
5. Designing XML DTDs 5-1

Chapter 5:
Designing XML DTDs

References:
• Tim Bray, Jean Paoli, C.M. Sperberg-McQueen:

Extensible Markup Language (XML) 1.0, 1998.
[http://www.w3.org/TR/REC-xml] See also: [http://www.w3.org/XML].

• Elliotte R. Harold, W. Scott Means: XML in a Nutshell, 3rd Ed.
O’Reilly, 2004, ISBN 0596007647.

• Didier Martin, Mark Birbeck, Michael Kay: Professional XML, 2nd Ed. Wrox, 2000.

• Henning Lobin: Informationsmodellierung in XML und SGML. Springer-Verlag, 1999.

• Erhard Rahm, Gottfried Vossen: Web & Datenbanken. Dpunkt Verlag, 2002.

• Meike Klettke, Holger Meyer: XML & Datenbanken. Dpunkt Verlag, 2002.

• Akmal B. Chaudhri et al.: XML Data Management. Addison-Wesley, 2003.

• Eve Maler, Jeanne El Andaloussi:
Developing SGML DTDs: From Text to Model to Markup.
Prentice Hall PTR, 1996.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-2

Objectives

After completing this chapter, you should be able to:

• develop an XML DTD for a given application.

• translate a given Entity-Relationship-Diagram or

relational database schema into an XML DTD.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-3

Overview

1. Motivation, Example Database

2. Single Rows

3. Grouping Rows: Tables

4. Relationships

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-4

Motivation (1)

• In order to use XML, one must specify the docu-

ment/data file structure.

• This specification does not necessarily have to be

in the form of a DTD, but DTDs are simple and

there are many tools that work with DTDs.

DTDs were inherited from SGML, and are more intended for docu-
ments. Databases have other restrictions that cannot be expressed
in DTDs, therefore XML documents might be valid with respect to
the specified DTD that do not correspond to a legal database state.
XML Schema was developed as an alternative to DTDs that fulfills
better the special requirements of databases.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-5

Motivation (2)

• Often, XML is used as an exchange format between

databases. Then it is clear that one must find an

XML structure that corresponds to the given DB.

• There are a lot of methods, tools, and theory for

developing database schemas.

• Therefore, even if one does not (yet) store the data

in a database, it makes sense to develop first a DB

schema in order to design an XML data structure.

If XML is used as a poor man’s database, and not for “real” docu-
ments which typically have a less stringent structure.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-6

Example Database (1)

STUDENTS

SID FIRST LAST EMAIL

101 Ann Smith · · ·
102 Michael Jones (null)
103 Richard Turner · · ·
104 Maria Brown · · ·

EXERCISES

CAT ENO TOPIC MAXPT

H 1 Rel. Algeb. 10
H 2 SQL 10
M 1 SQL 14

RESULTS

SID CAT ENO POINTS

101 H 1 10
101 H 2 8
101 M 1 12
102 H 1 9
102 H 2 9
102 M 1 10
103 H 1 5
103 M 1 7

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-7

Example Database (2)

• STUDENTS: one row for each student in the course.

� SID: “Student ID” (unique number).

� FIRST, LAST: First and last name.

� EMAIL: Email address (can be null).

• EXERCISES: one row for each exercise.

� CAT: Exercise category.
E.g. ’H’: homework, ’M’: midterm exam, ’F’: final exam.

� ENO: Exercise number (within category).

� TOPIC: Topic of the exercise.

� MAXPT: Max. no. of points (How many points is it worth?).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-8

Example Database (3)

• RESULTS: one row for each submitted solution to an

exercise.

� SID: Student who wrote the solution.

This references a row in STUDENTS.

� CAT, ENO: Identification of the exercise.

Together, this uniquely identifies a row in EXERCISES.

� POINTS: Number of points the student got for the

solution.

� A missing row means that the student did not

yet hand in a solution to the exercise.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-9

Example Database (4)

Student

SID

First

Last
EMAIL

(0,∗)
solved

Points

(0,∗)
Exercise

Cat ENO

Topic MaxPt

• This is an equivalent schema in the ER-Model.
ER = Entity-Relationship. Entities are another name for objects (ob-
ject types / classes are shown as boxes in the ER-diagram). Relati-
onships between objects (object types) are shown as diamonds. Attri-
butes are pieces of data that are stored about objects or relationships
(shown as ovals). Optional attributes are marked with a circle. Key
attributes (which uniquely identify objects) are underlined.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-10

Overview

1. Motivation, Example Database

2. Single Rows

3. Grouping Rows: Tables

4. Relationships

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-11

Table Rows: Method I

• A simple and natural way to encode relational data

is to use one empty element per table row:

<STUDENT SID=’101’ FIRST=’Ann’ LAST=’Smith’

EMAIL=’smith@acm.org’/>

• This could be declared as follows:

<!ELEMENT STUDENT EMPTY>

<!ATTLIST STUDENT SID CDATA #REQUIRED

FIRST CDATA #REQUIRED

LAST CDATA #REQUIRED

EMAIL CDATA #IMPLIED>

• See next slide for the data type of SID.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-12

Data Types, Keys (1)

• In SGML, SID can be declared as NUMBER (instead of

CDATA). NUMBER-values are sequences of digits (≥ 0).
In XML, this is not supported. The nearest one could come would be
NMTOKEN, but that would also permit letters (as well as -, _, :, .). This
might make the real data type even less clear.

• If references to students are needed (see below), ID

might be the right type for the attribute SID.
This is supported in SGML and XML. However, now the restriction
is lost that SID is a number.

• But note that ID-values must start with a letter.
Or “_” or “:”. Thus, the data values have to be changed, e.g. “S101”
instead of “101”.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-13

Data Types, Keys (2)

• Note also that ID-values must be globally unique in

an XML document.
In contrast, key values have to be unique only within a relation (cor-
responding to an element type in this translation).

• Finally, composed keys (e.g., CAT and ENO) cannot

be directly translated to ID-attributes.
In the example, one could concatenate the two attributes, this would
also solve the problem that ID-values must start with a letter: E.g.,
H1, H2, M1. The problem with this is that it is now more difficult to
access category and exercise number separately.

• It might be good to choose the attribute name ID

instead of SID (purpose clear even without DTD).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-14

Data Types, Keys (3)

• These problems to represent data types in XML has

led to the XML Schema proposal.
Specifications in XML Schema are an alternative to DTDs. XML
Schema permits basically all that is possible in classical databases
(and more), but it is much more complicated than DTDs. Whereas
DTDs use a different syntax than the XML data syntax, XML Sche-
ma specifications are valid XML documents. Unfortunately, this also
means that XML Schema specifications are significantly longer than
the corresponding DTD.

• When the XML data are only an export from a da-

tabase, and not directly modified, it is unnecessary

to specify all constraints also for the XML file.
They are automatically satisfied.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-15

Data Types, Keys (4)

• The most common XML data types for attributes

are CDATA (strings), ID (unique identifiers), NMTOKEN

(words/codes), and enumeration types.

• E.g., if it is clear that the only possible exercise ca-

tegories are homeworks, midterm, and final, exer-

cises could be represented as follows:

<!ELEMENT EXERCISE EMPTY>

<!ATTLIST EXERCISE CAT (H|M|F) #REQUIRED

ENO CDATA #REQUIRED

TOPIC CDATA #REQUIRED

MAXPT CDATA #REQUIRED>

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-16

Special Characters

• If the XML file is generated by exporting data from

a database, characters that are forbidden within at-

tribute values must be escaped:

� Replace “<” by “&lt;”.

� Replace “&” by “&amp;”.

� Replace an apostrophe (’) by “&apos;”.
If this character is used as a string delimiter.

• Special national characters must be represented in

UTF-8, or an XML declaration that specifies an

encoding must be used.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-17

Table Rows: Method II (1)

• An alternative is to use a nested structure with an

element per attribute, plus one per row:
<STUDENT>

<SID>101</SID>

<FIRST>Ann</FIRST>

<LAST>Smith</LAST>

<EMAIL>smith@acm.org</EMAIL>

</STUDENT>

• Advantage (?): Only elements, no attributes.

• Disadvantage: Longer.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-18

Table Rows: Method II (2)

• The declaration in an XML DTD would look as

follows:

<!ELEMENT STUDENT (SID, FIRST, LAST, EMAIL?)>

<!ELEMENT SID (#PCDATA)>

<!ELEMENT FIRST (#PCDATA)>

<!ELEMENT LAST (#PCDATA)>

<!ELEMENT EMAIL (#PCDATA)>

• In SGML, one could use “&” instead of “,” to per-

mit an arbitrary sequence of the subelements.

In XML, one would have to simulate this with “|”. For a larger number
of columns, this gives very long and complex content models.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-19

Method I vs. Method II (1)

• In the document processing community, one usually

puts the real text into the element content, so that

one would still get the important information if all

tags were removed.

• In the example, one could discuss whether SID and

EMAIL should be attributes as in Method I, but at

least first name and last name should be elements

as in Method II.

• The database community has no such rules.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-20

Method I vs. Method II (2)

• Example for a mixture of both methods:

<STUDENT ID=’S101’ EMAIL=’smith@acm.org’>

<FIRST>Ann</FIRST>

<LAST>Smith</LAST>

</STUDENT>

• This can be declared as follows:

<!ELEMENT STUDENT (FIRST, LAST)>

<!ATTLIST STUDENT ID ID #REQUIRED

EMAIL CDATA #IMPLIED>

<!ELEMENT FIRST (#PCDATA)>

<!ELEMENT LAST (#PCDATA)>

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-21

Method I vs. Method II (3)

• Method II is of course advantageous if attributes

values are XML data.

If one does not know the structure, the content model ANY can be
used (note that there are no parentheses around ANY).

• Enumeration values and unique identifications are

only possible with Method I.

• Of course, also in Method II, special characters

must be escaped. An alternative is to use a CDATA-

section.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-22

Overview

1. Motivation, Example Database

2. Single Rows

3. Grouping Rows: Tables

4. Relationships

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-23

Grouping Rows (1)

• One possibility is to create one element for each

relation/table, e.g.

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<GRADES-DB>

<STUDENTS>

<STUD SID=’101’ FIRST=’Ann’ .../>

<STUD SID=’102’ FIRST=’Michael’ .../>

...

</STUDENTS>

...

</GRADES-DB>

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-24

Grouping Rows (2)

• An alternative is to have no such containers:

<?xml version=’1.0’ encoding=’ISO-8859-1’?>

<GRADES-DB>

<STUDENT SID=’101’ FIRST=’Ann’ LAST=’Smith’/>

<STUDENT SID=’102’ FIRST=’Michael’ LAST=’Jones’/>

...

<EXERCISE CAT=’H’ ENO=’1’ TOPIC=’Rel. Algeb.’/>

...

<RESULT SID=’101’ CAT=’H’ ENO=’1’ POINTS=’10’/>

...

</GRADES-DB>

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-25

Grouping Rows (3)

• If there are no table groups, one can require that

all rows of a single table are written consecutively:

<!ELEMENT GRADES-DB (STUDENT*,

EXERCISE*,

RESULT*)>

<!ELEMENT STUDENT EMPTY>

...

• An alternative is to require no specific sequence:

<!ELEMENT GRADES-DB (STUDENT|EXERCISE|RESULT)*>

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-26

Grouping Rows (4)

• Within a table, one can group rows by an attribute:

<EXERCISES>

<CAT LETTER=’H’>

<EX ENO=’1’ TOPIC=’Rel. Algeb.’ MAXPT=’10’/>

<EX ENO=’2’ TOPIC=’SQL’ MAXPT=’10’/>

</CAT>

<CAT LETTER=’M’>

<EX ENO=’1’ TOPIC=’SQL’ MAXPT=’14’/>

</CAT>

</EXERCISES>

• “EX” does not need an attribute “CAT”: Its value

can be derived from the enclosing “CAT” element.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-27

Ordered Data (1)

• In relational databases, the rows within a table have

no specific sequence.

• If the sequence is important, and cannot be reco-

vered by ordering the rows by one of the columns, a

column must be added that encodes the sequence

(e.g. a number).

• XML documents are always ordered.

• Therefore it might be possible to leave out columns

that can be derived from the position in the file.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-28

Ordered Data (2)

• If e.g. the exercise number is always sequential, it

does not have to be stored explicitly:

<EXERCISES>

<CAT LETTER=’H’>

<EX TOPIC=’Rel. Algeb.’ MAXPT=’10’/>

<EX TOPIC=’SQL’ MAXPT=’10’/>

</CAT>

<CAT LETTER=’M’>

<EX TOPIC=’SQL’ MAXPT=’14’/>

</CAT>

</EXERCISES>

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-29

Overview

1. Motivation, Example Database

2. Single Rows

3. Grouping Rows: Tables

4. Relationships

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-30

1:n Relationships (1)

• The example database contains only a many-to-

many (n:m) relationship, which is discussed below.

• An example for a one-to-many (1:n) relationship is:

Professor

Name Phone

(0,∗)
teaches

(1,1)
Course

Term Title

• One professor teaches many courses (between 0

and ∗ = ∞, i.e. arbitrarily many), but each course

is taught by exactly one professor (min 1, max 1).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-31

1:n Relationships (2)

• In the relational model, the relationship “teaches”

is implemented by adding the key of professor as a

foreign key to the course table:
PROFESSORS

NAME PHONE

Brass 55-24740
Zimmermann 55-24712

COURSES

TERM TITLE PROF

Summer 2004 Databases Design Brass
Winter 2004 Foundations of the WWW Brass
Summer 2004 Compiler Construction Zimmermann

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-32

1:n Relationships (3)

• One-to-many relationships can be easily represen-

ted by nesting the elements for the “many” side (in

this case Course) into the elements for the “one”

side (Professor): See example on next slide.

• This nesting can be extended to arbitrary depth to

represent a tree of one-to-many relationships.

• Example: Suppose that the times when the cour-

se meets (class) has to be stored for each course

(courses can meet several times per week).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-33

1:n Relationships (4)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<COURSE-DB>

<PROFESSOR NAME=’Brass’ PHONE=’55-24740’>
<COURSE TERM=’Summer 2004’

TITLE=’Database Design’/>
<COURSE TERM=’Winter 2004’

TITLE=’Foundations of the WWW’/>
</PROFESSOR>
<PROFESSOR NAME=’Zimmermann’ PHONE=’55-24712’>

<COURSE TERM=’Summer 2004’
TITLE=’Compiler Construction’/>

</PROFESSOR>
</COURSE-DB>

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-34

1:n Relationships (5)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<COURSE-DB>

<PROFESSOR NAME=’Brass’ PHONE=’55-24740’>
<COURSE TERM=’Summer 2004’

TITLE=’Database Design’>
<CLASS DAY=’MON’ FROM=’10’ TO=’12’/>
<CLASS DAY=’THU’ FROM=’16’ TO=’18’/>

</COURSE>
<COURSE TERM=’Winter 2004’

TITLE=’Foundations of the WWW’>
<CLASS DAY=’WED’ FROM=’14’ TO=’16’/>

</COURSE>
...

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-35

Foreign Keys (1)

• An alternative is to represent the professor-course

relationship with ID- and IDREF-attributes:

<!ELEMENT COURSE-DB (PROFESSOR|COURSE)*>

<!ELEMENT PROFESSOR EMPTY>

<!ATTLIST PROFESSOR NAME ID #REQUIRED

PHONE CDATA #REQUIRED>

<!ELEMENT COURSE EMPTY>

<!ATTLIST COURSE TERM CDATA #REQUIRED

TITLE CDATA #REQUIRED

PROF IDREF #REQUIRED>

• This is very similar to the relational solution.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-36

Foreign Keys (2)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<COURSE-DB>

<PROFESSOR NAME=’Brass’ PHONE=’55-24740’/>
<COURSE TERM=’Summer 2004’ PROF=’Brass’

TITLE=’Database Design’/>
<COURSE TERM=’Winter 2004’ PROF=’Brass’

TITLE=’Foundations of the WWW’/>

<PROFESSOR NAME=’Zimmermann’ PHONE=’55-24712’>
<COURSE TERM=’Summer 2004’ PROF=’Zimmermann’

TITLE=’Compiler Construction’/>
</COURSE-DB>

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-37

Foreign Keys (3)

• IDREF-attributes are similar to foreign keys, but the-

re are the following differences:

� ID/IDREF-attribute values must be identifiers.
E.g. “S. Brass” could not be used as value of an ID-attribute.

� IDREF attributes can refer to any element that as

an ID-attribute. One cannot specify that PROF in

COURSE must point to a professor.
In the example, only PROFESSOR has an ID-attribute. Then this
problem does not occur.

� The relational model permits keys that consist

of several attributes (not supported in DTDs).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-38

n:m Relationships (1)

• The student grades database contains a many-to-

many (n:m) relationship:

� One student can solve many exercises.

� One exercise can be solved by many students.

• In this case references are unavoidable (at least if

duplicate storage of the same entities is excluded):

� Either the results are nested under students

(then result elements must point to exercises),

� or results are nested under exercises

(then they must point to students).

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-39

n:m Relationships (2)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB>

<STUDENT SID=’101’ FIRST=’Ann’ LAST=’Smith’
EMAIL=’smith@acm.org’>

<RESULT CAT=’H’ ENO=’1’ POINTS=’10’/>
<RESULT CAT=’H’ ENO=’2’ POINTS=’8’/>
<RESULT CAT=’M’ ENO=’3’ POINTS=’12’/>

</STUDENT>
...
<EXERCISE CAT=’H’ ENO=’1’ TOPIC=’Rel. Algeb.’

MAXPT=’10’/>
...

</GRADES-DB>

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-40

n:m Relationships (3)

<?xml version=’1.0’ encoding=’ISO-8859-1’?>
<GRADES-DB>

<STUDENT ID=’S101’ FIRST=’Ann’ LAST=’Smith’
EMAIL=’smith@acm.org’/>

...
<EXERCISE CAT=’H’ ENO=’1’ TOPIC=’Rel. Algeb.’

MAXPT=’10’>
<RESULT STUD=’S101’ POINTS=’10’/>
<RESULT STUD=’S102’ POINTS=’9’/>
<RESULT STUD=’S103’ POINTS=’5’/>

</EXERCISE>
...

</GRADES-DB>

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016



5. Designing XML DTDs 5-41

n:m Relationships (4)

• As is well known in databases, one can replace a

many-to-many relationship by an “association en-

tity” (RESULTS) and two one-to-many relationships.

• One of the relationships is represented by nesting

the elements, the other relationship is represented

by references.

Given an arbitrary ER-diagram, one would first replace the many-to-
many relationships in this way by association entities, and then cut the
resulting graph of one-to-many relationships into trees. References are
needed for cutted edges, the trees are represented by nesting. This
technique was already used for the very old hierarchical data model.

Stefan Brass: Grundlagen des World Wide Web Universität Halle, 2016


