
7. XPath 7-1

Chapter 7: XPath
References:
• Anders Berglund, Scott Boag, Don Chamberlin, Mary F. Fernández, Michael Kay, Jona-

than Robie, Jérôme Siméon (Editors): XML Path Language (XPath) 2.0.
W3C Recommendation, 23 January 2007. [http://www.w3.org/TR/xpath20/]

• Mary Fernández, Ashok Malhotra, Jonathan Marsh, Marton Nagy, Norman Walsh (Ed.):
XQuery 1.0 and XPath 2.0 Data Model (XDM).
W3C Recommendation, 23 January 2007, [http://www.w3.org/TR/xpath-datamodel/]

• Ashok Malhotra, Jim Melton, Norman Walsh (Ed.):
XQuery 1.0 and XPath 2.0 Functions and Operators.
W3C Recommendation, 23 January 2007. [http://www.w3.org/TR/xpath-functions/]

• G. Ken Holman: Definitive XSLT and XPath.
Prentice Hall, 2002, ISBN 0-13-065196-6, 373 pages.

• Michael Kay: XPath 2.0 Programmer’s Reference.
Wiley/Wrox, 2004, ISBN 0-7645-6910-4, 552 pages.

• Michael Kay: XSLT 2.0 Programmer’s Reference, 3rd Edition.
Wiley/Wrox, 2004, ISBN 0-7645-6909-0, 911 pages.

• Henning Behme: Mutabor (XSLT-Tutorial I: Grundlagen und erste Beispielanwendung).
iX 1/2001, S. 67. [http://www.heise.de/ix/artikel/2001/01/167/]

• Miloslav Nic, Jiri Jirat: XPath Tutorial.
Zvon [http://www.zvon.org/xxl/XPathTutorial/General/examples.html]

• Tracey Roy (Author), Dan Mabbutt (Editor): XSLT & XPath Tutorial.
TopXML. [http://www.topxml.com/xsl/tutorials/intro/default.asp]

Stefan Brass: XML und Datenbanken Universität Halle, 2018

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xpath-datamodel/
http://www.w3.org/TR/xpath-functions/
http://www.heise.de/ix/artikel/2001/01/167/
http://www.zvon.org/xxl/XPathTutorial/General/examples.html
http://www.topxml.com/xsl/tutorials/intro/default.asp

7. XPath 7-2

Objectives

After completing this chapter, you should be able to:

• write XPath expressions for a given application.

• explain what is the result of a given XPath expres-

sion with respect to a given XML data file.

• explain how comparisons are done, and why XPath

has two sets of comparison operators (e.g. = vs. eq).

• define “atomization”, “effective boolean value”.

• enumerate some axes and explain abbreviations.

• explain features needed for static type checking.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-3

Overview

1. Introduction, Software

2. Location Paths

3. Expressions

4. Data Types

5. XPath Functions

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-4

Introduction (1)

• XPath (“XML Path Language”) is a standard for

expressions that are mainly used for selecting parts

of XML documents (nodes in the XDM tree).

One can view this important subset of XPath as a pattern language:
A tree node matches a pattern if it is contained in the result of
evaluating the XPath expression (a sequence of nodes).

• However, XPath expressions can also compute ato-

mic values or more generally any sequence allowed

by XDM.

Arithmetic expressions map numbers to numbers, XPath maps a set
of documents (or really a “context”, see below) to a sequence of
nodes and atomic values. So it does not seem to be closed.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-5

Introduction (2)

• XPath is used e.g. in

� XSLT (XML Stylesheet Lang./Transformations)
E.g. for defining to which nodes a transformation template should
be applied, which parts of the input document should be copied to
the output document, and where processing in the input document
should continue after a template was applied.

� XPointer
To permit references to a part of a document. With classic URIs
(plus “#...”), one can point only to places in an HTML document,
where the author of the document has placed an anchor.

� XML Schema
For selecting nodes that are uniquely identified etc.

� XQuery (XML Query Language)

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-6

Introduction (3)

• The reason for the name “XPath” is that the ex-

pressions are quite similar to path expressions in

e.g. the UNIX file system (directory tree).
However, XPath expressions are actually much more powerful. One
could imagine a future operating system that uses an XDM tree (or
something similar) to replace its file system.

• For example,

/GRADES-DB/STUDENTS/STUDENT

is an XPath-expression that selects STUDENT-nodes

that are children of (the) STUDENTS node that is a

child of the GRADES-DB document element.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-7

Introduction (4)

• Path expressions are used also in object-oriented

languages for navigating in complex structures.

E.g., in OQL. Again, they are much simpler than XPath. By the way,
there a full stop “.” is used instead of “/”. The relational model does
not need path expressions because of its simple (flat) structure.

• One can view XPath as a simple query language

for XML.

It does not have joins and aggregations, but it has quite powerful
selections, and it has certian forms of semi-joins.

• XPath has not itself XML syntax.

This is more compact. Furthermore, XPath is used in attributes.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-8

Introduction (5)

• XPath 1.0 is a W3C Recommendation since 16 No-

vember 1999.

It began with work on the XSL Pattern Language, and the “location
paths” in drafts of the XPointer specification. XPath unified the two.

• XPath 2.0 was published as W3C Recommendation

on 23 January 2007.

The main change from XPath 1.0 is the stricter typing. In 1999, when
XPath 1.0 was published, there was no XML Schema yet (work on
XML Schema had just begun, XML Schema 1.0 was published in
May 2001). XPath 2.0 uses XML Schema types. Furthermore, va-
riable bindings and nested subqueries were added. XPath 2.0 has a
compatibility mode that removes most (but not all) incompatibilities
with XPath 1.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-9

Software (1)

• One can write a simple XSLT stylesheet that shows

the result of an XPath expression. Then any XSLT

processor (e.g., in a web browser) can be used.

How to do this is shown below. Also links to XSLT processors are given
that are independent of a browser (might give better error checking).

• An XPath expression is already a simple XQuery

query. Thus, an XQuery processor can be used.

XQuery implementations are listed below (some with online demo).

• XLab: Online XPath experiments

[http://www.zvon.org:9001/saxon/cgi-bin/XLab/XML/
xlabIndex.html?stylesheetFile=XSLT/xlabIndex.xslt]

Stefan Brass: XML und Datenbanken Universität Halle, 2018

http://www.zvon.org:9001/saxon/cgi-bin/XLab/XML/xlabIndex.html?stylesheetFile=XSLT/xlabIndex.xslt
http://www.zvon.org:9001/saxon/cgi-bin/XLab/XML/xlabIndex.html?stylesheetFile=XSLT/xlabIndex.xslt

7. XPath 7-10

Software (2)

XQuery Implementations:

• Galax

Open source, from some authors/editors of the XQuery Specification.
[http://www.galaxquery.org/]

• X-HIVE

Commercial XML-DBMS, Online demo evaluator.
[http://support.x-hive.com/xquery/].

• AltovaXML

The engine used in XMLSpy is free (contains validator: DTD/Schema,
XSLT 1.0/2.0, XQuery). [http://www.altova.com/altovaxml.html]

Stefan Brass: XML und Datenbanken Universität Halle, 2018

http://www.galaxquery.org/
http://support.x-hive.com/xquery/
http://www.altova.com/altovaxml.html

7. XPath 7-11

Software (3)

XQuery Implementations, continued:

• Qizx/open (open source Java implementation)

[http://www.axyana.com/qizxopen/] Online demonstration:
[http://www.xmlmind.com:8080/xqdemo/xquery.html]

• Saxon (from Michael Kay)

Michael Kay is editor of the XSLT 2.0 specification. The basic version
of Saxon (without static type checking and XQuery→Java compiler)
is open source. It includes support for XSLT 2.0, XPath 2.0 and
XQuery 1.0. [http://saxon.sourceforge.net/]

• eXist (open source native XML database)

[http://exist.sourceforge.net/]
Online demo: [http://demo.exist-db.org/sandbox/sandbox.xql]

Stefan Brass: XML und Datenbanken Universität Halle, 2018

http://www.axyana.com/qizxopen/
http://www.xmlmind.com:8080/xqdemo/xquery.html
http://saxon.sourceforge.net/
http://exist.sourceforge.net/
http://demo.exist-db.org/sandbox/sandbox.xql

7. XPath 7-12

Software (4)

XSLT Implementations:

• Any modern web browser has XSLT support.
See, e.g., http://www.mozilla.org/projects/xslt/.

• Xalan (Apache)
[http://xalan.apache.org/]

• XT (James Clark)
[http://www.blnz.com/xt/index.html], [http://www.jclark.com]

• Sablotron
[http://www.gingerall.org/sablotron.html]

• See above: Saxon, AltovaXML.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

http://xalan.apache.org/
http://www.blnz.com/xt/index.html
http://www.jclark.com
http://www.gingerall.org/sablotron.html

7. XPath 7-13

Trying XPath with XSLT (1)

• Modern web browsers can apply an XSLT stylesheet

to visualize XML (by transforming it to HTML).

• Thus, one writes a reference to the stylesheet in

the XML data file (input for XPath query), e.g.:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl"

href="query.xsl"?>

<GRADES-DB>

...

</GRADES-DB>

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-14

Trying XPath with XSLT (2)

• Then one looks at this data file in the browser. It

automatically fetches the stylesheet query.xsl (see

next four slides) and uses it for the transformation.

• The stylesheet file mainly contains a transformation

rule that evaluates an XPath expression (with the

root node as starting point) and only shows the

result of this expression in the output.

• However, additional transformation rules are neces-

sary to format the result of the XPath expression

(arbitrary XDM nodes) as HTML.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-15

Trying XPath with XSLT (3)

<?xml version="1.0"?>

<xsl:stylesheet

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:output method="html"

encoding="ISO-8859-1"

doctype-public="-//W3C//DTD HTML 3.2 Final//EN"

indent="yes"/>

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-16

Trying XPath with XSLT (4)

<xsl:template match="/">

<html>

<head><title>Query Result</title></head>

<body>

<xsl:apply-templates

select="//STUDENT/LAST"/>

<!-- This is the XPath expression

to be tested -->

</body>

</html>

</xsl:template>

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-17

Trying XPath with XSLT (5)

<xsl:template match="*">

ELEMENT: <xsl:value-of select="name(.)"/>

(<xsl:value-of select="."/>)

</xsl:template>

<xsl:template match="@*">

ATTRIBUTE: <xsl:value-of select="name(.)"/>

(<xsl:value-of select="."/>)

</xsl:template>

<xsl:template match="text()">

TEXT: <xsl:value-of select="."/>

</xsl:template>

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-18

Trying XPath with XSLT (6)

<xsl:template match="comment()">

COMMENT: <xsl:value-of select="."/>

</xsl:template>

<xsl:template match="/">

DOCUMENT: <xsl:value-of select="."/>

</xsl:template>

<xsl:template match="processing-instruction()">

PROC-INSTR: <xsl:value-of select="name(.)"/>

(<xsl:value-of select="."/>)

</xsl:template>

</xsl:stylesheet>

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-19

Overview

1. Introduction, Software

2. Location Paths

3. Expressions

4. Data Types

5. XPath Functions

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-20

Context (1)

• An expression is evaluated relative to a context.

• In XPath 1.0, the context consisted of:

� a node (context node)

� a context position (position of context node in

current set/sequence: positive integer 1, 2, . . .)

� a context size (number of nodes in current set:

positive integer)

� a set of variable bindings

� a function library

� a set of namespace declarations

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-21

Context (2)

• XPath 2.0 distinguishes static and dynamic context

of an expression.

• The reason is that XPath expressions can possibly

be compiled and optimized, and afterwards execu-

ted many times on different documents.

• In this phase, also static type checking is done.

• The actual (dynamic) types of the values that are

computed during evaluation of an expression are

either equal to the static type of the expression or

more specific (derived from the static type).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-22

Context (3)

• Dynamic context:

� context item (atomic value or node)

� context position

� context size

� variable values

� function implementations

� current dateTime

� implicit timezone

� available documents

� available collections, default collection

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-23

Context (4)

• Remarks about dynamic context:

� If the context item is a node, it is called context

node.

� Context item, context position and context size

are together called the focus of an expression.

� The current dateTime is used for the XPath

function current-dateTime.

It is guaranteed that if this function is accessed multiple times
during an evaluation of an expression, it always returns the same
value. This simplifies optimizations.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-24

Context (5)

• Remarks about dynamic context, continued:

� The implicit timezone is used for dateTime-values

without timezone (“local time”) when compa-

ring them with values with timezone (UTC).

This seems not quite compatible with the XML Schema specifi-
cation which treats values in local time as if they could possibly
be in any timezone, leading to a partial order.

� Available documents and collections are used for

the functions doc and collection.

doc maps a URI to a document node, and collection maps a URI
to a sequence of nodes. The function collection can also be called
without argument, then it returns the default collection.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-25

Context (6)

• An important part of the static context is type in-

formation.

• XPath is always used embedded in another langua-

ge (e.g. XSLT, XQuery).

• There are many parameters that are needed for

evaluating an XPath expression that must somehow

be set in the host language (e.g., namespaces).

Also collations are needed for string comparisons.

• These are also part of the static context.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-26

Context (7)

• Static context:

� XPath 1.0 compatibility mode.
This is true when the XSLT version is not 2.0.

� Statically known namespaces.
I.e. the namespace prefixes declared for the XPath expression.

� Default namespace for element and data types.
In XSLT, this can be set with xsl:xpath-default-namespace="URI".

� Default namespace for functions.
XPath functions are in http://www.w3.org/2005/xpath-functions.
XSLT automatically initializes this component of the static con-
text with the standard namespace, so no prefix is needed when
calling XPath functions.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-27

Context (8)

• Static context, continued:

� Schema information (types/elements/attributes)

� Variable declarations (name and type).

� Static type of context item.

� Function signatures (name, input/result types)

� Known collations, default collation.

� Base URI.

� Statically known documents/collections.
The default type for a call to document is document-node()?, and for
collection, it is node()*. If information should be available already
during compilation, the types could be different (more specific?).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-28

Location Paths (1)

• The purpose of an location path (or “path expres-

sion”) is to select nodes in an XDM tree.
Actually, in its very last step, it can also compute a sequence of atomic
values (or a single value), not only a sequence of nodes.
A path expression is not the most general kind of XPath expression,
but it is the kind that is most often used.

• There are absolute and relative paths:

� An absolute path starts with a “/” or “//”, fol-

lowed by a relative path.
For “/”, the relative path is optional. For “//”, it is required.

� A relative path consists of a series of steps, se-

parated by “/” or “//”.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-29

Location Paths (2)

• The “//” will later be explained as an abbreviation:

� The syntax must be defined including all abbre-

viations.

� For the semantics, it suffices to treat only XPath

expressions, in which the abbreviations are fully

expanded (normalized expressions that do not

contain e.g. “//”).

• A step can be

� an axis step (in full or abbreviated syntax),

� a filter expression.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-30

Location Paths (3)

• An axis step in full (verbose) syntax has the form

axis::node-test[predictate]

The predicate may be missing or may be repeated.

• The axis (e.g., child) selects a sequence of nodes

by their position relative to the context node.

• The node test selects a subset of these nodes by

their name or type (kind).

• The predicate(s) contain further conditions on the

resulting nodes (e.g., position, value).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-31

Location Paths (4)

• A filter expression consists of a primary expression

followed by a sequence of zero or more predicates

in “[...]”.

• A primary expression is:

� Any XPath expression in parentheses (...).

� A data type literal (constant), e.g. "abc".

� A function call.

� A variable reference, e.g. $x.

� A context item reference: “.”

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-32

Location Paths (5)

• E1/E2 is evaluated as follows:

� E1 is evaluated. The result must be a (possibly

empty) sequence of nodes, otherwise a type error

is raised.

� E2 is evaluated once for every node in the result

of E1 as context node.

The context size is the length of the result of E1. The context
position is the position of the context node in the sequence (de-
pending on the axis, the position might be counted from the end
of the sequence, see below).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-33

Location Paths (6)

• Evaluation of E1/E2, continued:

� If each evaluation of E2 returns a sequence of

nodes, the result of E1/E2 is the union of the no-

des in these sequences in document order (with

duplicates removed).

� If each evaluation of E2 returns a sequence of

atomic values, these sequences are concatenated

(without duplicate elimination).

� If E2 returns nodes and atomic values, a type

error is raised.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-34

XPath Axis (1)

• An axis selects a sequence of nodes based on their

position in the document tree relative to the current

context node.

• There are 13 axis (in XPath 1.0 and in XPath 2.0).

• Of these, 8 are forward axes (cont. on next page):

� self

� child

� descendant

� descendant-or-self

� following-sibling

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-35

XPath Axis (2)

• Forward axes, continued:

� following

� attribute

� namespace (deprecated, not in XQuery)

• There are 5 reverse axes:

� parent

� ancestor

� ancestor-or-self

� preceding-sibling

� preceding

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-36

XPath Axis (3)

• A minimal XPath implementation needs to support

only the following axes:

� self

� child

� parent

� descendant

� descendant-or-self

� attribute

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-37

XPath Axis (4)

• The following axes partition a document (except

attribute and namespace nodes): self, ancestor,

descendant, preceding, following.

• If an axis is a reverse axis, the context position

used for evaluating predicates in this location step

is assigned in inverse document order.
For forward axes, it is assigned in document order. If the predicate is
not in a location step, the position is the position in the sequence.

• The selected nodes with their position are shown

in an example on the following slides.
The context node is marked with a double border.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-38

XPath Axis (5)

self:

context node

n selected node n

1

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-39

XPath Axis (6)

child:

context node

n selected node n

1 2 3

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-40

XPath Axis (7)

descendant:

context node

n selected node n

1 4 5

2 3 6 7

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-41

XPath Axis (8)

descendant-or-self:

context node

n selected node n

1

2 5 6

3 4 7 8

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-42

XPath Axis (9)

following-sibling:

context node

n selected node n

1 2 3

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-43

XPath Axis (10)

following:

context node

n selected node n

5

1 2 4

3

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-44

XPath Axis (11)

parent:

context node

n selected node n

1

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-45

XPath Axis (12)

ancestor:

context node

n selected node n

2

1

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-46

XPath Axis (13)

ancestor-or-self:

context node

n selected node n

3

2

1

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-47

XPath Axis (14)

preceding-sibling:

context node

n selected node n

3 2 1

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-48

XPath Axis (15)

preceding:

context node

n selected node n

5

4 3 1

2

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-49

Node Tests (1)

• A node test is a name test or a node type test.

• In XPath 1.0, a name test had one of the forms

� QName (local name or prefix:local name)
Note that the standard default namespace declaration does not
apply to XPath. Furthermore note that the namespace URIs are
compared, not the prefix.

� NCName:* (arbitrary name in given namespace)

� * (no restriction)

• If a name test is used, the node type must be the

principal type of the axis, which is “element” for all

axis except the attribute and the namespace axis.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-50

Node Tests (2)

• In XPath 1.0, the node types that could be used as

node tests were:

� comment()

� text()

� processing-instruction()

� processing-instruction(’target’)

� node(): All nodes reachable by the given axis.
There, the node type is e.g. “comment”, and the “()” makes it a node
test. The problem is that there could be an element type “comment”,
and the “()” distinguishes the node type test from the name test.

There were no node type tests for attribute and namespace nodes,
because they are accessed via specific axis, and for document nodes,
because this is accessed via “/”.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-51

Node Tests (3)

• In XPath 2.0, sequence type syntax was introduced.

It defines a notation (name) for sequence types.

• Possible sequence types are:

� empty-sequence()

� A node kind test (see below), optionally followed

by an occurrence indicator (?, *, or +)

� item() with an optional occurrence indicator
Remember that an item is a node or an atomic value.

� an atomic type name (e.g., xs:integer) with an

optional occurrence indicator.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-52

Node Tests (4)

• The node kind tests in XPath 2.0 are:

� element(*): any element node

This matches any element node. In an example, also element() is
used, but the formal grammar does not seem to allow this.

� element(Name)

This matches any element node with the given name (QName).

� element(Name, Type), element(*, Type)

This matches an element node with the given name (or any name
in case of *) that is annotated with the type Type, or with a type
derived from Type. The type can be followed by ?, which permits
nilled nodes. Otherwise nilled nodes would not match.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-53

Node Tests (5)

• Node kind tests in XPath 2.0, continued:

� schema-element(Name)

This matches an element called Name or declared in a substitution
group below Name. In addition, it must have the data type declared
in the schema for the Name, or a more specific type. It can possibly
be nilled if the element is declared as nillable. Basically, there
must be a top-level declaration for Name in the schema, because
the names of locally declared element types are implementation-
dependent.

� attribute(*)

� attribute(Name)

� attribute(Name, Type), attribute(*, Type)

� schema-attribute(Name)

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-54

Node Tests (6)

• Node kind tests in XPath 2.0, continued:

� document-node()

One can also use e.g. document-node(element(GRADES-DB)), and the
same with the other forms of element and schema-element tests.
The element test refers to the unique child element (document
element). If there should be several child elements, the test fails.

� processing-instruction(Name)

The name can be a QName or (for backward compatibility) also
a string.

� comment()

� text()

� node()

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-55

Node Tests (7)

• The node name tests in XPath 2.0 are as shown

above for XPath 1.0, only the new wildcard *:...

was added (given local name, arbitrary namespace):

� QName (i.e. NCName or NCName:NCName).

� *

� NCName:*

� *:NCName (new in XPath 2.0)

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-56

Predicates (1)

• A predicate [...] filters an input sequence.

• It checks a condition for each item in the input se-

quence and yields an output sequence that contains

only those items for which this condition is true.

• For each item in the input sequence, an “inner

focus” is computed, i.e. the evaluation context is

changed. With this context, the expression in [...]

is evaluated.

• Once this is finished, one returns to the original

context, i.e. the “outer context” (like a stack).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-57

Predicates (2)

Evaluation of E1[E2]:

• E1 is evaluated, let the result be sequence s.

• For each item x in s, an inner focus is computed as

follows: The context item is x, the context size is

the length of s, and the context position is basically

the position of x in s.

More precisely: If this predicate appears in a forward axis step, the
context position is the position x would have if s were sorted in docu-
ment order. If the predicate appears in a reverse axis step, the context
position is the position x has between the nodes in s in inverse docu-
ment order. If the predicate is not in a step, the context position is
the position of x in s.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-58

Predicates (3)

Evaluation of E1[E2], continued:

• For each x in s (result of evaluating E1), E2 is eva-

luated in the focus described above.

� If the result is a numeric value, it is compared

with the context position in this inner focus. If

they are equal, x is appended to the output se-

quence.

� Otherwise, the effective boolean value of the re-

sult is computed (see next slide). If it is true, x

is appended to the output sequence.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-59

Effective Boolean Value (1)

• Effective boolean value of an expression that re-

turns value x:

� If x is the empty sequence, the result is false.

� If x is a sequence, the first item of which is a

node, the result is true.

� If x is a value of type boolean (or derived from

boolean), the result is x.

Formally, x is a singletom sequence containing a boolean, but
singleton sequences are identified with the item they contain.

� . . . (continued on next slide)

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-60

Effective Boolean Value (2)

• Effective boolean value of x, continued:

� If x is a string (or anyURI, untypedAtomic or deri-

ved from one of these), the result is false if it is

the empty string, true otherwise.

� If x belongs to a numeric type, the result is false

if it is equal to 0 or NaN, true otherwise.

� In all other cases, a type error is raised.

• Formally, this very generous conversion to boolean

is done by the function boolean(x).

• In many contexts, it is called implicitly.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-61

Subtle Differences I

• Suppose that STUDENT has an attribute GUEST of type

boolean. Then [attribute::GUEST] will be true when

there is a GUEST attribute node, even if its value is

false.

One must explicitly take the value of the attribute with the data(...)

function. Otherwise it checks only that the attribute node exists
(which might be automatically inserted by applying a default value).

• The effective boolean value of "false" (a string) is

true.

boolean("false") is true, but xs:boolean("false") is false.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-62

Abbreviated Syntax

• attribute:: can be abbreviated to “@”.

• If no axis is given, the default axis is

� “child::”, unless the node test of that step is

“attribute(...)” or “schema-attribute(...)”.

� In that case, the default axis is “attribute::”.

• “//” is replaced by “/descendant-or-self::node()/”.

However, this may only be applied to a path expression that consists
of something else besides “//”. “//” by itself is not a legal path
expression. In contrast, “/” is allowed.

• The step “..” is short for “parent::node()”.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-63

Meaning of Absolute Paths

• An absolute path can be understood as a relative

path with first step

root(self::node()) treat as document-node()

• Thus, it determines the root of the tree in which

the context node is.

E.g., by following the parent-link.

• This root node must be a document node, other-

wise a runtime error occurs.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-64

Exercise (1)

<?xml version="1.0"?>
<BOOKLIST>

<BOOK ISBN="0-13-014714-1" PAGES="1074">
<AUTHOR FIRST="Paul" LAST="Prescod"/>
<AUTHOR FIRST="Charles" LAST="Goldfarb"/>
<TITLE>The XML Handbook - 2nd Edition</TITLE>
<PUBL DATE="19991112">Prentice Hall</PUBL>
<NOTE>Contains CD.</NOTE>

</BOOK>
<BOOK ISBN="1-56592-709-5" PAGES="107">

<AUTHOR FIRST="Robert" LAST="Eckstein"/>
<TITLE>XML Pocket Reference</TITLE>
<PUBL DATE="19991001">O’Reilly</PUBL>

</BOOK>
</BOOKLIST>

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-65

Exercise (2)

• What is the full version of the following expression?

/*//AUTHOR/@LAST

• Please write an XPath expression for:

� Print the last names of all authors.

Assume that the context node is the document node and that
it suffices to select the attribute nodes, and not necessarily ta-
ke their value. E.g. <xsl:value-of select="..." separator=","/>

would automatically take the value of the attribute nodes.

• What is the difference between the XPath expres-

sions //TITLE and //TITLE/text()?

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-66

Subtle Differences II

• Note the difference between:

� //A[1]: This selects all A-elements that are the

first A-child of their parent.
//A[1] stands for /descendant-or-self::node()/child::A[1].
Thus, 1 is the position for a child-step.

� /descendant::A[1]: This selects only the first A-

element in the entire document.

• Note also that these are not the same:

� //A[1]: (as above, possibly many elements).

� (//A)[1]: Only first A-element in document.
Here, [1] applies to the entire sequence returned by //A.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-67

Overview

1. Introduction, Software

2. Location Paths

3. Expressions

4. Data Types

5. XPath Functions

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-68

Lexical Syntax (1)

• XPath has no reserved words. Thus, there are no

restrictions for element names.

• The context helps to detect special names:

� Axes are followed by “::”.

� Functions, sequence types, if: followed by “(”.

� for, some, and every are followed by “$”.

� Operators such as “and” are distinguished from

element names by the preceding symbol (Is a

continuation with an element name possible?).

Some “keywords”, e.g. “cast as”, deliberately consist of two parts.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-69

Lexical Syntax (2)

• Some more ambiguities:

� If a name immediately follows /, and is not fol-

lowed by ::, it is assumed that it is an element

name.

Thus, in / union /*, the word “union” is an element type name.
If one wants the ∪-operator, one must write (/) union /*.

� If +, *, ? follow a sequence type, it is assumed

that they are an occurrence indicator (belonging

to the type).

E.g. 4 treat as item() + - 5 is implicitly parenthesized as
(4 treat as item()+) - 5, not as (4 treat as item()) + -5.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-70

Lexical Syntax (3)

• Variable names are marked by prefixing them with

“$”, e.g. “$x”, “$p:x” (a variable name is a QName).

XPath 2.0 allows whitespace between “$” and the QName, 1.0 not.

• Note that in contrast to some interpreted langua-

ges, variables are not simply replaced by their value,

before the expression is parsed.

� E.g. even if $x has the value “BOOK”, //$x does

not mean //BOOK, but gives a type error.

One has to use //*[local-name(.)=$x].

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-71

Lexical Syntax (4)

• Whitespace is possible between each two tokens.

• The next token is always the longest sequence of

characters that can comprise a token.

This is the usual rule in programming languages.

• E.g. x-1 is only a single XML name (names can

contain hyphens). If one wants “the value of child

element x minus 1” one must use spaces: x - 1.

The space before the “1” is not necessary: an integer literal contains
no sign (but there is a unary “-”). Note that “x+1” is possible without
spaces (XML names cannot contain “+”).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-72

Lexical Syntax (5)

• There are three types of numeric literals:

� A sequence of digits , e.g. “123456”, has type

xs:integer.

� A sequence of digits containing a single “.”,

e.g. “12.34”, has type xs:decimal.

The “.” can be at the beginning, e.g. “.3”, at the end, e.g. “1.”,
or somewhere between the digits, e.g. “3.14159”.

� A number in scientific notation, e.g. “1.2E-7”,

or “1e9” or “.3E+8”, has type xs:double.

• In XPath 1.0, all numeric literals had type double.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-73

Lexical Syntax (6)

• A string literal is

� a sequence of characters enclosed in ’, or

� a sequence of characters enclosed in ".

• If the delimiter appears within the sequence, it must

be doubled, e.g. ’Stefan’’s’.
The possibility to include the string delimiter by doubling it is new in
XPath 2.0.

• Special characters (other than the delimiters) can

be included in the string by using the escaping me-

chanism of the host language, e.g. character or en-

tity references in XML.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-74

Lexical Syntax (7)

• XPath is used in XSLT as XML attribute values.

• Then character and entity references are expanded

before the XPath processor sees the input.

Thus, it does not help to use an entity reference to include the string
delimiter in the string literal. This was probably the reason for using
a different mechanism than XML uses for attribute values: There the
doubling is not supported, one must use an entity/character reference.
Of course, if the delimiter of the XML attribute value that contains
the XPath expression is used inside the XPath expression, it must be
written as a character or entity reference. E.g. select="’"’’’"

contains the XPath expression ’"’’’, which yields the string "’.

• Also, whitespace in attribute values is normalized.

XPath sees only a single space. Use character or entity references.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-75

Lexical Syntax (8)

• Constructor functions can be used to denote con-

stant values of other types, e.g.

xs:date("2007-06-30")

The string must use the lexical syntax defined in XML Schema.

• This can also be used for special floating point va-

lues, e.g. positive infinity (result of an overflow):

xs:double("INF")

• The boolean values can be written as calls to the

built-in functions true() and false().

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-76

Lexical Syntax (9)

• Comments are delimited in XPath with smilies “(:”

and “:)”, e.g.

(: This is a comment :)

Comment delimiters known from other languages did not work in
XPath. E.g. /* and // have already an important meaning in XPath,
-- can appear in XML names. The end of line is removed by attribute
value normalization. Braces {...} are used in XSLT for attribute value
templates, and have an important role in XQuery.

• Comments can be nested.
Thus, one can “comment out” a section of code that itself contains a
comment. Note however, that when the lexical scanner is in “comment
mode”, it ignores the beginning of string constants. Thus (: ":)" :)

gives a syntax error, although ":)" in itself is ok.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-77

Accessing the Context

• The context item is written as “.”.

This is also new in XPath 2.0. In XPath 1.0, “.” was only an abbre-
viation for “self::node()”.

• The context position is returned by the built-in

function position().

When iterating over a sequence, the first item has the position 1 (not
0 as in C-style arrays).

• The context size is returned by the built-in function

last().

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-78

Sequence Constructor (1)

• The comma operator “,” is used as sequence con-

structor, e.g. 1, 2 is the sequence consisting of 1

and 2.

• Formally, E1, E2 is the concatenation of sequences

E1 and E2.

Remember that in XDM everything is a sequence, even the numbers 1

and 2 in the previous example are formally identified with the corre-
sponding singleton sequences. Vice versa, one could also say that E1,

E2 first constructs a sequence of length 2 with (the values of) E1 and
E2 as items, but since sequences can never contain other sequences,
the result is then flattened.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-79

Sequence Constructor (2)

• Since the comma is also used for other syntac-

tic purposes (e.g. in the function argument list),

the expression E1, E2 must be enclosed in paren-

theses (...) in many contexts.

The formal grammar has a symbol “exprSingle” that is an arbitrary
expression, but without “,” on the outermost level.

• () denotes the empty sequence.

• Note the flattening rules. E.g. (1, (), (2, 3)) is a

legal expression, but it evaluates to (1, 2, 3).

In XDM, sequences can never contain other sequences.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-80

Numeric Range Constructor

• m to n generates the sequence of integers from m

to n (inclusive).

If n ≤ m, the result is the empty sequence. The arguments m and n

must be integers, or belong to a subtype of integer, or be untyped
and convertable to integer. If one of the arguments is of another type
(or is the empty sequence), an error occurs.

• E.g. 1 to 5 generates (1, 2, 3, 4, 5).

• A good implementation will not actually materiali-

ze the complete sequence, but instead construct a

loop over the elements (“lazy construction”).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-81

Set Operations

• E1 | E2 returns the union of the sequences E1 and

E2. One can equivalently write E1 union E2.
The input sequences must consist of nodes only, or a type error is
raised. The result is a sequence of nodes in document order without
duplicates (the closest a sequence can come to a true set). These
rules also apply to the other set operations intersect and except.

• E1 intersect E2 returns the set of nodes that are

contained in both, E1 and E2.

• E1 except E2 is the set of nodes that occur in E1,

but not in E2.
intersect and except have equal priority. They bind stronger (have
higher priority) than union and |.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-82

Atomization (1)

• In contexts where atomic values are needed (e.g.,

in the arguments to arithmetic operators), XPath

applies a type coercion called “atomization”.

• It also has a built-in function data(s) that returns

the result of applying atomization to the input se-

quence s.

• For example, consider (ge means ≥):

//RESULT[@POINTS ge 8]

• @POINTS selects an attribute node, but for the com-

parison, its value (an integer) must be determined.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-83

Atomization (2)

• The result of atomization is computed by looping

over the input sequence:

� If the current list item is an atomic value, it is

appended to the output sequence.

� If the current list item is a node that has a typed

value, this typed value is appended to the output.
The typed value might consist of zero, one, or more atomic values.

� Otherwise (node with typed value undefined), an

error is raised.
This happens only for elements that are declared with pure ele-
ment content, when they were validated against a schema.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-84

Comparison Operators (1)

• XPath has three kinds of comparison operators:

� Value comparison operators: eq, ne, lt, le, gt, ge.

� Node comparison operators: is, <<, >>.

� General comparison operators: =, !=, <, <=, >, >=.

• XPath 1.0 had only the general comp. operators.

The behaviour of these operators can sometimes cause surprises, and
makes optimization difficult. Therefore, a safer set of operators was
introduced in XPath 2.0.

• Note that when XPath expressions appear in XML

attribute values, “<” must be written “<”.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-85

Comparison Operators (2)

• Type checking for value comparison:

� First, atomization is applied to both operands.

Let the result be x and y.

� If x or y is a sequence consisting of more than

one item, a type error occurs.

� If x or y is the empty sequence, the result is the

empty sequence (later treated like false).

� untypedAtomic is converted to string.

� Derived types are converted to the base type.

� Now the types must be identical, or both must

be numeric. Otherwise a type error occurs.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-86

Comparison Operators (3)

• For documents that are not validated against a

schema, one must use explicit type conversions.

• E.g.. if the typed value of @POINTS has the type

untypedAtomic, a comparison like

@POINTS ge 8

generates a type error, because 8 is an integer, and

@POINTS is converted to a string.

Note that e.g. @FIRST eq "Ann" would work.

Solution: use “number(@POINTS)” or “xs:integer(@POINTS)”. Of course,
validating the document against a schema would be better.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-87

Comparison Operators (4)

• Meaning of value comparison operators:

� eq: equal (=).

� ne: not equal (6=).

� lt: less than (<).

� le: less than or equal (≤).

� gt: greater than (>).

� ge: greater than or equal (≥).

• For details, please look into the standard.

E.g. for date and time types, the implicit timezone is used, instead of
the partial order that XML Schema defines.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-88

Comparison Operators (5)

• Node comparison (is, <<, >>):

� Both operands must be a single node or the em-

pty sequence (else a type error occurs).

� If one is the empty sequence, the result is the

empty sequence (often treated like false).

� x is y is true if x and y are the same node.

� x << y is true if x comes before y in document

order.
If the nodes are in different documents, the order is implementa-
tion dependent, but stable.

� x >> y is true if x comes after y.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-89

Comparison Operators (6)

• General comparison operators (=, !=, . . .):

� Both operands are atomized, yielding sequences

x and y of atomic values.

� Now all possible combinations of xi ∈ x and yj ∈ y

are compared according to the rules on the next

slide. If one comparison yields true, the result is

true. If the all return false, the result is false.
Actually, a comparison might also generate a runtime error (type
error). If the runtime error happens before a comparison yields
true, the result is the runtime error. If the processor detects the
true value first, it will most probably not do any further compari-
sons. One cannot rely on any particular order of the comparisons.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-90

Comparison Operators (7)

• General comparison operators, continued:

� If xi and yj are both of type untypedAtomic, they

are converted to string. If one, e.g. xi, is of type

untypedAtomic and the other (yj) is of a more

specific type, xi is converted to the type of yi.
Unless the type of yj is numeric, then double is chosen for xi. E.g. if
xi is the string ”0.3” and yj is the integer 0, this rule ensures that
xi is not converted to an integer.

� After these conversions, xi and yj are compared

with the corresponding value comparison opera-

tor (e.g. eq if the general operator was =).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-91

Comparison: Surprises (1)

• In XPath 1.0,

� 1 = true(),
When comparing a number with a boolean value, the number is
first converted to a boolean: Every number except 0 and NaN
becomes true. (The priority list of types for =/!= comparison in
XPath 1.0 is boolean, number, string.)

� true() = "true",
When comparing a string with a boolean value, the string is con-
verted to boolean. Every string except "" is converted to true.

� 1 != "true", i.e. the transitivity of = is violated!
When comparing a string and a number, the string is converted
to a number. In this case, "true" is converted to NaN.

• In XPath 2.0, these are all type errors.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-92

Comparison: Surprises (2)

• However, such a situation can also be constructed

in XPath 2.0 when no schema validation was done:

� Let the context node be

<X A="1" B="1.0"/>

� @A = 1 is true,
@A has type untypedAtomic, thus a numeric comparison is done: @A

is converted to double, then 1 is also converted to double.

� 1 = @B is true,
As above, a numeric comparison is done.

� @A = @B is false (transitivity is violated).
If both operands have type untypedAtomic, then a string compari-
son is done (both are converted to string).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-93

Comparison: Surprises (3)

• The implicit existential quantification in the general

comparison operators can cause surprises:

� $x != 1 and $x = 1 can be true at the same time.

E.g., consider $x = (1, 2). This also shows that $x != 1 is not
the same as not($x = 1). In this example, not($x = 1) is false.

� $x = $x does not always hold.

If $x is the empty sequence, the implicit existential quantification
is obviously false, even if the quantified condition is a tautology.

� Transitivity of = and other relations can be vio-

lated even in schema validated documents.

E.g. (1) = (1,2) and (1,2) = (2) are true, but (1) = (2) is false.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-94

Exercise (1)

<?xml version="1.0"?>
<BOOKLIST>

<BOOK ISBN="0-13-014714-1" PAGES="1074">
<AUTHOR FIRST="Paul" LAST="Prescod"/>
<AUTHOR FIRST="Charles" LAST="Goldfarb"/>
<TITLE>The XML Handbook - 2nd Edition</TITLE>
<PUBL DATE="19991112">Prentice Hall</PUBL>
<NOTE>Contains CD.</NOTE>

</BOOK>
<BOOK ISBN="1-56592-709-5" PAGES="107">

<AUTHOR FIRST="Robert" LAST="Eckstein"/>
<TITLE>XML Pocket Reference</TITLE>
<PUBL DATE="19991001">O’Reilly</PUBL>

</BOOK>
</BOOKLIST>

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-95

Exercise (2)

• What will be the result of this expression?

/BOOKLIST/BOOK[AUTHOR/LAST="Goldfarb"]

• Would this work with “eq” instead of “=”?

“/” binds stronger (has higher priority) than “=” and “eq”.

• Please write an XPath expression for:

� Print the last names of the author of the “XML

Pocket Reference” (book title).

Assume that the context node is the document node and that
it suffices to select the attribute nodes, and not necessarily take
their value.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-96

Arithmetic Operators (1)

• +: Addition

The arithmetic operators and numeric functions (see below) have
four versions with signature T ×T → T , where T is one of: xs:integer,
xs:decimal, xs:float, and xs:double. Of course, one can also substi-
tute a derived type for one of these types, but the result will be the
base type. E.g., if one adds two values of type xs:positiveInteger,
the result is of type xs:integer. Furthermore, type promotion is done
(see Slide 7-142): If values of two different numeric types are added,
the one earlier in the above list is converted to the one later in the
list, e.g. for 1 + 2e3, the value 1 (of type xs:integer) is converted to
xs:float, and then a floating point addition is done. In XPath 1.0, all
numbers were considered as double values.

• -: Subtraction

The operators + and - exist in unary and in binary form. The unary + is
new in XPath 1.0 (it was added for compatibility with XML Schema).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-97

Arithmetic Operators (2)

• *: Multiplication

• div: Division
The symbol / could not be used (otherwise: ambiguous path expres-
sions). As an exception to the signature T ×T → T , the result type for
integer operands is xs:decimal. The other three cases are as usual.

• idiv: Integer Division
This operator exists with signatures T × T → xs:integer where T is
one of the four numeric types xs:integer, xs:decimal, xs:float, and
xs:double. The result of division is truncated, e.g. 9 idiv 5 = 1.

• mod: Remainder of the integer division (modulo)
This has again signature T × T → T . Except for error conditions and
special floating point values, (x idiv y) * y + (x mod y) = x holds.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-98

Logical Conditions (1)

• and: Conjunction (both operands must be true).
The effective boolean value of the operands is automatically determi-
ned (see Slide 7-59). For instance, (), "", 0 are treated like false. A
sequence that starts with a node, a non-empty string, and a non-zero
number (except NaN) are treated like true.

Note that atomization is not applied to the operands. So an attribute
node is treated like true, even if its value is the boolean value false.
One could explicitly call data(...) or do a comparison.

In XPath 1.0, it was guaranteed that the right operand was evaluated
only if the left operand was true. In XPath 2.0, this is no longer gua-
ranteed, so that the query optimizer gets more freedom (e.g., there
might be an index for the condition on the right side). However, one
can use an if-expression to avoid possible run-time errors. Basically,
A and B is equivalent to if A then B else false().

• or: Disjunction (at least one operand is true).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-99

Logical Conditions (2)

• true(): Constant truth value “true”.
Formally, this is a function without parameters, that always returns the
value “true”. Because XPath has no reserved words, the parentheses
are necessary to remove the ambiguity (see Slide 7-119).

• false(): Constant truth value “false”.

• not(C): Negation of condition C.
Again, this is formally a function, not an operator (so the parentheses
are necessary). The function mainly translates true to false and false
to true. However, before this, it automatically computes the effective
boolean value of the argument. So the argument of the function is de-
clared as an arbitrary sequence (item()*), not as xs:boolean. However,
certain inputs can generate a type error (see Slide 7-59).

• =, <, . . . can be used on boolean values (false<true).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-100

Logical Conditions (3)

• An existential quantifier (∃, “there is”) over a se-

quence is written as

some v in S satisfies C
where

� v is a variable (starting with “$”)

� S is an expression that generates a sequence of

values that are assigned to v one by one,

� C is an expression, of which the effective boolean

value is determined for each such variable assi-

gnment: If it is true for at least one assignment,

the value of the entire some-expression is true.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-101

Logical Conditions (4)

• For instance, the following is true:

some $i in (1, 2, 3) satisfies $i > 2

• A universal quantifier (∀, “for all”) over a sequence

is written as
every v in S satisfies C

• If the binding sequence S should be empty,

� some is false (there is no satisfying assignment)

� every is true (no counterexample can be found)

• Note that the focus is not changed when C is eva-

luated. Thus, it (more or less) must contain v.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-102

Logical Conditions (5)

• Nondeterministic outcome for runtime errors:

� An implementation can check the different va-

riable assignments in an arbitrary order.

� It can also stop as soon as the truth value of the

entire expression is clear.
I.e. when it found one value in S for which the some-quantified
condition C was true, it is clear that the some-expression is true.
In the same way, if C was false once, an every-condition is false.

� If the evaluation of C for some assignment would

cause a runtime error, but the evaluation stops

before this assignment, one cannot rely on the

fact that this will always be the case.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-103

Logical Conditions (6)

• One can quantify several variables in a single some

or every expression:

some v1 in S1, ..., vn in Sn satisfies C

• Then conceptually all possible combinations of va-

lues are tested (e.g., in a nested loop).
As explained above, it can stop earlier, if the result is clear.

• If Si or C use the comma-operator, it must be inside

parentheses.

• The scope of vi includes Sj for j > i and C (i.e. the

entire rest of the expression after Si can use vi).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-104

Exercise (1)

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-105

Exercise (2)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<GRADES-DB>

<STUDENT>
<SID>101</SID>
<FIRST>Ann</FIRST>
<LAST>Smith</LAST>

</STUDENT>
...

<RESULT>
<SID>101</SID>
<CAT>H</CAT>
<ENO>1</ENO>
<POINTS>10</POINTS>

</RESULT>
...

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-106

Exercise (3)

• Please write the following queries in XPath:

� What is the SID of Ann Smith?
It suffices that the SID element is selected. If necessary, one can
explicitly call data(...) to perform an atomization.

� Please print the last names of all students who

got more than 8 points for Homework 1.
Note that this exercise already requires a (semi-)join. One can
apply the some-quantifier to get a name for one of the needed
nodes, and use the context/focus for the other node.

• What is the error in

//EXERCISE[some $r in //RESULT satisfies

POINTS = MAXPT]

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-107

For Expressions (1)

• The for-Expression can be used to map every ele-

ment of an input sequence to zero, one or more

elements of an output sequence:

for v in S return E

• The variable v is bound to each element of the input

sequence S in turn, and the expression E is evalua-

ted. The resulting sequences are concatenated. For

example:

for $i in (1, 2, 3) return $i * 10

returns (10, 20, 30).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-108

For Expressions (2)

• I.e. in the expression

for v in S return E

the variable v loops over the sequence S, and in

each iteration, the result of evaluating the expres-

sion E is appended to the output sequence.
Often, the expression E will evaluate to single values (sequences of
length 1), then each element in the input sequence is mapped to the
element in the output sequence at the same position.

Of course, E nearly always contains variable v. Note that the context
position is not changed during the iteration. Only v changes.

• for can be nicely combined with the numeric range

constructor, e.g.: for $i in 1 to 3 return $i*10

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-109

For Expressions (3)

• One can also let several variables run over different

sequences, then all combinations are considered:

for v1 in S1, v2 in S2 return E

• A typical implementation are nested loops, but the

query optimizer can of course choose a different,

more efficent evaluation strategy.

But the order in the output sequence cannot be changed, unless this
is input for a function that does not need a specific order (e.g., count).

• The above expression is equivalent to

for v1 in S1 return (for v2 in S2 return E)

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-110

For Expressions (4)

• for binds stronger than the comma operator (se-

quence constructor). Thus, if S or E contain the

comma operator, it must be inside parentheses.

• In
for v1 in S1, v2 in S2 return E

the scope of the variable v1 consists of S2 and E.

The scope of variable v2 consists only of E.
I.e. one can use v1 when defining the values for v2. This is compatible
with the nested version of a for-expression with several variables.

• for-expressions are a simplified version of FLWR-

expressions in XQuery. They are new in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-111

For Expressions (5)

• The path expression book/author is equivalent to

for $b in book return $b/author

• In general, differences between / and for are:

� / uses the implict context, for explicit variables.

for can use several variables, / has always only one context item.

� / works only on nodes, for on arbitrary data.

� / sorts the result in document order and elimi-

nates duplicates, for does not do this.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-112

If Expressions (1)

• The expression

if(C) then E1 else E2

is evaluated as follows:

� First, the effective boolean value of C is deter-

mined (no atomization is done).

� If the effective boolean value of C is true, E1 is

evaluated, and its value is the value of the entire

if-expression.
It is guaranteed that E2 is not evaluated in this case.

� Otherwise, the value of E2 is returned.
In this case, E1 is not evaluated.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-113

If Expressions (2)

• The guarantee that the other branch is not evalua-

ted is important if it could cause a runtime error.

• If the expressions E1 or E2 contain the comma ope-

rator, it must be inside parentheses.

Since there is no “fi” (or “end if”), a comma in E2 could cause
an ambiguity, when the expression is used in a function call. In E1 it
would be no problem, but there it is excluded for reasons of symmetry.

• Note that the else-part is not optional. One often

sees “else ()”.

This avoids the “dangling else” ambiguity that occurs in many pro-
gramming languages.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-114

Operator Precedences (1)

Prio Operator Assoc.

1 , (comma) left
2 for, some, every, if left
3 or left
4 and left
5 eq,ne,lt,le,gt,ge,=,!=,<,<=,>,>=,is,<<,>> left
6 to left
7 +, - left
8 *, div, idiv, mod left
9 union, | left

10 intersect, except left

(continued on next slide)

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-115

Operator Precedences (2)

(continued from previous slide)

Prio Operator Assoc.

11 instance of left
12 treat left
13 castable left
14 cast left
15 - (unary), + (unary) right
16 ?, *, + (Occurrence Indicators) left
17 /, // left
18 [], (), {} left

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-116

Summary: New Constructs

• The following constructs are new in XPath 2.0:

� for, some, every, if, eq, ne, lt, le, gt, ge, is, <<,

>>, intersect, except, idiv, to, ,

In XPath 1.0, no variables could be bound inside the expression
(only variables declared in the XSLT context could be used).

� Function calls in path expressions.

� A much richer type system (conformant with

XML Schema), stricter type checking.
XPath 1.0 had only four data types: node set, boolean, number,
string. XPath 2.0 can also work with user-defined types.

� Arbitrary sequences instead of node sets.

� A much larger function library (see next section).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-117

Syntax: Surprise (1)

• The following XPath expression is legal:

for div div

• E.g., if the context node is

<X><for>8</for> <div>2</div></X>

the result is 4 or 4.0 (= 8/2).

The expression consists of the operator div, applied to the results
of the path expressions for (left operand) and div (right operand).
The path expression for returns the child node with name for. Since
this is input to div, it is atomized, this results in the value 8 or 8.0
(if for is declared with simple content of a numeric type, or if the
document was no schema-validated: Then the value is "8", but of
type untypedAtomic, so it can be converted to the number 8.0).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-118

Syntax: Surprise (2)

• The following XPath expression is legal:

• Exercise: What is the result if the context node is

<X><Y>3</Y></X>

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-119

Exercise

What is the meaning of:

• @WEEKDAY = (’Sat’, ’Sun’)

• $x idiv 1

• (@QUANTITY, 1)[1]

• if @GUEST = true() then... else ... vs.

if @GUEST then... else ...

• true vs. true()

• not(*)

• not /A vs. not(/A)

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-120

Overview

1. Introduction, Software

2. Location Paths

3. Expressions

4. Data Types

5. XPath Functions

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-121

Type Casts (1)

• For some pairs of types T1 and T2, some values v1

of type T1 can be converted to a value v2 of type T2.

• For instance, if T1 is xs:string or xs:untypedAtomic,

and v1 conforms to the lexical representation of T2

as defined in the XML Schema Standard, then the

conversion is possible.

Special restrictions apply for target types xs:NOTATION (XML Schema
states that only subtypes of it can be instantiated) and xs:QName (only
string literals can be converted, and only if they use a namespace prefix
from the static context or the default namespace).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-122

Type Casts (2)

• The conversion is written

v1 cast as T2 e.g. "123" cast as xs:integer

• Using a constructor function is equivalent, except

that the constructor function can map () to ():

T2(v1) e.g. xs:integer("123")

This works also for user defined types. But the default namespace of
the two variants differs. For functions, including constructor functions,
the default namespace is http://www.w3.org/2005/xpath-functions. For
the cast as syntax, the default namespace is the same as used for
element types. The argument type of the constructor function is
anyAtomicType?, the result type is T2?.

• Exact equivalent: v1 cast as T2?

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-123

Type Casts (3)

• There is a special constructor function that con-

structs a xs:dateTime value from an xs:date and an

xs:time value.

• One can cast only to atomic types, possibly with

the occurrence indicator “?”.

This means that one cannot cast to list or union types, as well as
more general sequences.

• One cannot cast to anyAtomicType, because at run-

time, there are no values of this type.

Of course, untypedAtomic is possible.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-124

Type Casts (4)

• Atomization is applied to the argument of the cast-

expression or the constructor function.

Thus, one can e.g. use a path expression that selects an attribute
node. The value of that node is taken automatically.

• If the result is a sequence of two or more values,

an error is raised.

• An error also occurs if the value cannot be conver-

ted, e.g. the string does not have the right format.

This error may occur as a static error if the argument is e.g. given as
a string literal, or as a runtime error, when the value is not known at
compile time.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-125

Type Casts (5)

• All sensible type conversions are supported, not on-

ly conversions from string.
E.g. arbitrary conversions between numeric types are possible, as long
as the value fits into the result type (for floating point types, even that
is no problem, since they have the special values INF and -INF). The
complete list is given in the specification “XQuery 1.0 and XPath 2.0
Functions and Operators”, Section 17.1.

• When casting to a derived type, the value is first

converted to the corresponding base type, and then

the constraining facets are checked.
E.g. if money is a type derived from xs:decimal with fractionDigits=2,
one cannot convert the value 1.234 to money. However, as an exception,
values can be converted to xs:integer by truncation.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-126

Type Casts (6)

• Since v cast as T can cause a runtime error, XPath

also offers the condition

v castable as T

• This condition is true if and only if the cast would

succeed without error.

• Thus, one can use an if-expression to handle the

case that the value cannot be converted.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-127

Exercise

• Name (at least) two cases, where the following

function calls differ:

� boolean(v): This computes the effective boolean

value of v.

� xs:boolean(v): Constructor function, does first

atomization.

• What happens if an integer needs to be conver-

ted to a subtype of xs:decimal with a pattern that

prescribes two digits after the decimal point?
When converting to a derived type with the pattern-facet, only the
canonical representation of the value is checked.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-128

Runtime Type Check (1)

• XML Schema supports union types, e.g. grade_t

might be the union of the string values "passed",

"failed", and integer values from 1 to 5.

1: “very good”, 2: “good’, 3: “satisfactory”, 4: “fair”, 5: “poor”.

• XDM permits only sequences of atomic values and

nodes (it has no explicit support for union types):

At runtime, the exact type of each value is known.

• If GRADE is an attribute of type grade_t, the value of

this attribute will be a string or a number.

Which of the two, is only known at runtime for a concrete instance.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-129

Runtime Type Check (2)

• When the type of a value is not known at compile

time, it must be tagged with a type identification

at runtime.

This is nothing else than the standard implementation of a union
type. Thus, the fact that XDM has no explicit support for union
types, does not mean much. Unknown types can also occur when a
subtype is substituted for the supertype. A value might actually be of
a subtype, but at compile time, only the supertype is known. Again,
type tagging is used (e.g., the “virtual function table” in C++).

• Simple XPath implementations will tag every value

in this way, and do all the type checking at runtime.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-130

Runtime Type Check (3)

• In order to check whether an exam was passed, one

might try the following condition (wrong!):

@GRADE = "passed" or @GRADE <= 4

• However, one cannot compare strings and integers:

� If @GRADE is a string, the right condition gives a

type error.

If the left condition is true, and if that is checked first, the error
might not occur, because the right condition is not evaluated.

� If it is an integer, the left part gives a type error.

If the right condition is checked first, it is possible that the error
does not occur.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-131

Runtime Type Check (4)

• Thus, XPath has the possibility to check the type

of a value at runtime:

v instance of T

is true if value v has type T .

• In contrast to cast as and castable as, the type T

may be any sequence type.

• Note that the condition is also true if the type tag

of v is a type derived from T .

• For instance, the following is true:

5 instance of xs:decimal

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-132

Runtime Type Check (5)

• However, instance of does not check whether a va-

lue happens to satisfy the constraints of a subtype.

It only checks the type tag.

• For instance, the following is false:

5 instance of xs:positiveInteger

Numeric literals that consist entirely of digits are

assigned the type xs:integer.

• Of course, the following is true:

5 castable as xs:positiveInteger

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-133

Runtime Type Check (6)

• With instance of, one can write the condition as

if(@GRADE instance of xs:string)

then @GRADE = "passed"

else @GRADE <= 4

• This will work in a system based entirely on runtime

type checking.

• In a system using static type checking (“at com-

pile time”), it will probably still give a type error

because the (not very intelligent) system does not

understand that the comparisons are safe.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-134

Static Type Checking (1)

• Some XPath implementations do all type checking

at runtime, some try to do as much as possible at

compile time (“static type checking”).

• Advantages of static type checking:

� Type errors that occur only sometimes cannot be

found reliably with testing. Static type checking

finds them.

� Runtime is reduced (most tests done at compile

time), memory too (fewer type tags).

� Query optimzation can be improved.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-135

Static Type Checking (2)

• “static type checking is a mixed blessing. It will re-

port some errors early, but it will also report many

false alarms. The more you are dealing with unpre-

dictable or semi-structured data, the more frequent

the false alarms will become. With highly structu-

red data, static type checking can be a great help

in enabling you to write error-free code; but with

loosely structured data, it can become a pain in the

neck.” [Michael Kay, 2004]

• Static type checking is the pessimistic assumption

that what can go wrong, will go wrong.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-136

Type Assertions (1)

• The expression

v treat as T

checks whether v has type T (or a subtype of T),

then it returns v (unchanged). Otherwise, it causes

a runtime error.
In “treat as” the type can again be an arbitrary sequence type. E.g.,
one can also check whether a node is an element node.

• This expression is used when the compiler cannot

derive that expression v has the dynamic type T ,

but the programmer wishes to assert that this will

always be the case.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-137

Type Assertions (2)

• Of course, the static type of “v treat as T” is T .

The dynamic type of the value of an expression is always a subtype
(or identical to) the static type of that expression (type safety).

• In the above example, the check whether an exam

was passed can be written as follows to satisfy any

static type checker:

if(@GRADE instance of xs:string)

then (@GRADE treat as xs:string) = "passed"

else (@GRADE treat as xs:integer) <= 4

• One can also use functions to make assertions on

the length of sequences, see next slide.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-138

Type Assertions (3)

• exactly-one(s): Sequence s has length 1.

Argument: item()*. Result: item(). If s consists of exactly one ele-
ment, s is returned unchanged (one could also say that this element
is returned, because XPath makes no difference between a sequence
of length 1 and its element). If s is empty or consists of more than
one element, a runtime error occurs. New in XPath 2.0.

• one-or-more(s): Sequence s has length ≥ 1.

Argument: item()*. Result: item()+. If s is empty, a runtime error
occurs. Otherwise, it is returned unchanged. New in XPath 2.0.

• zero-or-one(s): Sequence s has length ≤ 1.

Argument: item()*. Result: item()?. If s is empty or consists of at
exactly one element, s is returned unchanged. If s consists of more
than one element, a runtime error occurs. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-139

Overview

1. Introduction, Software

2. Location Paths

3. Expressions

4. Data Types

5. XPath Functions

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-140

General Remarks (1)

• Many functions permit the empty sequence as in-

put. E.g. argument type “node()?” means a se-

quence consisting of 0 or 1 nodes.

� Most functions return the empty sequence if the

input is the empty sequence.
E.g. node-name has result type QName?, which means that the result
is a QName or the empty sequence. The empty sequence is returned
if the input is the empty sequence, but also for nodes that have
no name, i.e. text nodes, document nodes, or comment nodes.

� Some functions return the empty string if the

input is the empty sequence.
An example of this is name. Its return type is xs:string, therefore
it is clear that it cannot return the empty sequence.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-141

General Remarks (2)

• There can be several functions with the same name,

but different number of arguments (overloading).

Functions that differ only in argument types were avoided if possible.
However, they are sometimes needed for numeric functions, and also
seldom for backward compatibility.

• A typical case is a function with an optional argu-

ment, e.g.

� name(n): Returns the name of node n.

� name(): Returns the name of the context node.

If the context item is no node, this gives an error.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-142

General Remarks (3)

• Type promotion:

� If a function is declared with an argument of type

double, one can call it with an argument of type

decimal (or any of its subtypes, e.g. integer).

The argument value is automatically converted to a double (pos-
sibly with a loss of precision).

� In the same way, a decimal value is automatically

converted to float value if necessary.

� Also float can be converted to double.

� anyURI is converted to string if needed.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-143

General Remarks (4)

• Type substitution:

� An element of subtype can be used wherever an

element of the supertype is required.

� E.g., if a function is declared with an argument

of type decimal, one can pass an integer value

(integer is a subtype of decimal).

� This is not type promotion, because the value is

not changed/converted: It remains an integer.

E.g. if the parameter $n is declared as decimal, but the actual va-
lue is an integer, “$p instance of xs:integer” inside the function
returns true.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-144

General Remarks (5)

• More Function Conversion Rules:

� If the declared argument type is a sequence of

atomic values, atomization is applied, i.e. the ty-

ped value of nodes is taken.
E.g. if an attribute is declared of type integer, one can specify the
attribute node as argument to a function that requires an integer:
The node is automatically converted to its value.

� If an atomic value is of type xs:untypedAtomic

(resulting from a non-validated XML document),

it is converted to the required type.
If a function has variants for different numeric types, double is
chosen.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-145

General Remarks (6)

• Additional Conversions in XPath 1.0 Compatibility

Mode:

� A sequence can be automatically converted to

its first element.
For XPath 2.0, it is an error to pass a sequence with more than
one element if the function accepts only a single value.

� For the expected types string or double, very

generous type convertions are done: More or less

every value is converted.
E.g. "abc" can be converted to double, the result is NaN (not-a-
number). The boolean value “true” is converted to 1, “false”
to 0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-146

Subtle Differences III

• Let the context node be

<E A="3"/>

and suppose that the document was not schema-

validated, so the attribute is of type untypedAtomic.

• Then 1 to @A works.

The untypedAtomic value is converted to integer.

• But 1 to @A+1 gives a type error.

+ accepts different numeric types, and the untypedAtomic value of @A

is converted to double. But double is no legal input type for to.

• A type conversion is needed: 1 to xs:integer(@A)+1.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-147

Node Properties (1)

• name([n]): Node name (string that includes prefix)
Argument type: node()?, result type: xs:string. Function returns em-
pty string if the input is the empty sequence or a document, text, or
comment node. The argument is optional (default: context node).

• node-name(n): Node name (QName: URI, local part)
Argument type: node()?. Result type: xs:QName?. Function is new in
XPath 2.0.

• local-name([n]): Node name (without prefix)
Argument type: node()?, result type: xs:string. Argument is optional.

• namespace-uri([n]): Namespace part of node name.
Argument type: node()?, result type: xs:string. Argument is optional.
Result is empty string if node has no namespace.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-148

Node Properties (2)

• string([n]): String value of a node or atomic value.
Argument: item()?. Result: xs:string. Atomic values are casted to
string, nodes are mapped to their string value (see Chapter 5, e.g. for
element nodes, this is the concatenation of all decendant text nodes).

• data(n): Replaces nodes in input by typed value.
Argument: item()* (arbitrary sequence). Result: xs:anyAtomicType*.
This is atomization (see above): Atomic values in the input sequence
are copied to the output isequence unchanged, nodes are replaced by
their typed value. Nodes with pure element content cause a runtime
error if document was schema-validated. New in XPath 2.0.

• nilled(n): True if element contains xsi:nil="true".
Argument: node(). Result: xs:boolean?. If the document was not vali-
dated (wrt schema), the result is false even if attribute is present. The
empty sequence is returned for non-element nodes. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-149

Node Properties (3)

• document-uri(n): URI under which the document

can be accessed.

Argument: node()?. Result: xs:anyURI?. For document nodes n, an
absolute URI x is returned, such that n=doc(x). For other nodes, the
empty sequence, or if no such URI is known, the result is the empty
sequence. New in XPath 2.0

• base-uri([n]): Base URI for resolving relative URIs.

Argument: node()?. Result: xs:anyURI?. Base URI of the node, or if it
has none, searches recursively the ancestors. The URI of the input do-
cument, an external entity, or of an xml:base attribute is returned. If no
URI is found, the empty sequence is returned. The argument is option
(default: context item). New in XPath 2.0. See also static-base-uri()

and resolve-uri().

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-150

Node Properties (4)

• lang(l, [n]): Checks whether language l is specified

with xml:lang for node n

Argument l: xs:string (e.g., "de", "en-US"), n: node() (default: context
node). Result: xs:boolean. This function first determines the value of
the attribute xml:lang of node n or its nearest ancestor that has
such an attribute. This attribute can be found with the following
XPath expression: (ancestor-or-self::*/@xml:lang)[last()]. If there
is no such attribute node, the function returns false. Otherwise, let
the value of the attribute be x. If x and l are equal (ignoring case),
the result is true. If l is the prefix of x before the hyphen (again
ignoring case), the result is true. Otherwise the result is false. The
second argument has been added in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-151

Finding Nodes (1)

• doc(u): Get document node for given URI.

Argument: xs:string? Result: document-node()?. A runtime error oc-
curs if there is no document with the given URI. This function is
stable, it is guaranteed to return the same node if it is called several
times with the same URI (during the evaluation of a query). New in
XPath 2.0 (however, XSLT 1.0 has a function document()).

• doc-available(u): Check whether there is a docu-

ment with a given URI.

Argument: xs:string? Result: xs:boolean. This returns true if doc(u)

would return a node. It can be used in an if-expression to avoid the
runtime error that doc(u) would generate if there is no document with
URI u. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-152

Finding Nodes (2)

• collection(u): Nodes in container identified by URI.

Argument: xs:string? Result: node()*. This might be the document
nodes of the documents in a directory identified by the URI. Con-
tainers also exist in XML databases. It is not necessary that only
document nodes are returned. New in XPath 2.0.

• root(n): Root of the tree that contains node n.

Argument type: node()?, result type: node()?. Argument is optional
(default: context node). Function is new in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-153

Finding Nodes (3)

• id(i, [n]): Nodes with ID in i in document contai-

ning node n.

Argument i: xs:string*, n: node() (default: context node). Result:
element()*. Each string in i is parsed like an IDREFS value, i.e. it might
contain several IDs, separated by spaces. All these IDs in all strings
in the sequence i are considered for a possible match (values that
are not syntactically legal IDs are ignored). For each such ID, the
(first) element node with that ID in the document containing node n

is added to the output sequence. It is no error if there is no node
with a given ID. The output sequence contains the resulting nodes
in document order without duplicates. The root node reachable from
node n must be a document node. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-154

Finding Nodes (4)

• idref(i, [n]): Nodes with IDREF value containing

an ID in i (in document containing node n).

Argument i: xs:string*, n: node() (default: context node). Result:
node()* (actually, only element and attribute nodes are returned).
Candidate IDs are determined from the list i as above. Then every
attribute and element node in the document identified by n that con-
tains an IDREF/IDREFS-value that matches an ID in the candidate list
is returned. In case of IDREFS-values, it suffices if one of the IDs mat-
ches a candidate ID (from i). Note that in the classical DTD case, the
attribute node of type IDREF/IDREFS is returned. Element nodes are
returned only for schema-validated documents, when their contents
is of this type. Again, the result is a list of nodes in document order
without duplicates. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-155

Functions for Sequences (1)

• s1, s2: Sequence concatenation (see Slide 7-78).

The operands and the result have type item()* (arbitrary sequences).

• index-of(s, e, [c]): Return list of positions at which

element e occurs in sequence s (using collation c).

Argument s: xs:anyAtomicType*, e: xs:anyAtomicType, c: xs:string. Re-
sult: xs:integer*. Values of type xs:untypedAtomic are compared as if
they were of type xs:string. The collation c is only important for string
comparisons. If an element of s cannot be compared with e, it counts
as different (no type error occurs). Note that the input sequence is
atomized before the comparison (this may change positions). The first
element of s has position 1. E.g. index-of((10,20,30,20), 20) = (2,4).
New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-156

Functions for Sequences (2)

• insert-before(s1, p, s2): Returns the sequence con-

sisting of the prefix of s1 before position p, then s2,

then the rest of s1.
Argument s1, s2: item()*, p: xs:integer. Result: item()*. Positions
are counted from 1. Since XPath makes no difference between sin-
gle elements and sequences of length 1, s2 can also be an element.
E.g. insert-before((10,20,30), 2, 15) = (10,15,20,30). XPath never
does any updates, so s1 is not changed. If p ≤ 0, it is treated like p = 1.
If p > length of s1, the insertion is done at the end. New in Xpath 2.0.

• remove(s, p): Returns a copy of sequence s without

element at position p.
Argument s: item()*, p: xs:integer. Result: item()*. The effect is the
same as $s[position() ne $p]. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-157

Functions for Sequences (3)

• subsequence(s, f, [l]): Returns subsequence of s

consisting of (at most) l elements (“length”) star-

ting at position f (“from”).

Argument: s: item()*, f : xs:double, l: xs:double (default: infinite).
Result: item()*. First item is position 1. If l is outside the bounds
of index positions, it is implictly corrected (no error occurs). The
arguments f and l are rounded to integers. They are declared as
xs:double, because many computations on untyped data return this
type. (Furthermore, it increases the symmetry with substring, which
existed already in XPath 1.0: There, all numbers were double values.)
New in XPath 2.0.

• reverse(s): Gives s with inverse order of elements.

Argument: s: item()*, Result: item()*. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-158

Functions for Sequences (4)

• distinct-values(s, [c]): Returns a sequence that

contains the same elements as s, but without du-

plicates (using collation c for string comparisons).
Argument: s: anyAtomicType*, c: xs:string (default in static context).
Values of type xs:untypedAtomic are compared as if they were strings,
but they are still of type xs:untypedAtomic in the output (they are
not converted to xs:string). The output order is implementation-
dependent (e.g., a typical implementation would be to sort the ele-
ments, but some internal order could be used). The implementation
is also free to choose any of the equal elements, e.g. if the collation
makes "A" eq "a", and both appear in the input, it is not clear which
one will appear in the output. Elements of different type that connot
be compared with eq are considered as different (no type error oc-
curs). Also duplicates of NaN are eliminated, although it is usually not
considered as equal to itself. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-159

Exercise

• Suppose that the context node is
<x a="c1 c2">

<y a="c2 c3 c4"/>

<z a="c2">

<y a="c2"/>

</z>

<y a="c2"/>

</x>

Attribute a is declared as xs:NMTOKENS.

• What is the result of

index-of(//y/@a)

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-160

Optimizer Hint

• unordered(s): Returns arbitrary permutation of s.

Argument: item()*. Result: item()*. Note that this cannot be used
for e.g. computing a random list element. In many systems, it will
simply be the identity mapping. However, it tells the optimizer that
the user does not care about the order of the result: Otherwise, XPath
nearly always defines an order of the elements, because it works with
sequences, not (multi)sets. The query optimizer might then choose a
more efficient evaluation strategy for the argument s (to some degree,
also for outer expressions, but that is more difficult: The typical case
is probably to use unordered on the outermost level, although one
can construct cases where it is more efficient somewhere inside the
expression.) Note that unordered is unnecessary, when later a function
like count is applied, for which the exact order is anyway not important.
If duplicate elimination is needed, as e.g. for s1 | s2, enclosing it in
unordered(...) probably does not help too much (unless the optimizer
can prove that there will be no duplicates). New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-161

Aggregation Functions (1)

• count(s): Number of elements in sequence s.
Argument type: item()*. Result: xs:integer. This is the length of s.

• sum(s, [z]): Sum of elements in sequence s. For the

empty sequence, z is returned.
Argument s: xs:anyAtomicType*, z: anyAtomicType? (default: integer 0).
Result: xs:anyAtomicType. After atomization, XPath determines a com-
mon type for the sequence elements (one of: xs:integer, xs:decimal,
xs:float, xs:double, xs:dayTimeDuration, xs:yearMonthDuration) and
converts all elements to this type with the usual promotion rules
(xs:untypedAtomic is converted to xs:double). If this is not possible,
the function raises an error. Otherwise, the sum of the converted
values is returned (unless the sequence is empty, in which case z is
returned: Important for dynamically typed systems: () has no type).
In XPath 1.0, only the sum of doubles could be computed (also no z).

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-162

Aggregation Functions (2)

• avg(s): Average of elements in sequence s.
Argument type: anyAtomicType*. Result: xs:anyAtomicType?. This first
computes the sum of the elements of s (see sum above), and then
divides the result by the number of elements in s. If s is the empty
sequence, the empty sequence is returned.

• min(s, [c]): Minimum of elements in sequence s.
Argument s: anyAtomicType*, c: xs:string (default: default collation in
context). Result: xs:anyAtomicType?. The elements of the sequence are
first atomized, and then converted to a common type (which must
support the le operator, e.g. xs:QName and xs:anyURI are excluded;
xs:untypedAtomic is converted to xs:double. If this is not possible, an
error occurs. Then an element is returned that is ≤ all other elements.
The collation c is only important for string types. New in XPath 2.0.

• max(s, [c]): Maximum of elements in sequence s.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-163

Exercise
• Consider again:

<GRADES-DB>
...
<RESULT>
<SID>101</SID>
<CAT>H</CAT>
<ENO>1</ENO>
<POINTS>10</POINTS>

...

• What is the average number of points for Home-

work 1?

• What does this mean?

for $p in max(//POINTS) return //RESULT[POINTS=$p]

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-164

Boolean Functions (1)

• true(): Constant value “true”.

• false(): Constant value “false”.

Result: xs:boolean. Otherwise, XPath has no boolean constants.

• empty(s): Sequence s is empty.

Argument: item()*. Result: xs:boolean. If s is the empty sequence, the
function returns true, otherwise, it returns false. New in XPath 2.0.

• exists(s): Sequence s is not empty.

Argument: item()*. Result: xs:boolean. If s is the empty sequence, the
function returns false, otherwise, it returns true. Often, this function
is not needed: For a sequence of nodes, the effective boolean value
is true iff the sequence is not empty. But if the first element can be
an atomic value, exists() might be important. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-165

Boolean Functions (2)

• deep-equal(s1, s2, [c]): Check whether s1 and s2

are very similar, including descendant nodes.
Argument s1, s2: item()*, c: xs:string (collation). Two sequences are
deep-equal iff they have the same length, and each pair of elements
at the same position is deep-equal. Atomic values are deep-equal if
they can be compared with eq (so they have similar types), and eq

returns true. Two nodes can be deep-equal only if they have the same
kind. Two text nodes are deep-equal if their string-values are equal.
Two attribute nodes are deep-equal if they have the same name, and
their typed value is deep-equal. Two element nodes are deep-equal if
they have the same name, their set of attribute nodes is deep-equal,
and: (1) both have a simple type, and their typed values are equal, or
(2) (a) both have a complex type with element-only content, or both a
complex type with mixed content, or both a complex type with empty
content, and (b) their sequences of child nodes (ignoring comment
and PI nodes) is deep-equal. New in XPath 2.0. Continued →

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-166

Boolean Functions (3)

• deep-equal(s1, s2, [c]): Continued (comments):

� If nodes are identical, i.e. n1 is n2, then also

deep-equal(n1, n2). The converse is not true.
E.g., if one copies a tree, the result is deep-equal, but not identical.
This also holds if the same subtree appears in two parts of a
document: Nodes with different parents can still be deep-equal.

� If A is declared e.g. as decimal, the following no-

des are deep-equal:
<E A="3" B="xyz"/>

<E B="xyz" A="3.0"><!-- comment --></E>

� Whitespace-only text nodes are not ignored in

the comparison.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-167

Numeric Functions (1)

• abs(x): Absolute value.
There a four versions of this function: One with argument and result
type xs:integer, one for the numeric type xs:decimal, one for xs:float,
and one for xs:double. If x is negative, the function returns −x, other-
wise x (so that the result is always ≥ 0). New in XPath 2.0.

• ceiling(x): Round to next greater whole number.
Again, there are four versions of this function for the four important
numeric types. The result type is the same as the argument type,
e.g. ceiling(1.2)=2.0. This function exists already in XPath 1.0, but
there all numbers were double precision floating point numbers.

• floor(x): Round to next smaller whole number.
Again, there are four versions for the four important numeric types.
The result type is the same as the argument type, e.g. floor(1.8)=1.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-168

Numeric Functions (2)

• round(x): Round to nearest whole number.
The four numeric types are supported (see above). The result type is
the same as the argument type. E.g. round(1.2)=1.0, round(1.8)=2.0. If
x ends in .5, it is rounded upwards: round(1.5)=2.0, round(-1.5)=-1.0.

• round-half-to-even(x, [n]): Round x to n decimal

places to the right of the decimal point.
There are the usual four versions of this function, but the typical
case is with argument x: xs:decimal? and result xs:decimal?. The
argument n has always type xs:integer (the default value is 0). The
function produces the nearest number that is a multiple of 10−n.
E.g. round-half-to-even(10.183, 1) = 10.2. If the input x is exactly in
the middle between two possible results, the one with an even last
digit is chosen (e.g. 0.5→0, 1.5→2). This ensures that rounding does
not systematically make the average slightly larger. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-169

String Functions (1)

• codepoints-to-string(c): Construct string for given

sequence of Unicode character codes.

Argument: xs:integer*. Result: xs:string. New in XPath 2.0.

• string-to-codepoints(s): Map given string into se-

quence of Unicode character codes.

Argument: xs:string?. Result: xs:integer*. Note that a character that
is represented as a surrogate pair (two 16-bit numbers in the internal
string representation) counts only as one character and thus results
in a single number in the output sequence. The resulting numbers are
in the range 1 to 0x10FFFF. This function is new in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-170

String Functions (2)

• normalize-unicode(s,[f]): Replace different variants

to denote a character by a unique representation.
Argument s: xs:string? (input string to be normalized), f : xs:string

(normalization form/algorithm, default "NFC"). E.g. characters with
accents like ä can be represented as a single character code, or as
two (a followed by ̈: “Combining Diaresis”). Thus, string com-
parisons might fail although the characters look identical. NFC uses
the single, combined character. NFKC in addition maps “compati-
bility variants” of characters to a single code. It is recommended
that XML documents are normalized, therefore these problems usually
don’t occur. One problem is that NFC permits a combining character
at the beginning of a string, therefore the concatenation of two NFC-
normalized strings is not necessarily NFC-normalized. The normaliza-
tion form "fully-normalized" would exclude this (e.g. by prepending
a space to the lonely combining character). XPath implementations
are not required to offer other normalization forms besides "NFC".

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-171

String Functions (3)

• compare(s1, s2, [c]): Returns −1, 0, 1 depending

on which string comes first according to collation c.
Argument s1, s2: xs:string?, c: xs:string (must be URI, default is
default collation from static context). Result: xs:integer?. The result
is −1 if s1 comes before s1 (in alphabetic or other order c), 1 if s2

comes before s1, and 0 if s1 and s2 are equivalent (depending on the
collation, e.g. ß might count as equal to ss). The function compare is
implicitly used by the comparison operators for strings (therefore, the
results are guaranteed to be compatible).

• codepoint-equal(s1, s2): Strings are equal byte by

byte.
Argument s1, s2: xs:string?. Result: xs:boolean?. This returns true if
the two strings are exactly equal.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-172

String Functions (4)

• concat(s1, s2, ..., sn): Concatenation of s1 to sn.

This is the only function with a completely variable number n ≥ 2
of arguments (retained for compatibility with XPath 1,0). All other
functions have only a fixed number of versions that differ in the num-
ber of arguments (or the specific numeric type). The arguments have
type xs:anyAtomicType?. They are converted to xs:string before the
concatenation (the empty sequence is treated as empty string). The
result has type xs:string.

• string-join(s, d): Returns the concatenation of the

strings in sequence s, separated by delimiter d.

Argument s: xs:string*, d: xs:string. Result: xs:string.
E.g. string-join(("a", "bc", "d"), ", ") gives "a, bc, d".
New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-173

String Functions (5)

• string-length([s]): Number of characters in s.

Argument: xs:string? (default: string value of context item). Result:
xs:integer. The string length of the empty sequence is 0. Note that
a surrogate pair (used for code points above 0xFFFF) counts as one
character, not two.

• substring(s, f, [l]): Returns the substring of s that

starts at position f and consists of l characters.

Argument s: xs:string? (input string), f : xs:double (from position),
l: xs:double (maximal length of output, default: infinite). The first
character has position 1. E.g. substring("abcde", 2, 3) is "bcd". The
numbers f and l are rounded. If f is 0 or negative, it is implicitly
replaced by 1. In the two-argument from, when gets the entire rest
of the input string starting at position f .

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-174

String Functions (6)

• normalize-space([s]): Remove leading and trailing

whitespace, replace internal sequences of white-

space characters by a single ’ ’.
Argument: xs:string? (default: string value of context item). Result:
xs:string. This function has the same effect as whiteSpace="collapse"

in XML Schema.

• translate(s, a, b): Maps every character in s that

appears in a to the corresponding character in b.
Argument s: xs:string?, a, b: xs:string. Result: xs:string. Every cha-
racter in s that appears in a at position i is replaced by the character
at position i in b. If b is shorter than i, the character is deleted. Cha-
racters in s that do not appear in a are copied to the output string
unchanged. Example: translate("aBacx", "abc", "AB") gives "ABAx".

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-175

String Functions (7)

• upper-case(s): Make all letters upper case.

Argument: xs:string?. Result: xs:string. Note that the string length
may change, e.g. ß is mapped to SS. Some national conventions in
certain countries are not respected, if necessary, use replace. New in
XPath 2.0.

• lower-case(s): Make all letters lower case.

Argument: xs:string?. Result: xs:string. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-176

String Functions (8)

• contains(s1, s2, [c]): Check whether s2 appears as

a substring in s1.
Arguments s1, s2: xs:string?, c: xs:string (identifies collation, this ar-
gument is new in XPath 2.0). Result: xs:boolean. The collation defines
a way to map a string to a sequence of “collation units”, then true

is returned if this sequence for s2 is a subsequence of the sequence
for s1. E.g. contains("Straße", "s", "http://...") might return true
if the referenced collation maps “ß” to two collations units correspon-
ding to ss. Also the converse case is possible: Several input characters
may be mapped to a single collation unit, in which case the substring
test with only one of these characters would fail. Finally, there can be
“ignorable collation units”, which are deleted for both strings before
the subsequence test. There can be collations that do not support the
mapping to collation units (since for normal comparisons, this feature
is not needed). Then an error may be raised. If s2 is empty or the
empty sequence, the result is true.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-177

String Functions (9)

• starts-with(s1, s2, [c]): Check whether s2 is prefix

of s1.

Arguments s1, s2: xs:string?, c: xs:string (identifies collation, this
argument is new in XPath 2.0). Result: xs:boolean.

• ends-with(s1, s2, [c]): Check whether s2 is suffix

of s1.

Arguments s1, s2: xs:string?, c: xs:string (identifies collation, this
argument is new in XPath 2.0). Result: xs:boolean.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-178

String Functions (10)

• substring-before(s1, s2, [c]): Return the prefix of

s1 before the first match of s2.
Arguments s1, s2: xs:string?, c: xs:string (identifies collation, this
argument is new in XPath 2.0). Result: xs:string. A “minimal match”
is used. E.g. if “-” is ignorable, substring-before("a-b", "-b", ...)

is "a-", because "-b" matches "b". If there is no match, the result is
the empty string.

• substring-after(s1, s2, [c]): Return the suffix of

s1 after the first match of s2.
Arguments s1, s2: xs:string?, c: xs:string (identifies collation, this
argument is new in XPath 2.0). Result: xs:string. If s2 is the empty
string, the first match is at the beginning, thus the entire string s1 is
returned. If there is no match, the result is the empty string.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-179

Regular Expressions (1)

• matches(s, p, [f]): Checks whether (a substring of)

s matches pattern p (considering flags f).
Argument s: xs:string?, p: xs:string, f : xs:string. Result: xs:boolean.
Basically, the regular expression syntax is the same as for XML Sche-
ma, however, there are a few additions: Since normally a match can
occur anywhere inside s, ^ and $ are supported: ^ matches only at the
beginning of the string, or at the beginning of a line if flag m (multi-line
mode) is used. $ matches at the end. Quantifiers like *? are suppor-
ted, which means that the shortest possible match is taken. Groups in
parentheses (...) may be referenced with a construct of the form \n,
e.g. \1. The flag s (“single line mode”) means that “.”matches also
newline, otherwise “.” matches only all characters except newline.
The flag i makes comparisons case-insensitive. The flag x removes
all whitespace from p except inside character classes [...] (permits
to split a regular expression into several lines). New in Xpath 2.0

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-180

Regular Expressions (2)

• replace(s, p, r, [f]): Replaces all non-overlapping

occurrences of pattern p in s by r (with flags f).

Argument s: xs:string?, p, r, f : xs:string. Result: xs:string. If two
matches overlap, the first one is used. Matches for parenthesized
subexpressions of p can be used in r with “variables” $n. If several
cases of an alternative | match at the same position, the first one is
used. If subexpression n was not used in the match, $n="". Patterns
that match the empty string are forbidden. In r, the character $ must
be written \$, and \ as \\. New in XPath 2.0.

• tokenize(s, p, [f]): Splits s into substrings sepe-

rated by parts that match pattern p (with flags f).

Argument s: xs:string?, p, r, f : xs:string. Result: xs:string*. E.g.,
tokenize("ab c def ", "\s+") yields ("ab", "c", "def", "") (note:
\s matches ’ ’, TAB, CR, LF). p must not match "". New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-181

Exercise
• Consider again:

<GRADES-DB>

<STUDENT>
<SID>104</SID>
<FIRST>Maria</FIRST>
<LAST>Brown</LAST>

</STUDENT>
...

<RESULT>
<SID>101</SID>
<CAT>H</CAT>

...

• Print first and last name of all students who did

not submit any homework.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-182

Context Functions (1)

• last(): Context size (from dynamic context/focus).

Result type: xs:integer. Returns the length of the sequence that is
currently being processed (see above).

• position(): Context position.

Result type: xs:integer. Position (counted from 1) of the current
context item in the sequence that is currently being processed.

• static-base-uri(): Base URI from static context.

Result type: xs:anyURI?. This could e.g. be the URI of the XSLT
stylesheet. New in XPath 2.0.

• default-collation(): Sort order for strings.

Result type: xs:string. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-183

Context Functions (2)

• current-dateTime(): Current date and time.

Result type: xs:dateTime. This is stable, i.e. it does not change during
the evaluation of a single query. New in XPath 2.0.

• current-date(): Current date.

Result type: xs:date. This is simply the date component (with time-
zone) of the value returned by current-dateTime(). New in XPath 2.0.

• current-time(): Current time.

Result type: xs:time. This is the time component (with timezone) of
the value returned by current-dateTime(). New in XPath 2.0.

• implicit-timezone(): Timezone used for local time.

Result type: xs:dayTimeDuration. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-184

URI Utility Functions (1)

• resolve-uri(r, [b]): Relative URI → absolute URI.

Argument r: xs:string? (relative URI), b: xs:string (base URI, default:
base URI from static context). Result: xs:anyURI?. If r is already an
absolute URI, it is returned unchanged. New in XPath 2.0.

• escape-uri(s, r): Escape special characters as %XY.

Argument s: xs:string (URI in unescaped form), r: xs:boolean (“es-
cape reserved”, see below). Result: xs:string. Letters, digits, and -,
_, ., !, ~, *, ’, (,), and % are not escaped. If r is true, all other
characters are escaped (e.g. also /). If r is false, the characters ;, /,
?, :, @, &, =, +, $, ,, [,], and # are not escaped. Note that % is actual-
ly a reserved character, but this function does not touch it in order
to support “partially escaped” input strings (and make this function
idempotent). If necessary, use replace(). New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-185

URI Utility Functions (2)

• encode-for-uri(u): Encodes file/directory name.
Argument: xs:string?. Result: xs:string. All characters except ASCII
letters a-z and A-Z, digits 0-9, -, _, ., and ~ are encoded as %XY. Note
that e.g. also “/” is encoded. New in XPath 2.0.

• escape-html-uri(u): Encode non-ASCII characters

in UTF-8 and then escape them as %XY.
Argument: xs:string?. Result: xs:string. All characters with codes
outside the range 32 to 126 are translated in a way appropriate for web
browsers. See HTML 4.0 spec., Appendix B.2.1. New in XPath 2.0.

• iri-to-uri(u): Internationalized URI (IRI) → URI.
Argument: xs:string?. Result: xs:string. Translates characters not
valid in an URI to UTF-8, then %XY-encodes the bytes. May use speci-
al encoding for domain names. See RFC 3987, 3.1. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-186

Namespaces

• in-scope-prefixes(n): Return a list of namespace

prefixes that a declared for a given element node.

Argument n: element(). Result: xs:string()*. This function returns
all namespace prefixes that are declared in node n or one of its an-
cestors. The order os the prefixes is not prescribed. An empty string
corresponds to the default namespace. The prefix “xml” is always
contained in the result. This function is new in XPath 2.0. It is a
replacement for the namespace axis, which should no longer be used
for efficiency reasons.

• namespace-uri-for-prefix(p, n): URI of namespace

with prefix p as valid for node n.

Argument p: xs:string, n: element(). Result: xs:string?. The empty
sequence is returned if no namespace declaration for prefix p is found.
New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-187

QNames

• local-name-from-QName(n): Local part of QName.
Argument n: xs:QName?. Result: xs:string?. New in XPath 2.0.

• namespace-uri-from-QName(n):

Returns the namespace URI of QName n.
Argument n: xs:QName?. Result: xs:string()?. An empty sequence is
returned for the empty sequence as input, and if the input QName is
in no namespace. New in XPath 2.0.

• expanded-QName(u, n): Constructs QName from na-

mespace URI u and local name n.
Argument u: xs:string?, n: xs:string. Result: xs:QName. If the first
argument is the empty sequence or the empty string, the result is in
no namespace. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

7. XPath 7-188

Error and Trace Functions

• error([e], [m], [x]): Terminates execution, e, m, x

are used for generating an error message.

Argument e: xs:QName (identifier for error), m: xs:string (description
of error), x: item()* (additional data, error object). In the two and
three argument versions, e may be the empty sequence. Result: Does
not return. The exact form of the error message is implementation
dependent. New in XPath 2.0.

• trace(x, m): Prints data x to a trace file labelled

by message m, returns x.

Argument x: item()*, m: xs:string. This is the identity mapping on
the first argument, but with the side effect to insert it (together with
message m) into the trace data set (e.g., trace file). Note that one
cannot rely on any specific order of the entries. New in XPath 2.0.

Stefan Brass: XML und Datenbanken Universität Halle, 2018

