3 and 4. In other words, 
it recognizes the natural clustering of the points. VVe 
note that for both files the output clusters pick some of 
the original outliers and report them as cluste:: points. 
This is not necessarily an error, since the outliers 
were randomly placed throughout the entire space, and 
it is probable that some of them have actually been 
placed inside clusters. The output clusters j.n Table 
4 also have some small number of points that should 
have been assigned to other clusters. For example, 
the 267 points in row 1 and column C should have 
been assigned to cluster 4, because they were glmerated 
as part of input cluster C, and output cluster 4 has 
a clear correspondence to cluster C. However, the 
percentage of misplaced points is very small so that it 
does not influence the correspondence between input 
and output clusters, nor would it significantly Jter the 
result of any data mining application based on thLis 
clustering. Moreover, there is a perfect correspondence 
between the sets of dimensions of the output clusters 
and their corresponding input clusters, as illustrated 
by Tables 1 and 2. This is important for applicatio:ns 
that require not only a good partitioning of the data, 
but also additional information as to what dirnensio:ns 
(or attributes) are relevant for each partition. 


As we mentioned before, CLIQUE does not guarant’ee 
that the result it returns represents a partitioning of the 
points. To quantify how different its output is from an 
actual partitioning, we compute the average ol.erlap <as 
follows: 
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Table 3: PROCLUS: Confusion Matrix (same number of dimensions) for Case 1 


Table 4: PROCLUS: Confusion Matrix (different number of dimensions) for Case 2 


overlap = f$l ‘,“I, 
rl + 


where 4 is the number of output clusters. Thus, an 
overlap of 1 means that on the average each point 
that is not an outlier is assigned to only one cluster, 
and so the result can be considered a partitioning. 
On the other hand, a large overlap means that many 
of the points are assigned to more than one output 
cluster, so the result cannot be considered a reasonable 
approximation for a partitioning. In the experiments 
below we try to determine the cases in which CLIQUE 
is likely to generate an output with small overlap. For 
those cases we compare the results of CLIQUE and 
PROCLUS in terms of quality and running time, to 
decide which method is preferable. One problem we 
have encountered during these experiments is that on 
the average half of the cluster points are considered 
outliers by CLIQUE. This is a consequence of the 
density-based approach of the algorithm, since lower- 
density areas in a cluster can cause some of its points to 
be thrown away. Another reason is the fact that clusters 
are considered to be axis-parallel regions. Such a region 
generally offers a low coverage of the corresponding 
input cluster, especially as the dimensionality of the 
cluster increases. Hence, a significant percentage of 
relevant data points are erroneously considered outliers 
by CLIQUE. Of course, this percentage can be lowered 


by tuning the input parameters < and T appropriately. 
This leads to a tradeoff between quality of output and 
running time. Moreover, the density threshold of a unit 
must take into account both the number of intervals on 
a dimension and the dimensionality of the space. Hence, 
variation of one input parameter must be correlated 
with the variation of the other parameter. No obvious 
method is indicated in [l] for how to choose the two 
parameters. 


For files in which clusters exist in different number of 
dimensions CLIQUE reported a large number of output 
clusters, most of which were projections of a higher 
dimensional cluster. As a result, the average overlap 
was also large. It is unclear how one can differentiate 
between, for example, a 2-dimensional output cluster 
corresponding to a 2-dimensional input cluster, and the 
2-dimensional projection of a 6-dimensional cluster. In 
this case, CLIQUE cannot be used to obtain a good 
approximation for a partitioning. 


Below, we discuss the results we obtained with 
CLIQUE for input files in which all clusters exist in 
the same number of dimensions. As in [l], we set [ 
(the number of intervals on each dimension) to 10, and 
we try various values for the density threshold r. We 
present the results obtained on an input file with 1 = 7, 
the same for which we reported the PROCLUS results 
above. However, the issues we discuss were noted on 
other input files and for different values of 2, as well. For 
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m B C D E Out. 


n 2 II 11128 0 0 0 0 0 


Table 5: CLIQUE: Matching between Input and 
Output Clusters (small snapshot) 


r = 0.5 and r = 0.8, the average overlap was 1, but the 
percentage of cluster points discovered by CLIQUE was 
low (42.7%, respectively 30.7%). We then experimented 
with lower values for 7, more exactly 7 = 0.2 and 
T = 0.1, expecting the percentage of cluster points to 
increase. However, because of the low density, CLIQUE 
reported output clusters in 8 dimensions (one dimension 
more than they were generated), and the percentage of 
cluster points decreased to 21.2% for T = 0.1. Two 
of the original input clusters were entirely missed, and 
all their points declared outliers. Of the remaining 
three input clusters, at least 50% of the points in each 
one were thrown away as outliers, and two of these 
input clusters were split into four output clusters. We 
finally ran CLIQUE with T = 0.1 and set it to find 
clusters only in 7 dimensions, using an option provided 
by the program. It reported 48 output clusters, with 
a percentage of cluster points equal to 74.6%. The 
average overlap was 3.63, which means that on the 
average, an input point had been assigned to at least 
3 output clusters. We present the results of this last 
experiment in Table 5. Due to lack of space, we do 
not provide the entire Confusion Matrix, but only a 
small snapshot that reflects both “good” and “bad” 
output clusters discovered by CLIQUE. We conclude 
that, while there are cases in which CLIQUE returns 
a partitioning of the points, PROCLUS is still useful 
because of its better accuracy. 


4.3 Scalability IResults 


In what follows we will say that two input files are 
similar if the following parameters are identical for both 
files: number of points N, dimensionality of the space 
d, number of clusters Ic, and average dimensionality of 
a cluster 1. 


As noticed in the previous subsection, the output of 
CLIQUE could only be interpreted as an (approximate) 
partitioning of the points when all clusters exist in 
the same number of dimensions. Hence, we compare 
the running times of CLIQUE and PRCCLUS only 
on such files. However, we also tested PROCLUS on 


Figure 7: Scalability with number of points 


similar files in which clusters exist in different number of 
dimensions, and found no significant difference between 
the respective running times. Because of the random 
nature of PROCLUS, each running time reported in 
this section is averaged over three similar input files. 
We want to mention that in each run the quality of 
the results returned by PROCLUS was similar to that 
presented in the previous subsection. 


Number of points: All data files on which we 
tested contained 5 clusters, each existing in some 
5-dimensional subspace. The data space ‘was 20- 
dimensional. We ran CLIQUE with < = 10 and T = 
0.5. Figure 7 shows that PROCLUS scales linearly 
with the number of input points, while outperforming 
CLIQUE by a factor of approximately 10. The graph 
has logarithmic scale along the y coordinate. 


Average dimensionality of the clusters: All 
files on which we tested had N = 100,000 points 
and contained 5 clusters. The data space was 20- 
dimensional. We ran CLIQUE with < = 10 and T = 0.5 
for files in which the dimensionality of clusters was 4,5 
or 6, and with 7 = 0.1 for dimensionality of clusters 
equal to 7 and 8. We selected a lower r for the highler 
dimensional clusters because, as the volume of the 
clusters increases, the cluster density decreases. This 
corresponds to the approach used for the experiments 
in [l]. 


Figure 8 shows that the two algorithms have a 
different type of dependency on the average cluster 
dimensionality 1. The results we obtained for CLIQUE 
are consistent with those reported in [l], where an 
exponential dependency on 1 is proven. On the other 
hand, the running time of PROCLUS is only slightly 
influenced by 1. This happens because the main 
contribution of 1 to the running time is during the 
computation of segmental distances, which takes O(N . 
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Figure 8: Scalability with average dimensionality 


Figure 9: Scalability with dimensionality of the space 


k . I) for each iteration. Since we are also computing 
distances in the full dimensional space in time O(N . km 
d), the running time of an iteration is dominated by this 
second term and only slightly influenced by a change in 
1. 


This very good behavior of PROCLUS with respect 
to I is important for the situations in which it is not clear 
what value should be chosen for parameter 1. Because 
the running time is so small (about 150 seconds for each 
point shown in the graph), it is easy to simply run the 
algorithm a few times and try different values for 1. 


Dimensionality of the space: We tested on files 
with N = 100,000 points that contained 5 clusters, each 
existing in a 5-dimensional space. The sensitivity with 
respect to the dimensionality of the space is illustrated 
in Figure 9. As expected, PROCLUS scales linearly 
with the dimensionality of the entire space. 


5 Conclusions 


We have proposed a new concept, called projected clus- 
tering, for discovering interesting patterns in subspaces 
of high dimensional data spaces. This is a generaliza- 
tion of feature selection, in that it allows the selection of 
different sets of dimensions for different subsets of the 
data. While feature selection algorithms do not work on 
all types of data, projected clustering is general enough 
to allow us to deal with different correlations among 
various subsets of the input points. 


We have also provided a projected clustering algo- 
rithm called PROCLUS that returns a partition of the 
data points into clusters, together with the sets of di- 
mensions on which points in each cluster are correlated. 
The CLIQUE algorithm, which was previously proposed 
for a variant of this problem, successfully discovers pat- 
terns in subspaces of the data space, but its output does 
not guarantee a partition of the points. Such a partition 
is often desired in classification and trend analysis prob- 
lems for better interpretability of results. We conclude 
that for these applications PROCLUS is the method of 
choice. 


6 Acknowledgements 
We would like to thank Dimitrios Gunopulos for 
providing us with the CLIQUE code. 


References 


LlI 


PI 


131 


141 


[51 


k51 


R. Agrawal, J. Gehrke, D. Gunopolos, P. Ragha- 
van. Automatic Subspace Clustering of High Di- 
mensional Data for Data Mining Applications. Pro- 
ceedings of the ACM SIGMOD International Con- 
ference on Management of Data, 1998. 


D. Hand, Order Statistics. John Wiley and Sons, 
New York, 1981. 


M. Berger, I. Rigoutsos. An Algorithm for Point 
Clustering and Grid Generation. IEEE Transac- 
tions on Systems, Man and Cybernetics, Vol. 21, 
5:1278-1286, 1991. 


M. R. Brito, E. Chavez, A. Quiroz, J. Yukich. Con- 
nectivity of the Mutual k-Nearest-Neighbor Graph 
for Clustering and Outlier Detection. Statistics and 
Probability Letters, 35 (1997) pages 33-42. 


P. Cheeseman, J. Kelly, S. Matthew. AutoClass: A 
Bayesian Classification System. Proceedings of the 
5th International Conference on Machine Learning, 
Morgan Kaufmann, June 1988. 


R. Dubes, A. Jain. Clustering Methodologies in 
Exploratory Data Analysis. Advances in Computers, 
Edited by M. Yovits, Vol. 19, Academic Press, New 
York, 1980. 


71 







W ,] D. Fisher. Knowledge Acquisition via Incremental 
Conceptual Clustering. Machine Learning 2(2), 


1987. 


[7] M. Ester, H.-P. Kriegel, X. Xu. A Database 
Interface for Clustering in Large Spatial Databases. 
Proceedings of the first International Conference on 
Knowledge Discovery and Data Mining, 1995. 


[8] M. Ester, H.-P. Kriegel and X. Xu, Knowledge Dis- 
covery in Large Spatial Databases: Focusing Tech- 
niques for Efficient Class Identification. Proceedings 
of the Fourth International Symposium on Large 
Spatial Databases, Portland, Maine, U.S.A. 1995. 


[9] M. Ester, H.-P. Kriegel, J. Sander, X. Xu. A 
Density Based Algorithm for Discovering Clusters 
in Large Spatial IDatabases with Noise. Proceedings 
of the 2nd International Conference on Knowledge 
Discovery in Databases and Data Mining, Portland, 
Oregon, August 1.995. 


[lo] U. Shardanand, P. Maes. Social information filter- 
ing: algorithms for automating “word of mouth”. 
Proceedings of the ACM Conference on Human Fac- 
tors in Computkg Systems, pages 210-217, 1995. 


[12] D. Fisher. Optirnization and Simplification of Hi- 
erarchical Clusters. PTOCeedingS of the International 
Conference on Knowledge Discovery and Data Min- 
ing, August 1995. 


[13] D. Gibson, J. Kleinberg, P. Raghavan. Clustering 
Categorical Data: An Approach Based on Dynam- 
ical Systems. Proceedings of the 84th VLDB Con- 
feTence, pp. 311-3’22, 1998. 


[14] T. Gonzalez. Clustering to minimize the maximum 
intercluster distance. Theoretical Computer Science, 
Vol. 38, pp. 293-366, 1985. 


[15] S. Guha, R. Rastogi, K. Shim. CURE: An 
Efficient Clustering Algorithm for Large Databases. 
PTOCeedingS of the 1998 ACM SIGMOD Conference, 
pp. 73-84, 1998. 


[16] T. Ibaraki, N. K.&oh. Resource Allocation Prob- 
lems: Algorithmic Approaches. MIT Press,, Cam- 
bridge, Massachus,etts, 1988. 


[17] A. Jain, R. Dubes. Algorithms for Clustering Data. 
Prentice Hall, Englewood Cliffs, New Jersey, 1998. 


[18] L. Kaufman, P. Rousseeuw. Finding Groups in 
Data - An Introduction to Cluster Analysis. Wiley 
Series in Probability and Mathematical Statistics, 
1990. 


[19] R. Kohavi, D. Sommerfield. Feature Subset 
Selection Using the Wrapper Method: 0verfitt:ing 
and Dynamic Search Space Topology. Plboceedings 
of the First International Conference on B.nowIe,$ge 
Discovery and Data Mining, 1995. 


[20] R. Lee. Clustering Analysis and its applications. 
Advances in Information Systems Science, edited by 
J. Toum, Vol. 8, pp. 169-292, Plenum Press, New 
York, 1981. 


[21] R. Ng, J. Han. Efficient and Effective Clustering 
Methods for Spatial Data Mining. Proceedings of 
the 20th VLDB Conference, 1994, pp. 144.,155. 


[22] D. Keim, S. Berchtold, C. B6hm, H.-P. Kriegel. 
A cost model for nearest neighbor search in high- 
dimensional data space. PTOCeedingS of the 18th 
Symposium on Principles of Database Systems 
(PODS), pages 78-86, 1997. 


[23] S. Wharton. A Generalized Histogram Clustering 
for Multidimensional Image Data. Pattern Recogni- 
tion, Vol. 16, No. 2: pp. 193-199, 1983. 


[24] X. Xu, M. Ester, H.-P. Kriegel, J. Sander. A 
Distribution-Based Clustering Algorithm for Min- 
ing in Large Spatial Databases. Proceedings of the 
Fourteenth International Conference on Dda En!gi- 
neering, 1998, pp. 324-331. 


[25] M. Zait, H. Messatfa. A Comparative !%udy of 
Clustering Methods. FGCS Journal, Special Issue 
on Data Mining, 1997. 


[26] T. Zhang, R. Ramakrishnan, M. Livny. BIRCH: 
An Efficient Data Clustering Method for Very Large 
Databases. Proceedings of the ACM SIGMOD 
International Conference on Management of Data, 
Montreal, Canada, June 1996. 


72 






