
9. XSLT 9-1

Chapter 9: XSLT
Extensible Stylesheet
Language/Transformations

References:
• James Clark (Editor): XSL Transformations (XSLT), Version 1.0

W3C Recommendation, 16 November 1999
[https://www.w3.org/TR/xslt]

• Michael Kay (Editor): XSL Transformations (XSLT), Version 2.0
W3C Recommendation, 23 January 2007
[http://www.w3.org/TR/xslt20/]

• Michael Kay (Editor): XSL Transformations (XSLT), Version 3.0
W3C Candidate Recommendation, 19 November 2015
[http://www.w3.org/TR/xslt-30/]

• Michael Kay: XSLT 2.0 and XPath 2.0 Programmer’s Reference (Programmer to Pro-
grammer) Wiley, 4th Ed. (June 3, 2008), ISBN-10: 0470192747, 1376 pages.

• Wikipedia (English): XSLT
[https://en.wikipedia.org/wiki/XSLT]

• Robert Tolksdorf: Vorlesung XML-Technologien (Web Data and Interoperability),
Kapitel 6: XSLT: Transformation von XML-Dokumenten.
Freie Universität Berlin, AG Netzbasierte Informationssysteme, 2015.
[http://blog.ag-nbi.de/wp-content/uploads/2015/05/06 XSLT.pdf]

• w3schools: XSLT ELement Reference.
[http://www.w3schools.com/xml/xsl elementref.asp]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

https://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt20/
http://www.w3.org/TR/xslt-30/
https://en.wikipedia.org/wiki/XSLT
http://blog.ag-nbi.de/wp-content/uploads/2015/05/06_XSLT.pdf
http://www.w3schools.com/xml/xsl_elementref.asp

9. XSLT 9-2

Objectives

After completing this chapter, you should be able to:

• write transformations from XML to XML, or from

XML to HTML as an XSLT stylesheet.

This chapter also explains how a transformation from XML to LATEX
is done with XSLT.

• read and understand given XSLT stylesheets.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-3

Overview

1. Introduction

2. Example XSLT Stylesheet

3. Template Rules: Details

4. Restrictions in XPath 1.0

5. More XSLT Constructs

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-4

Introduction (1)

• XML is by itself only a data format:

� It contains the data (content), but

� does not specify how the elements should be

printed or displayed in a browser or on paper.

• The output format is specified with style sheets:

� Using Cascading Stylesheets (CSS).

� Using XSLT to translate XML to HTML.
The HTML is then typically formatted with CSS.

� Using XSLT to translate XML to XSL-FO.
For paper/PDF. One can also translate to LATEX with XSLT.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-5

Introduction (2)

• Many browsers support CSS, which is normally used

for HTML web pages, also for XML:

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/css"

href="mystyle.css"?>

<GRADES-DB>

...

• However, this has many restrictions:

� With CSS, the elements are formatted in the

order in which they are written,

� and there is only very limited filtering.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-6

Introduction (3)

• The Extensible Stylesheet Language (XSL) con-

sists of two parts:

� XSLT (XSL Transformations) is a mechanism to

transform XML documents into XML documents

(e.g., with other elements/tags).
As explained below, the output is not necessarily XML. Even bi-
nary files can be generated.

� XSL-FO (XSL Formatting Objects) is a set of

element types/tags with a specified semantics

for displaying them.
“an XML vocabulary for specifying formatting semantics”
[https://www.w3.org/Style/XSL/]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

https://www.w3.org/Style/XSL/

9. XSLT 9-7

Introduction (4)

• So the idea is to

� use XSLT to transform a custom XML file to

XSL-FO,

� which is then displayed on screen or printed on

paper.

• XSL-FO especially supports high-quality printout

on paper (or as a PDF file).

Thus, e.g. splitting a document into pages is important for XSL-FO,
whereas it is not important for displaying a web page in a browser.
Also, hyphenation is treated. Where possible, properties from CSS2
where taken, and somtimes extended or split into several properties.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-8

Introduction (5)

• XSL has its roots in DSSSL, the Document Style

Semantics and Specification Language (for SGML).

• XSLT 1.0 became a W3C recommendation (official

standard) on November 16, 1999.

See [https://www.w3.org/TR/xslt]. The current version is XSLT 2.0
from Januar 23, 2007. [https://www.w3.org/TR/xslt20/].

• XSL 1.0 (which specifies XSL-FO) became a W3C

recommendation on October 15, 2001.

See [https://www.w3.org/TR/2001/REC-xsl-20011015/]
Current ver.: XSL 1.1 (Dec. 5, 2006) [https://www.w3.org/TR/xsl/]
Draft: XSL 2.0 (Jan. 17, 2012) [https://www.w3.org/TR/xslfo20/]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

https://www.w3.org/TR/xslt
https://www.w3.org/TR/xslt20/
https://www.w3.org/TR/2001/REC-xsl-20011015/
https://www.w3.org/TR/xsl/
https://www.w3.org/TR/xslfo20/

9. XSLT 9-9

Introduction (6)

• Quite often, XSLT is used without XSL-FO:

� For instance, XML is transformed to HTML to

be displayed in a browser.

� Or XSLT is used to transform a given XML do-

cument into a differently structured XML docu-

ment (with different element types/tags).

In this way, one can adapt an XML file from a business partner to
one’s own XML structure. Or one can integrate XML files from
different sources to a common XML vocabulary.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-10

Introduction (7)

• For translating XML to HTML, XSLT can be used

in two places:

� Client: the web browser does the mapping,

� Server: one uses an XSLT processor to translate

XML to HTML, and publishes the HTML files.
Maybe in addition to the XML files. It is also possible that the
HTTP server does the translation on demand: The web browser
sends in the HTTP request a list of mime types it understands.

• It seems that browsers today still understand only

XSLT 1.0 (which is based on XPath 1.0).
E.g. documentation of XSLT support in Mozilla Firefox:
[https://developer.mozilla.org/en-US/docs/Web/XSLT]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

https://developer.mozilla.org/en-US/docs/Web/XSLT

9. XSLT 9-11

Introduction (8)

• Doing the XML to HTML mapping on Client or

Server, continued:

� If one does the translation in an intranet only for

the employees of the company, one can at least

rely on the knowledge which browser is used.

� On the global internet, it might be that potential

customers use old browsers which do not support

XSLT or support it in incompatible ways.

One can still put the XML file on the server in addition to the
HTML file, in order to support semantic web applications (like
price comparision services).

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-12

XSLT Implementations

• Saxon (from Michael Kay)
M. Kay is editor of the XSLT 2.0 Spec. Basic version (without static
type checking and XQuery→Java compiler) is open source. Supports
XSLT 2.0, XPath 2.0, XQuery 1.0. [http://saxon.sourceforge.net/]

• Xalan (Apache) (Java and C++ versions)
[http://xalan.apache.org/]
This is mainly a library, but it also has a command line untility.

• xsltproc/libxslt
[http://xmlsoft.org/], [http://xmlsoft.org/XSLT/xsltproc.html]

• AltovaXML Community Edition
[http://www.softpedia.com/get/Internet/Other-Internet-Related/AltovaXML.shtml]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://saxon.sourceforge.net/
http://xalan.apache.org/
http://xmlsoft.org/
http://xmlsoft.org/XSLT/xsltproc.html
http://www.softpedia.com/get/Internet/Other-Internet-Related/AltovaXML.shtml

9. XSLT 9-13

Overview

1. Introduction

2. Example XSLT Stylesheet

3. Template Rules: Details

4. Restrictions in XPath 1.0

5. More XSLT Constructs

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-14

Example XML File (1)

• Consider the grades DB with data in attributes:

<?xml version=’1.0’ encoding=’UTF-8’?>

<?xml-stylesheet type=’text/xsl’

href=’mystyle.xsl’?>

<GRADES-DB>

<STUDENT SID=’101’

FIRST=’Ann’ LAST=’Smith’

EMAIL=’smith@acm.org’/>

<STUDENT SID=’102’

FIRST=’Michael’ LAST=’Jones’/>

...

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-15

Example XML File (2)

• Grades DB (with data in attributes), continued:

<EXERCISE CAT=’H’ ENO=’1’

TOPIC=’Relational Algebra’

MAXPT=’10’/>
...

<RESULT SID=’101’ CAT=’H’ ENO=’1’

POINTS=’10’/>
...

</GRADES-DB>

Note: If there is a typing error in the name of the stylesheet, many
browsers (e.g., Firefox 43) silently apply the built-in templates (see
Slide 9-56), which means that the output will be empty if the data is
stored in attributes. Textual element content is shown.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-16

Example XSLT Stylesheet (1)

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet

version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:html="http://www.w3.org/1999/xhtml"

xmlns="http://www.w3.org/1999/xhtml"

exclude-result-prefixes="html">

• XSLT stylesheets are written in XML syntax, using

the outermost element stylesheet.

transform is allowed as a synonym. The version number is mandatory.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-17

Example XSLT Stylesheet (2)

• The namespace URI for XSLT elements must be

http://www.w3.org/1999/XSL/Transform.

• In the example, a namespace for XHTML is decla-

red in addition to the namespace for XSLT, and

this is also the default namespace.

So one can write XHTML tags without namespace prefix.

• With exclude-result-prefixes, it is specified that in

the output of the transformation, the namespace

prefix of XHTML tags should not be written.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-18

Example XSLT Stylesheet (3)

<xsl:output

method="xml"

doctype-system=

"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"

doctype-public="-//W3C//DTD XHTML 1.1//EN" />

• This specifies how the resulting XDM tree should

be printed/serialized (in this case, as XHTML).

Alternative (classical HTML):
<xsl:output method="html"

encoding="ISO-8859-1"
doctype-public="-//W3C//DTD HTML 3.2 Final//EN"
indent="yes" />

See: [https://www.w3.org/TR/xslt#output]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

https://www.w3.org/TR/xslt#output

9. XSLT 9-19

Example XSLT Stylesheet (4)

<xsl:template match="/">

<html>

<head><title>Students</title></head>

<body>

<h1>Student List</h1>

<xsl:apply-templates

select="/GRADES-DB/STUDENT"/>

</body>

</html>

</xsl:template>

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-20

Example XSLT Stylesheet (5)

• An XSLT stylesheet is mainly a set of transforma-

tion rules called “templates” or “template rules”.
[https://www.w3.org/TR/xslt#rules]

• Each template describes a transformation from a

subtree of the input (i.e. a start node and all its

descendants) into a tree or list of trees.

• The output of the transformation for a given XML

document is given by the rule for the root node “/”

of the input tree.
All other templates are used only if they are called (maybe indirectly)
from the pattern for this root node “/” with “apply-templates”.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

https://www.w3.org/TR/xslt#rules

9. XSLT 9-21

Example XSLT Stylesheet (6)

• Each transformation rule (template) consists main-

ly of two parts:

� The attribute “match” defines, for which nodes

this transformation rule is applicable.

It is a restricted XPath-expression (called a pattern).
[http://www.w3.org/TR/xslt#patterns]

� The contents of “xsl:template” is a pattern for

the output. It is mainly copied to the output tree,

but contained XSLT elements are evaluated.

In the example, the contents contains “xsl:apply-templates”.
Another typical tag used in the contents is “xsl:value-of”.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#patterns

9. XSLT 9-22

Example XSLT Stylesheet (7)

• “xsl:apply-templates” will be replaced by the result

of applying the transformation recursively to the

node which is specified in the “select”-attribute.

The contents of this attribute is an XPath expression.
[https://www.w3.org/TR/xslt#section-Applying-Template-Rules]

• If it selects several nodes, the transformation re-

sults for all these the nodes are inserted into the

output tree (in the same sequence).

• If the attribute “select” is omitted, all child nodes

are transformed.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

https://www.w3.org/TR/xslt#section-Applying-Template-Rules

9. XSLT 9-23

Example XSLT Stylesheet (8)

<xsl:template match="STUDENT">

<xsl:value-of select="@LAST" />,

<xsl:value-of select="@FIRST" />

</xsl:template>

</xsl:stylesheet>

• The result of the stylesheet is an HTML page which

contains the student names, e.g. “Smith, Ann” as

an unordered list.

value-of adds the value of the XPath-expression converted to a string.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-24

Example XSLT Stylesheet (9)

<STUDENT SID=’101’
FIRST=’Ann’ LAST=’Smith’
EMAIL=’smith@acm.org’/>

<xsl:template match="STUDENT">
<xsl:value-of select="@LAST" />,

<xsl:value-of select="@FIRST" />

</xsl:template>

Smith,
Ann

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-25

Stylesheets are XML (1)

• Note that XSLT stylesheets must be well-formed

XML. Thus, even if HTML is generated, one must

e.g. write “
” and not simply “
”.

• XML has only the five predefined entities “<”,

“>”, “'”, “"e;”, “&”.

• To use other HTML entities (e.g. “ ”):

� declare them in a local DTD part in the DOC-

TYPE declaration (see below), or

� put them into a CDATA section (see below), or

� write a character reference: for .

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-26

Stylesheets are XML (2)

• Solution with CDATA-Section:
<xsl:text disable-output-escaping="yes"

><![CDATA[]]></xsl:text>

• The xsl:text is needed so that the CDATA-section

does not appear in the output (because the output

escaping is disabled).

xsl:text simply creates a text node.
[https://www.w3.org/TR/xslt#section-Creating-Text]
[https://www.w3.org/TR/xslt#disable-output-escaping]

• Obviously, this is only practical if there are very few

entity references.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

https://www.w3.org/TR/xslt#section-Creating-Text
https://www.w3.org/TR/xslt#disable-output-escaping

9. XSLT 9-27

Stylesheets are XML (3)

<!DOCTYPE xsl:stylesheet [

<!ENTITY Auml "Ä">

<!ENTITY auml "ä">

<!ENTITY Ouml "Ö">

<!ENTITY ouml "ö">

<!ENTITY Uuml "Ü">

<!ENTITY uuml "ü">

<!ENTITY szlig "ß">

<!ENTITY nbsp " ">

]>

The numbers can be taken from the HTML DTD or the Unicode standard
or [http://www.w3.org/2003/entities/2007/w3centities-f.ent].

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/2003/entities/2007/w3centities-f.ent

9. XSLT 9-28

Overview

1. Introduction

2. Example XSLT Stylesheet

3. Template Rules: Details

4. Restrictions in XPath 1.0

5. More XSLT Constructs

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-29

Templates as Functions (1)

• One can view a template rule as a function with

the following input:

� a current node,

The current node is the context node for the evaluation of XPath
expressions within the template. It is the main input of the tem-
plate rule. [http://www.w3.org/TR/xslt#rules]

� a current node list,

The current node list is only used for determining the context
position and context size: The current node is always a member of
the current node list. Its position is the context position (counted
from 1). The length of the current node list is the context size.

� possibly named parameters (see below).

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#rules

9. XSLT 9-30

Templates as Functions (2)

• The output is a “result tree fragment”.

This is a root node with children. The root node is not important, it
is normally removed when the “result tree fragment” is inserted into
another “result tree fragment”. I.e. it could also be simply formalized
as a list of nodes. However, because a root node cannot have attribute
nodes as children, a result tree fragment cannot contain attribute
nodes (except within element nodes). The special type “result tree
fragment” as opposed to node set is also needed because one is not
allowed to use /, // and [...] on result tree fragments (only the string
value can be used). It is possible to define variables that have result
tree fragments as values, (see Slide 9-72), but one cannot do much
with it except inserting it into the output document. In particular, one
cannot apply templates to the result of other templates.
[http://www.w3.org/TR/xslt#section-Result-Tree-Fragments]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#section-Result-Tree-Fragments

9. XSLT 9-31

Templates as Functions (3)

• One can view the template rules as different versi-

ons of a heavily overloaded function/method.

All functions have the same name, they differ only in the argument
type. Later, “modes” will be discussed, which correspond to functions
with different names. One can also introduce named templates.

• The attribute match defines the “data type” of the

current node (the argument) for which this “imple-

mentation” of xs:template is applicable.

• E.g. there may be one implementation for STUDENT

element nodes, and another one for EXERCISE nodes.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-32

Templates as Functions (4)

• Initially, xs:template is called with the root node of

the input document as current node.

I.e. this is the call of the “main” procedure which initiates the sty-
lesheet execution. The “current node list” contains only this node,
i.e. the context position is 1 and context size is 1.

• When a template is executed, the contents of the

xs:template element is evaluated.

This process is described in detail starting on Slide 9-37. The lan-
guage can be seen as a functional language, i.e. the contents of the
xs:template is basically a term which is evaluated to a result tree frag-
ment based on the values of its subterms. There are variables (see
Slide 9-72), but these can be assigned a value only once, i.e. they are
constants.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-33

Templates as Functions (5)

• If <xsl:apply-templates select="e"> is called,

� the XPath-expression e is evaluated. The result

must be a node set. Let n1, . . . , nk be these nodes

in document order (xs:sort changes the order).

� For i := 1, . . . , k, a recursive call of the template

evaluation procedure is done with ni as current

node and n1, . . . , nk as current node list.
I.e. context node: ni, context position: i, context size: k.

� Each call returns a sequence of nodes (result

tree fragment). These sequences are concaten-

ated (with adjacent text nodes merged).

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-34

Templates as Functions (6)

• Within a template, one can e.g. use

<xsl:value-of select="position()"/>

to see the context position.

For instance, this can be used to generate a sequential number of
the template calls resulting from a single xsl:apply-templates. In the
same way, last() gives the total number of nodes selected in this call.

• But note that the context changes within an XPath

expression (and thus, the value of position()).

E.g. “//STUDENT[position()+1]” gives ∅, because position() is then the
position of the current node in the //STUDENT-sequence. If one needs
to remember the position for which the template was called, this can
be done by defining a variable within the template, see Slide 9-75.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-35

Templates as Functions (7)

• Since the current node (the main input parameter

to the template invocation) is so important, there

is a special function current() which returns it.

There are several “additional functions” that can be used in XPath
expressions embedded in XSLT, which are not part of the XPath core
function library. [http://.../xslt#add-func] [#function-current]

• When an XPath expression in the template is eva-

luated, the context node ist first the current node.

• However, as the path expression navigates through

the XML document, the context node changes,

while the result of current() remains stable.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#add-func
http://www.w3.org/TR/xslt#function-current

9. XSLT 9-36

Templates as Functions (8)

• Note that a template invocation for a node n can

call templates for any node in the input document,

not only in the subtree rooted at n.

• Print sum of homework points for each student:

<xsl:template match="STUDENT">

<xsl:value-of select="@LAST" />:

<xsl:value-of select="sum(//RESULT

[@SID=current()/@SID][@CAT=’H’]

/@POINTS)" />

</xsl:template>

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-37

Template Instantiation (1)

General Remarks:

• The contents of the xs:template-Element is “in-

stantiated” to give a result tree fragment (which

usually becomes part of the output document).
When the “real” XSLT evaluation starts, there is an XDM tree for
the input document, and one for the stylesheet (which is XML, too).

• I.e. to specify what XSLT does, one must define a

function “instantiate” that takes a context C and

a node n inside the template as input, and returns

a sequence of nodes for the result tree.
Usually, it will call itself recursively for the children of node n.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-38

Template Instantiation (2)

Literal Result Elements:

• Elements within the template that do not belong

to the XSLT namespace are evaluated by creating

the corresponding element in the output.

[http://www.w3.org/TR/xslt#literal-result-element]

• The content of the element in the template is eva-

luated to give the content of the constructed ele-

ment.

Therefore, e.g. nested xsl:value-of or xsl:apply-templates are eva-
luated, too.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#literal-result-element

9. XSLT 9-39

Template Instantiation (3)

Literal Result Elements, continued:

• Attributes of the element are treated as “attri-

bute value templates”: They can contain XPath-

expressions in “{...}” that are evaluated to give

the attribute value of the constructed element.

This is similar to XQuery. If one needs literal “{” outside an XPath
expression, one has to write “{{”, and the same for “}”. Note that
this special interpretation of “{...}” happens only in attribute values
of literal result elements or certain attributes of some XSLT elements.
Within element content, “{...}” is not interpreted.
[http://www.w3.org/TR/xslt#dt-attribute-value-template]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#dt-attribute-value-template

9. XSLT 9-40

Template Instantiation (4)

Literal Text:

• Text nodes within the template are copied to the

generated output, unless they contain only white-

space.

And unless an acestor element of the text node contains the speci-
al attribute xml:space="preserve" (introduced in the XML standard).
[http://www.w3.org/TR/xslt#section-Creating-Text]
[http://www.w3.org/TR/xslt#strip]

• Note that adjacent text nodes (no matter how they

are created) are merged, and empty text nodes are

removed, as required by the data model.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#section-Creating-Text
http://www.w3.org/TR/xslt#strip

9. XSLT 9-41

Template Instantiation (5)

xsl:text:

• If one wants to generate e.g. a single space in the

output document, one can write

<xsl:text> </xsl:text>

Whitespace within this element is preserved.

• The element xsl:text can be used for generating

any text node, but because literal text is copied,

this is needed only in special situations.

• The content mode of xsl:text is #PCDATA.

I.e. pure text without nested elements.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-42

Template Instantiation (6)

disable-output-escaping:

• If one writes < or <, the internal representa-

tion of the style sheet contains the character “<”.

• Normally, on output this is escaped, i.e. written

“<”, so that valid XML is produced.

The same is done for “&” and maybe other special characters.

• The elements xsl:text and xsl:value-of have an

attribute disable-output-escaping which permits to

supress this translation.

[http://www.w3.org/TR/xslt#disable-output-escaping]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#disable-output-escaping

9. XSLT 9-43

Template Instantiation (7)

disable-output-escaping, continued:

• The default value of this attribute is "no".

• If disable-output-escaping is set to “yes”, charac-

ters like < are printed without the translation to <.

• Note that in the stylesheet, one must write <

(so that the stylesheet is valid XML).

• But the output will then be simply “<”.

• E.g., if one wants to generate “ä”:
<xsl:text disable-output-escaping="yes"

>&auml;</xsl:text>

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-44

Template Instantiation (8)

value-of:

• <xsl:value-of select="e"/> is replaced by the value

of the XPath-expression e, converted to string.

The node, for which the template is applied, is the context node for
evaluating e. The result of value-of is always a string (text node).
[https://www.w3.org/TR/xslt#value-of]

• If several nodes are selected, only the first (in docu-

ment order) is chosen, and its string-value is taken.

As explained above for xsl:text, the attribute disable-output-escaping

can be used to suppress the translation of characters like < to <.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

https://www.w3.org/TR/xslt#value-of

9. XSLT 9-45

Template Instantiation (9)

apply-templates:

• <xsl:apply-templates select="e"/> is replaced by

the result of doing the “template rule” transfor-

mation recursively for all nodes that in the result

of the XPath-expression e. See Slide 9-33.

• If select is missing, all child nodes are selected.

xsl:apply-templates can contain xsl:sort →9-80 and xsl:with-param

→9-83. Furthermore, it has an attribute mode →9-82.
[http://www.w3.org/TR/xslt#section-Applying-Template-Rules]

• Of course, a template can contain any number of

calls to xsl:apply-templates, not only one.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#section-Applying-Template-Rules

9. XSLT 9-46

Template Instantiation (10)

xsl:copy:

• <xsl:copy>C</xsl:copy> copies the current node

(the node for which the template was called) and

replaces its children by the result of evaluating C.
I.e. the node is copied, but not its children or attributes. The copied
node can be any kind, it does not have to be an element node.
[http://www.w3.org/TR/xslt#copying]

• The identity transformation can be specified as:
<xsl:template match="@*|node()">

<xsl:copy>
<xsl:apply-templates select="@*|node()"/>

</xsl:copy>
</xsl:template>

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#copying

9. XSLT 9-47

Template Instantiation (11)

xsl:copy-of:

• <xsl:copy-of select="e"/> copies the result of eva-

luating e into the result of the template, including

all descendant nodes.

[http://www.w3.org/TR/xslt#copy-of]

• I.e. xsl:copy-of can be used to copy portions of the

input XDM tree into the output.

The input XDM tree is subject to the removal of pure whitespace text
nodes, as defined by <xsl:strip-space elements="A B C"/> (whitespace
text nodes that are children of the named elements A, B and C will be
removed), see [http://www.w3.org/TR/xslt#strip].

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#copy-of
http://www.w3.org/TR/xslt#strip

9. XSLT 9-48

Template Instantiation (12)

xsl:element:

• <xsl:element name="n">C</xsl:element> generates

an element node with name n and content that

is the result of evaluating C.
[http://.../xslt#section-Creating-Elements-with-xsl:element]

• One can use {e} in the attribute value of name to

include XPath-expressions that are evaluated and

replaced by the result (converted to a string).
I.e. the attribute value is interpreted as “attribute value template”.
This possibility to compute the element name is probably the reason
for using xsl:element, because otherwise one could have written simply
the element itself.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#section-Creating-Elements-with-xsl:element

9. XSLT 9-49

Template Instantiation (13)

xsl:attribute:

• <xsl:attribute name="n">C</xsl:attribute>

generates an attribute node with name n and the

result of evaluating C as value.

One can use {e} in the attribute value of name (see xsl:element above).
The result of evaluating C must be a text node (e.g., element nodes
cannot become an attribute value).
[http://www.w3.org/TR/xslt#creating-attributes]

• The generated attribute node is assigned to the

enclosing element.

Attribute nodes must come first in the content, they cannot be added,
e.g., after a text node.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#creating-attributes

9. XSLT 9-50

Template Instantiation (14)

Summary:

• There are constructor elements for each node type:

� xsl:element

� xsl:attribute

� xsl:text

� xsl:processing-instruction

[http://.../xslt#section-Creating-Processing-Instructions]

� xsl:comment

[http://www.w3.org/TR/xslt#section-Creating-Comments]

Obviously, these are similar to the computed constructors in XQuery.
Literal elements, attributes and text in the template are copied to the
result, this corresponds to the direct element constructors of XQuery.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#section-Creating-Processing-Instructions
http://www.w3.org/TR/xslt#section-Creating-Comments

9. XSLT 9-51

Template Rule Selection (1)

• A template with XPath-expression p in the attribute

“match” is applicable to a node n

� if there is some ancestor a of n

� such that n is an element of the nodes selected

by p evaluated with context node a.

• For instance, “/GRADES-DB/STUDENT/” matches

� a STUDENT-node within the top GRADES-DB node,

� not a GRADES-DB node with a STUDENT child node.

• There are priority rules if several templates match.
See below and [https://www.w3.org/TR/xslt#conflict].

Stefan Brass: XML und Datenbanken Universität Halle, 2017

https://www.w3.org/TR/xslt#conflict

9. XSLT 9-52

Template Rule Selection (2)

• Only a subset of XPath 1.0 is allowed as pattern,

basically a |-union of path expressions using

� /, //,

At the beginning for absolute paths and as separators of the steps.

� child::, attribute::

Of course, the child axis does not have to be specified explicitly,
and the attribute axis can be abbreviated to “@”.

� node tests (name and type tests) and

� predicates [...].

Inside predicates, the full XPath 1.0 can be used.
[http://www.w3.org/TR/xslt#patterns]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#patterns

9. XSLT 9-53

Template Rule Selection (3)

• Each template has a priority.

• One can specify a priority explicitly:

<xsl:template match="STUDENT[1]" priority="2.0">

• If one does not specify a priority, the default is:

� −0.5 if it is just a node test without a name,

e.g. * or @* or text().

� −0.25 if it is a wildcard with a namespace,

e.g. abc:*

� 0 if it is a name, e.g. STUDENT or @EMAIL.

� +0.5 for all more complex patterns.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-54

Template Rule Selection (4)

• If a pattern is composed with |, then the templa-

te is treated like several templates, one for each

alternative.

• E.g. if the pattern is “STUDENT|EXERCISE[1]”, the

template rule has priority

� 0, if applied to a STUDENT-element, and

� 0.5, if applied to the first EXERCISE-child of its

parent.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-55

Template Rule Selection (5)

• A stylesheet can be composed out of several files:

<xsl:import href="lib.xsl">

• Template rules from files that are imported ear-

lier have lower “import precedence” than templates

from later imported files.
Template rules in the main file have the highest “import precedence”.
[xsl:apply-imports] can be used for applying overridden rules.

• For template rule selection, “import precedence” is

considered first, and priority second.
It is an error if that still leaves more than one template rule. However,
the XSLT processor may recover by selecting the later rule.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#apply-imports

9. XSLT 9-56

Built-In Template Rules (1)

• Built-in template rule for descending in the tree if

there is no other match:
<xsl:template match="*|/">

<xsl:apply-templates/>

</xsl:template>

When apply-templates is specified without the attribute select, it
processes all child nodes of the current node (element nodes, text
nodes, comment nodes and PI nodes).

• Built-in rules have the lowest possible import pre-

cedence. Thus, if there is another rule matching

the node, this other rule is chosen.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-57

Built-In Template Rules (2)

• The following rule prints text nodes and values of

attribute nodes when/if they are selected:

<xsl:template match="text()|@*">

<xsl:value-of select="."/>

</xsl:template>

Note that the above default rule applies the templates only to child
nodes, not the attribute nodes.

• There is also a rule for processing instructions and

comment nodes that returns an empty node set:

<xsl:template

match="processing-instruction()|comment()"/>

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-58

Possible Non-Termination

• A template can contain xsl:apply-templates with a

select-expression that matches not only for child

or descendant nodes, but any node in the input

document (including itself).

<xsl:template match="STUDENT>

<xsl:apply-templates select="."/>

</xsl:template>

• XSLT is computationally complete.
One can simulate any Turing machine (or other computation model)
in it. [http://www.unidex.com/turing/utm.htm]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.unidex.com/turing/utm.htm

9. XSLT 9-59

Overview

1. Introduction

2. Example XSLT Stylesheet

3. Template Rules: Details

4. Restrictions in XPath 1.0

5. More XSLT Constructs

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-60

Restrictions in XPath 1.0 (1)

• In this course, the main emphasis is on XPath 2.0.

• However, the XSLT-implementation of many brow-

sers supports only XSLT 1.0.

• Therefore, if one wants to write style sheets which

are executed in the browser, one should use only

XPath 1.0.

• Axis and location paths are basically the same.

Node type tests have been expanded in XPath 2.0 (because of XML
Schema).

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-61

Restrictions in XPath 1.0 (2)

• XPath 1.0 is not based on sequences as XPath 2.0.

The available data types are:

� string

� number (floating point)
There is no integer type in XPath 1.0. Note that the type “num-
ber” contains an error value (NaN: “not a number”), positive and
negative infinity, and a positive and a negative zero.

� boolean

� node set
Instead of sequences, XPath 1.0 has only node sets. Often the
nodes must be ordered, this is done in document order. Some rules
in XPath 2.0 become clearer if one remembers that the designers
tried to remain compatible with the node sets from XPath 1.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-62

Restrictions in XPath 1.0 (3)

• Variables can be defined only outside the path ex-

pression (in XSLT, not in XPath). Therefore, there

is no for, some, every, :=.

• There is also no if.

• except und intersect are not available in XPath 1.0.
union is also not available, but | is (which does ∪).

• Since the type system is much more restriced (not

based on XML Schema), there are no type tests of

type conversions.
E.g. no instance of, treat as castable, cast.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-63

Operators in XPath 1.0

Prio Operator Assoc.

1 or left
2 and left
3 =, != left
4 <, <=, >, >= left
5 +, - left
6 *, div, mod left
7 - (unary) right
8 | left
9 /, // left

10 [] left

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-64

Functions in XPath 1.0 (1)

Node Set Functions:

• number last(): Context size.

• number position(): Context position.

• number count(node-set x): Number of nodes in x.

• node-set id(object x):

Nodes with one of the IDs specified by x.

object means that x can be of any type. If x is a string containing a
single ID, a node with that ID is taken. Otherwise x is converted to a
sequence of strings, which can also contain several IDs separated by
whitespace.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-65

Functions in XPath 1.0 (2)

Node Set Functions, continued:

• string local-name(node-set? x):

Node name without namespace prefix.

The first node in the input node set is taken (in document order).
The argument is optional. If the function is called without argument,
the local name of the context node is returned.

• string namespace-uri(node-set? x):

Namespace URI of (first) argument node.

• string name(node-set? x):

Name of (first) node in x with namespace prefix.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-66

Functions in XPath 1.0 (3)

String Functions:

• string string(object? x): Conversion to string.

For a node set, the string-value of the first node in the set is taken.
If the argument is omitted, the context node is taken.

• string concat(string s1, string s2, string∗ sn):

String concatenation.

• boolean starts-with(string x, string y):

y is prefix of x.

• boolean contains(string x, string y):

y is substring of x.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-67

Functions in XPath 1.0 (4)

String Functions, continued:

• string substring-before(string x, string y):

Prefix of x until first occurrence of y.
The empty string is returned if x does not contain y.
E.g. substring-before("abcbc", "b") = "a".

• string substring-after(string x, string y):

Suffix of x after first occurrence of y.
E.g. substring-after("abcbc", "b") = "cbc".

• string substring(string s, number p, number? l):

Substring of s starting at position p with length l.
E.g. substring("abcde", 2, 3) = "bcd". If l is omitted: entire rest.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-68

Functions in XPath 1.0 (5)

String Functions, continued:

• number string-length(string? s):

Number of characters in s.

• string normalize-space(string? s):

s with sequences of whitespace characters reduced

to a single space, and leading/trailing whitespace

removed.

• string translate(string s, string x, string y):

s with the i-th character in x replaced by the i-th

character in y (or removed if string-length(y) < i).

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-69

Functions in XPath 1.0 (6)

Boolean Functions:

• boolean boolean(object x): Conversion to boolean.
See “effective boolean value”: E.g. node set is true iff it is not empty.

• boolean not(boolean b): Negation.

• boolean true(): Constant value “true”.

• boolean false(): Constant value “false”.

• boolean lang(string l):

Language of the context node is l.
E.g. if xml:lang = "en-us" is specified in an ancestor node of the con-
text node (and no other language is specified in between), lang("en")
is true. If no language is specified, lang returns false.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-70

Functions in XPath 1.0 (7)

Number Functions:

• number number(object? x): Conversion to a number.
If a string has no numeric format, it is converted to the special floating
point value “NaN” (“not a number”, error value).

• number sum(node-set x):

Sum of the result of converting the string-value of

each node in x to a number.

• number floor(number x): Largest integer ≤ x.

• number ceiling(number x): Smallest integer ≥ x.

• number round(number x):

x rounded to nearest integer (.5 is rounded up).

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-71

Overview

1. Introduction

2. Example XSLT Stylesheet

3. Template Rules: Details

4. Restrictions in XPath 1.0

5. More XSLT Constructs

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-72

Variables (1)

• XPath 1.0 has no constructs that can introduce

new variables, or assign a value to a variable.

• But one can use $x to access the value of a varia-

ble x defined in the given context.

• In XSLT 1.0, a variable can be declared and assi-

gned a value as follows:

<xsl:variable name="version" select="1"/>

• One can use this e.g. with

<xsl:value-of select="$version"/>

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-73

Variables (2)

• It is also possible to define the variable value in the

content. This is processed as a template:

<xsl:variable name="table_headline">

<tr><th>Student</th><th>Points</th></tr>

</xsl:variable>

• One can use this result tree fragment as follows:

<xsl:copy-of select="$table_headline"/>

• Note: <xsl:variable name="n" select="2"> is not the

same as <xsl:variable name="n">2</xsl:variable>.
In the first case, the value is the number 2, in the second case a node
with value 2. E.g. //student[$n] works in the first case, but in the
second, one must write //student[position()=$n].

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-74

Variables (3)

• Variable declarations can appear on the top level,

i.e. as child of xsl:stylesheet. Then they are global

and can be accessed everywhere.

If they are defined by a template, this is evaluated with the root node
of the input document as context node.

• Variable declarations can also be written inside a

template, then they are local, and the variable can

be accessed only within that template.

And only after it is defined. This is different from global variables,
which are available even before their point of definition (but cycles
are forbidden). [http://www.w3.org/TR/xslt#variables]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#variables

9. XSLT 9-75

Variables (4)

• A defined variable cannot be assigned a new value

(i.e. it should be understood like a constant).
A global variable can be shadowed by a local variable in a template.

• This permits very different evaluation algorithms,

e.g. on parallel hardware.
The language is declarative (functional), not imperative.

• Of course, a variable within a template gets a new

value for each template invocation:

<xsl:template match="STUDENT">

<xsl:variable name="no" select="position()"/>

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-76

Repetition: for-each (1)

• With the for-each construct, one can embed a tem-

plate directly into another template:

<xsl:template match="GRADES-DB">

<for-each select="STUDENT">

<value-of select="@LAST"/>,
<value-of select="@FIRST"/>

</for-each>

</xsl:template>

[http://www.w3.org/TR/xslt#for-each]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#for-each

9. XSLT 9-77

Repetition: for-each (2)

• The XPath-expression in select determines a node

set n1, . . . , nk, just as with apply-templates.

• The contents of the for-each element is instan-

tiated once for each node ni as current node, the

corresponding node lists (result tree fragments) are

concatenated as the value of the for-each.
Note that there is no variable, only the implicit context.

• If one uses apply-templates with a separate templa-

te, that becomes a reusable component.
Like a procedure. In contrast, for-each is like putting the procedure
body directly into the place where it is called.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-78

Conditional Processing (1)

• xsl:if makes part of a template conditional, i.e. the

contents of xsl:if is inserted only when a condition

is true.
[http://www.w3.org/TR/xslt#section-Conditional-Processing]

• E.g. comma-separated list of student last names:

<xsl:template match="GRADES-DB">
<for-each select="STUDENT">

<value-of select="@LAST"/>
<xsl:if test="not(position()=last())"

>,</xsl:if>
</for-each>

</xsl:template>

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#section-Conditional-Processing

9. XSLT 9-79

Conditional Processing (2)

• An “else if”-chain, e.g.

“if(c1) then s1 else if(c2) then s2 else s3”

is written in XSLT as

<xsl:choose>

<xsl:when test="c1">s1</xsl:when>
<xsl:when test="c2">s2</xsl:when>
<xsl:otherwise>s3</xsl:otherwise>

</xsl:choose>

The content model of xsl:choose is xsl:when+,xsl:otherwise?. The
template within the first xsl:when with a test-condition that eva-
luates to true is chosen (evaluated). If all are false, the content of
xsl:otherwise is evaluated (if missing, it is treated as empty).
[http://.../xslt#section-Conditional-Processing-with-xsl:choose]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#section-Conditional-Processing-with-xsl:choose

9. XSLT 9-80

Sorting (1)

• One can specify that apply-tempates and for-each

should construct the result not in document order

of the selected nodes, but in a specific sort order.

• E.g. print students alphabetically sorted by last na-

me, and by first name if last names are equal:

<xsl:template match="GRADES-DB">

<apply-templates select="STUDENT">
<sort select="@LAST"/>
<sort select="@FIRST"/>

</apply-templates>

</xsl:template>

Stefan Brass: XML und Datenbanken Universität Halle, 2017

9. XSLT 9-81

Sorting (2)

• Attributes of xsl:sort to modify the sort order:

� data-type="number" for numerical order.

The default is data-type="text", which means that the selected
values are converted to strings. With data-type="number", they are
converted to numbers. All attributes are “attribute value templa-
tes”: one can use {...}. [http://www.w3.org/TR/xslt#sorting]

� order="descending" means an inverse sort order

from large to small values. Default: "ascending".

� lang="de" select a language-specific sort order.

� case-order="upper-first" requests a sort order

like A a B b Alternative: "lower-first".

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#sorting

9. XSLT 9-82

Modes

• xsl:template and xsl:apply-templates have an op-

tional attribute mode which can be set to a name.

Possibly with namespace prefix (QName). [http://.../xslt#modes]

• xsl:apply-templates applies only templates with a

matching mode value, i.e.

� either both have a mode value specified, and the

values are equal, or

� both have no mode specified.

• I.e. the mode is something like a function name,

and match specifies the argument type.

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#modes

9. XSLT 9-83

Template Parameters

• One can pass a parameter to a called template:

<xsl:apply-templates select="//RESULT[@CAT=’E’]">

<xsl:with-param name="type" select="’Exam’"/>

</xsl:apply-templates>

The parameter definition is very similar to a variable definition.
[http://.../xslt#section-Passing-Parameters-to-Templates]

• A template that uses the parameter value must de-

clare it at the beginning of the content:
<xsl:templates match="RESULT>

<xsl:param name="type" select="’Unknown’"/>

The defined value is a default value. The parameter can be accessed
as a variable $type in XPath. [http://www.w3.org/TR/xslt#variables]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#section-Passing-Parameters-to-Templates
http://www.w3.org/TR/xslt#variables

9. XSLT 9-84

Named Templates

• xsl:template has an optional attribute name. There

can be only one template with a given name.

Templates from imported stylesheets can be overridden.
[http://www.w3.org/TR/xslt#section-Defining-Template-Rules]

• One can call a named template as follows:

<xsl:call-template name="t">
<xsl:with-param name="p" select="e"/>

</xsl:call-template>

• This does not change the current node.

In contrast to xsl:apply-templates, there is no attribute select for
specifying a new current node list. So the context is the same as in the
calling template. [http://www.w3.org/TR/xslt#named-templates]

Stefan Brass: XML und Datenbanken Universität Halle, 2017

http://www.w3.org/TR/xslt#section-Defining-Template-Rules
http://www.w3.org/TR/xslt#named-templates

