The Well-Founded Semantics

Characterizations and Computation

Stefan Brass

University of Hildesheim
On leave from: University of Hannover

Based on joint work with:

Jürgen Dix, Ulrich Zukowski, Burkhard Freitag

Introduction (1)

Nonmonotonic Negation:

- Prolog's "Negation as Failure":
 If A is not provable, assume not A as proven.
- The specified positive knowledge is complete (everything else is false).

Example:

```
book(1, "Ullman", "DBS").
book(2, "Lloyd", "LP").
borrowed(1).
available(Author, Title) ←
    book(Book, Author, Title) ∧
    not borrowed(Book).
```

NOT is useful/necessary:

- Already the specification of finite relations (as in relational databases) is quite complicated in first order logic.
- The transitive closure cannot be defined in first order logic.

Introduction (2)

Problem:

- There are about 20 proposals for the exact semantics of nonmonotic negation.
- Which one is natural and free of surprises?
- Are there good semantics which we do not know yet?
- Efficient computation.

Stratified Programs:

- Semantics of negation is clear, but stratified programs are not enough in practice.
- Negation is a special case of aggregation:
 "bill of materials"-Problem not stratified.
- The SQL3 standard proposal requires stratification, but IBM DB2 allows more.
- "Runtime stratification" inconvenient.

Abstract Semantics

Semantics for Logic Programs:

- ullet A semantics is a mapping \mathcal{S} , which assigns to every program P the set of derivable positive and negative ground literals.
- $S(P) = S(\operatorname{ground}(P))$.
- If $A \leftarrow \text{true} \in P$, then $A \in \mathcal{S}(P)$.
- If A is not ground instance of any rule head, then $\mathbf{not} A \in \mathcal{S}(P)$.

Program-Transformation:

- ullet A program-transformation is a relation \mapsto between ground logic programs.
- A semantics S allows a transformation \mapsto iff

$$P_1 \mapsto P_2 \implies \mathcal{S}(P_1) = \mathcal{S}(P_2).$$

A Normal Form (1)

Deletion of Tautologies:

 $P_1 \mapsto_T P_2$ iff P_1 contains a rule of the form

$$A \leftarrow \ldots \land A \land \ldots$$

and P_2 is the result of deleting this rule from P_1 .

Unfolding (Partial Evaluation):

- ullet Replace a positive body literal B by the bodies of all rules about B.
- P_1 : $p \leftarrow q \wedge \mathsf{not}\, r$. $q \leftarrow s \wedge \mathsf{not}\, t$. $q \leftarrow u$.
- P_2 : $p \leftarrow s \land \mathsf{not}\, t \land \mathsf{not}\, r$. $p \leftarrow u \land \mathsf{not}\, r$. $q \leftarrow s \land \mathsf{not}\, t$. $q \leftarrow u$.

A Normal Form (2)

Deletion of Nonminimal Rules:

• A rule $A \leftarrow L_1 \wedge \cdots \wedge L_n$ can be deleted if there is another rule $A \leftarrow L_{i_1} \wedge \cdots \wedge L_{i_k}$ such that $\{L_{i_1}, \ldots, L_{i_k}\} \subset \{L_1, \ldots, L_n\}$.

Normal Form:

 P_0 is a normal form of P wrt \mapsto iff

- \bullet $P \mapsto^* P_0$ and
- there is no P_1 with $P_0 \mapsto P_1$.

Theorem:

- The rewriting system → consisting of the above three transformations is terminating, i.e. every program has a normal form.
- The rewriting system \mapsto is also confluent (if $P_1 \mapsto^* P_2$ and $P_1 \mapsto^* P_3$, then there is P_4 such that $P_2 \mapsto^* P_4$ and $P_3 \mapsto^* P_4$).
- So every program has a unique normal form.

Conditional Facts (1)

Conditional Fact:

Ground rule with only negative body literals:

$$A \leftarrow \mathsf{not}\, B_1 \wedge \cdots \wedge \mathsf{not}\, B_n.$$

Direct Consequence Operator T_P :

$$\begin{array}{cccc} \mathsf{p}(\mathsf{a}) & \leftarrow & & \mathsf{not}\,\mathsf{s}(\mathsf{b}) \wedge \mathsf{not}\,\mathsf{r}(\mathsf{b}). \\ \uparrow & & \uparrow & \uparrow \\ \hline \mathsf{p}(\mathsf{X}) & \leftarrow & \mathsf{q}_1(\mathsf{X}) \wedge \mathsf{q}_2(\mathsf{X},\mathsf{Y}) \wedge \mathsf{not}\,\mathsf{r}(\mathsf{Y}). \\ \hline & \uparrow & \uparrow & \\ \mathsf{q}_1(\mathsf{a}) & \mathsf{q}_2(\mathsf{a},\mathsf{b}) \leftarrow \mathsf{not}\,\mathsf{s}(\mathsf{b}). \end{array}$$

Theorem:

Ifp (T_P) (without nonminimal cond. facts) is exactly the normal form of ground(P).

Conditional Facts (2)

Example:

```
book(1, "Ullman", "DBS").
book(2, "Lloyd", "LP").
borrowed(1).
available(Author, Title) ←
    book(Book, Autor, Titel) ∧
    not borrowed(Book).
```

Normal Form:

Relation to Minimal Models

Model:

- Set I of positive and negative ground literals
- satisfying the rules.

Order Among the Models:

 $I_1 \prec I_2$ iff

- $I_1 \subset I_2$, but
- \bullet I_1 and I_2 contain the same negative literals.

Theorem:

- ullet A semantics ${\cal S}$ allows unfolding, elimination of tautologies and of nonminimal rules iff
- $S(P_1) = S(P_2)$ for all programs P_1 and P_2 , which have the same set of minimal models.

WFS-Characterization (1)

Positive Reduction:

Replace a rule of the form

$$A \leftarrow L_1 \wedge \cdots \wedge L_{i-1} \wedge \operatorname{not} B \wedge L_{i+1} \wedge \cdots \wedge L_n,$$

where B occurs in no rule head, by

$$A \leftarrow L_1 \wedge \cdots \wedge L_{i-1} \wedge L_{i+1} \wedge \cdots \wedge L_n$$
.

Negative Reduction:

Delete a rule of the form

$$A \leftarrow L_1 \wedge \cdots \wedge \mathsf{not}\, B \wedge \cdots \wedge L_n$$

where $B \leftarrow \text{true}$ is given as a fact.

Theorem:

Also the rewriting system extended by these two transformations is terminating and confluent.

WFS-Characterization (2)

Residual Program:

The normal form of a program P is called the residual program $\operatorname{res}(P)$ of P.

Example:

Residual Program:

```
book(1, "Ullman", "DBS").
book(2, "Lloyd", "LP").
borrowed(1).
available("Lloyd", "LP").
```

WFS-Characterization (3)

Example:

```
\operatorname{odd}(\mathsf{X}) \leftarrow \operatorname{succ}(\mathsf{Y},\mathsf{X}) \wedge \operatorname{\textbf{not}} \operatorname{odd}(\mathsf{Y}). \operatorname{succ}(0,1). \operatorname{succ}(1,2). \ldots \operatorname{succ}(n-1,n).
```

Derivable Conditional Facts:

```
odd(1) \leftarrow not odd(0).
odd(2) \leftarrow not odd(1).
odd(3) \leftarrow not odd(2).
...
```

Residual Program:

```
odd(1).

odd(3).

...

succ(0,1).

succ(1,2).

...

succ(n-1,n).
```

WFS-Characterization (4)

Example:

 $p \leftarrow \mathsf{not} \ p.$

Theorem:

The well-founded semantics allows the above five transformations.

Theorem:

The well-founded model of P can be directly read from the residual program res(P):

- A is true in the well-founded model iff res(P) contains the fact $A \leftarrow true$.
- A is false in the well-founded model iff res(P) contains no rule about A.
- All other ground atoms are undefined in the well-founded model.

WFS-Characterization (5)

Weaker Semantics:

A semantics S_1 is weaker than (or equal to) a semantics S_2 iff for all programs P:

$$S_1(P) \subseteq S_2(P)$$
.

Theorem:

The WFS is the weakest semantics which allows the above five transformations.

Remarks:

- There is such a weakest semantics for any set of transformations.
- Another parameter is the basic definition of a semantics. E.g. one can require that a semantics yields a set of models.

Delaying Positive Literals (1)

Problem:

The residual program can grow to exponential size:

```
\begin{array}{ll} \mathsf{p}(0). \\ \mathsf{p}(\mathsf{X}) & \leftarrow & \mathsf{p}(\mathsf{Y}) \land \mathsf{succ}(\mathsf{Y},\mathsf{X}) \land \mathsf{not}\,\mathsf{q}(\mathsf{Y}). \\ \mathsf{p}(\mathsf{X}) & \leftarrow & \mathsf{p}(\mathsf{Y}) \land \mathsf{succ}(\mathsf{Y},\mathsf{X}) \land \mathsf{not}\,\mathsf{r}(\mathsf{Y}). \\ \mathsf{q}(\mathsf{X}) & \leftarrow & \mathsf{succ}(\mathsf{X},\mathsf{Y}) \land \mathsf{not}\,\mathsf{q}(\mathsf{X}). \\ \mathsf{r}(\mathsf{X}) & \leftarrow & \mathsf{succ}(\mathsf{X},\mathsf{Y}) \land \mathsf{not}\,\mathsf{r}(\mathsf{X}). \\ \mathsf{succ}(0,1). \\ \mathsf{succ}(0,1). \\ \mathsf{succ}(1,2). \\ \dots \\ \mathsf{succ}(n-1,n). \end{array}
```


Delaying Positive Literals (2)

Solution:

- "Unfolding" is too powerful.
- Delay also the positive body literals (as in Chen/Warrens's SLG-Resolution).

Generalized Conditional Facts:

• Let $\bar{T}_P(F)$ be the set of ground instances

$$A\theta \leftarrow L_1\theta \wedge \cdots \wedge L_n\theta$$

of rules in P, such that for every positive L_i there is a rule instance about $L_i\theta$ in F.

"Intelligent Grounding"

Delaying Positive Literals (3)

Example:

```
book(1, "Ullman", "DBS").
book(2, "Lloyd", "LP").
borrowed(1).
available("Ullman", "DBS") ←
    book(1, "Ullman", "DBS") ∧
    not borrowed(1).
available("Lloyd", "LP") ←
    book(2, "Lloyd", "LP") ∧
    not borrowed(2).
```

"Success" (Simplification):

Replace a rule of the form

$$A \leftarrow L_1 \wedge \cdots \wedge L_{i-1} \wedge B \wedge L_{i+1} \wedge \cdots \wedge L_n,$$
 where $B \leftarrow$ true is given as a fact, by
$$A \leftarrow L_1 \wedge \cdots \wedge L_{i-1} \wedge L_{i+1} \wedge \cdots \wedge L_n.$$

Delaying Positive Literals (4)

"Failure":

Delete a rule of the form

$$A \leftarrow L_1 \wedge \cdots \wedge B \wedge \cdots \wedge L_n$$

where B does not appear in any rule head.

Remark:

The four transformations Success, Failure, positive and negative Reduction together correspond to the Fitting operator.

Example:

These transformations are not sufficient for computing the well-founded model:

```
\begin{array}{lll} p. & & \\ q & \leftarrow & \textbf{not} \ p. \\ q & \leftarrow & r. \\ r & \leftarrow & q. \end{array}
```

Loop Check (1)

Elimination of Positive Loops:

Let ${\mathcal A}$ be a set of ground atoms such that

For all rules
$$A \leftarrow \mathcal{B}$$
 in P :
 If $A \in \mathcal{A}$, then $\mathcal{B} \cap \mathcal{A} \neq \emptyset$.

Then delete all rules $A \leftarrow \mathcal{B}$ with

$$\mathcal{B} \cap \mathcal{A} \neq \emptyset$$
.

Implementation of Loop Check:

- ullet The maximal ${\cal A}$ consists of all facts which are not derivable even if one assumes that all negative body literals are true.
- Can be computed in polynomial time.

Lemma:

- If a semantics allows unfolding and elimination of tautologies, it also allows loop check.
- ground $(P) \mapsto_L \mathsf{lfp}(\bar{T}_P)$.

Program Remainder

Theorem:

- The rewriting system consisting of these transformations (Success, Failure, pos/neg Reduction, Loop Elimination) is again terminating and confluent.
- We call the normal form under this rewriting system the "program remainder" of *P*.

Theorem:

- The program remainder is equivalent to the original program under WFS, STABLE, and may other semantics.
- The program remainder can be computed in polynomial time.
- The well-founded model can be read from the program remainder as from the residual program.
- The remainder of P results from the ground instantiation of P by evaluating all body literals known in WFS(P).

WFS-Computation (1)

Remark:

In order to turn a transformation system into an algorithm, one needs to specify

- in which order the transformations are applied
- which data structures are used to represent the conditional facts.

Strongly Connected Components:

- Partition program into sets of mutual recursive rules (or single nonrecursive rules).
- Do computation componentwise (in some topological order wrt the dependencies).

Componentwise Grounding:

- Like the above intelligent grounding, but only for a single component, and
- body literals defined in lower components and having a definite truth value are evaluated.

WFS-Computation (2)

Lemma:

After this intelligent grounding, an explicit application of "loop check" is only needed if a predicate in the component depends on itself positively as well as through negation.

Alternating Fixpoint:

Compute possibly true and surely true facts in alternating sequence.

Comparison:

- AFP reduces the bodies of the conditional facts to one bit and recomputes them when needed.
- We can simulate AFP (using loop check + negative reduction and success + positive reduction in alternating sequence).
- We beat AFP when components contain only negative recursion (like in the "odd number" example).

Conclusions (1)

The WFS is Important:

- Stratified programs are not enough,
 Runtime-stratification also problematic.
- The WFS has a unique model and is computable in polynomic time.
- The WFS is really very simple.
- Support for arbitrary programs under the WFS is announced for XSB and LOLA.

Comparison with Stable Semantics:

- In the stable semantics, non stratified negation is really used to specify problems which are beyond polynomial complexity.
- WFS = runtime stratification plus localized error messages.

Conclusions (2)

Computation:

- The presented method is faster than the alternating fixpoint procedure.
- It is much simpler to understand than SLG-resolution (however, it is not goal-directed).

Future Work:

- Complexity: quadratic or maybe linear?
- Extension to aggregations.
- Combination with SLDMagic technique.
- Construction of bottom-up machine with support for WFS and using DB techniques.