-

~

T he Well-Founded Semantics

Characterizations and
Computation

Stefan Brass

University of Hildesheim

On leave from: University of Hannover

Based on joint work with:

Jurgen Dix, Ulrich Zukowski, Burkhard Freitag

Introduction (1)

Nonmonotonic Negation:

e Prolog’s ,,Negation as Failure':
If A is not provable, assume not A as proven.

e T he specified positive knowledge is
complete (everything else is false).

Example:

book(1, “Ullman”, “DBS").
book(2, “Lloyd”, “LP").

borrowed(1).

available(Author, Title) «
book(Book, Author, Title) A
not borrowed(Book).

NOT is useful/necessary:
e Already the specification of finite relations
(as in relational databases) is quite compli-
cated in first order logic.

e [he transitive closure cannot be defined in
first order logic.

Introduction (2)

Problem:

e [here are about 20 proposals for the exact
semantics of nonmonotic negation.

e Which one is natural and free of surprises?

e Are there good semantics which we do not
know yet?

e Efficient computation.

Stratified Programs:

e Semantics of negation is clear, but stratified
programs are not enough in practice.

e Negation is a special case of aggregation:
“bill of materials”-Problem not stratified.

e T he SQL3 standard proposal requires stra-
tification, but IBM DB2 allows more.

e "Runtime stratification” inconvenient.

Abstract Semantics

Semantics for Logic Programs:

e A semantics is a mapping &, which assigns
to every program P the set of derivable
positive and negative ground literals.

e S(P) = S(ground(P)).
oIf A<+ true € P, then A e S(P).

e If A is not ground instance of any rule head,
then not A € S(P).

Program-Transformation:

e A program-transformation is a relation —
between ground logic programs.

e A semantics § allows a transformation — iff

P1 l—)PQ —— S(Pl) ZS(PQ).

A Normal Form (1)

Deletion of Tautologies:

Py —p P> iff P; contains a rule of the form

A+~ ... NAN ...,

and P» is the result of deleting this rule
from P;y.

Unfolding (Partial Evaluation):

e Replace a positive body literal B by the
bodies of all rules about B.

o Pq:

3

q N\ notr.

s A nott.
Uu.

s AN nott A notr.
u A notr.

s A nott.
Uu.

o P>

R RVR e 3
TrTTT 7T7

A Normal Form (2)

Deletion of Nonminimal Rules:
e A rule A« Ly AN---N L, can be deleted if

there is another rule A « L; A---AL; such

that {Lil" .. ’Lik} CA{L1,...,Ln}.

Normal Form:
Py is a normal form of P wrt — iff
e P —* Py and
e there is no P; with Pp— Pj.

T heorem:

e The rewriting system +— consisting of the
above three transformations is terminating,
i.e. every program has a normal form.

e The rewriting system — is also confluent
(if P ¥ P> and P4 ¥ P3, then there is Py
such that P> —™* P4, and P3 —* Py).

e SO every program has a unique normal form.

Conditional Facts (1)

Conditional Fact:
Ground rule with only negative body literals:

A<+ notByA---AnotBy,.

Direct Consequence Operator Tp:

p(a) <« nots(b) A notr(b).
T T T
G(X) < d1(X) Aaz2(X,Y) A not r(Y)]
0 T

di(a) az(a,b) < nots(b).

T heorem:

Ifp(Tp) (without nonminimal cond. facts)
is exactly the normal form of ground(P).

Conditional Facts (2)

Example:

book(1, “Ullman”, “DBS").
book(2, “Lloyd”, “LP").

borrowed(1).

available(Author, Title) «
book(Book, Autor, Titel) A
not borrowed(Book).

Normal Form:

book(1, “Ullman”, “DBS").
book(2, “Lloyd”, “LP").

borrowed(1).

available(“Ullman”, “DBS") <«
not borrowed(1).

available(“Lloyd”, "LP") <«
not borrowed(2).

Relation to Minimal Models

Model:
e Set I of positive and negative ground literals

e satisfying the rules.

Order Among the Models:
I1 < I iff
e[{ C Ip, but
e /1 and I, contain the same negative literals.

T heorem:
e A semantics S allows unfolding, elimination
of tautologies and of nonminimal rules iff
e S(P1) = S(P») for all programs Py and P»,
which have the same set of minimal models.

WFEFS-Characterization (1)

Positive Reduction:
Replace a rule of the form

A LiA---AL_1 ANOtBALjy1A---A Lnp,

where B occurs in no rule head, by

A%Ll/\'-'/\Li_l/\Li_|_1/\'--/\Ln.

Negative Reduction:
Delete a rule of the form

A< TLiA-—-ANOtBA---A Ly,

where B < true is given as a fact.

T heorem:
Also the rewriting system extended by these
two transformations is terminating and con-
fluent.

WFEFS-Characterization (2)

Residual Program:

The normal form of a program P is called the
residual program res(P) of P.

Example:

book(1, “Ullman”, “DBS").
book(2, “Lloyd”, “LP").

borrowed(1).

available(“Ullman”, “DBS") <«
not borrowed(1).

available(“Lloyd”, "“LP") <«
not borrowed(2).

Residual Program:

book(1, “Ullman”, “DBS").
book(2, “Lloyd”, “LP").

borrowed(1).
available(“Lloyd”, “LP").

WFS-Characterization (3)

Example:

odd(X) <« succ(Y,X) A notodd(Y).

succ(0,1).
succ(1,2).

succ(n —1,n).

Derivable Conditional Facts:

odd(1) <+ notodd(0).
odd(2) «+ notodd(1).
odd(3) «+ notodd(2).

Residual Program:

odd(1).
odd(3).

succ(0,1).
succ(1,2).

succ(n —1,n).

WFS-Characterization (4)

Example:
p < not p.

T heorem:
The well-founded semantics allows the above
five transformations.

T heorem:

The well-founded model of P can be directly

read from the residual program res(P):

e A is true in the well-founded model iff
res(P) contains the fact A <« true.

e A is false in the well-founded model iff
res(P) contains no rule about A.

e All other ground atoms are undefined in the
well-founded model.

WFS-Characterization (5)

Weaker Semantics:

A semantics S7 is weaker than (or equal to)
a semantics S, iff for all programs P:

S1(P) C S>2(P).

T heorem:

The WFS is the weakest semantics which
allows the above five transformations.

Remarks:

e T here is such a weakest semantics for any
set of transformations.

e Another parameter is the basic definition of
a semantics. E.g. one can require that a
semantics yields a set of models.

Delaying Positive Literals (1)

Problem:

The residual program can grow to exponen-
tial size:

p(0).

Pp(X) <+ p(Y) Asucc(Y,X)Anotq(yY).

P(X) <« p(Y) Asucc(Y,X) Anotr(Y).
¢

a(X) succ(X,Y) A not qg(X).
r(X) <+ succ(X,Y)Anotr(X).
succ(0, 1).
succ(1,2).

succ(n —1,n).

not q(0) notq(l)

p(0) p(1) p(2) ---

NS NS

notr(0) notr(1)

Delaying Positive Literals (2)

Solution:

e "Unfolding” is too powerful.

e Delay also the positive body literals
(as in Chen/Warrens's SLG-Resolution).

Generalized Conditional Facts:

e Let Tr(F) be the set of ground instances

AQ < L1OA--- A Lpb

of rules in P, such that for every positive L;
there is a rule instance about L;0 in F'.

e ‘Intelligent Grounding”

Delaying Positive Literals (3)

Example:

book(1, “Ullman”, “DBS").
book(2, “Lloyd”, “LP").

borrowed(1).

available(“Ullman”, “DBS") <«
book(1, “Ullman”, “DBS") A
not borrowed(1).

available(“Lloyd”, “LP") «+
book(2, “Lloyd”, “LP") A
not borrowed(2).

“Success” (Simplification):
Replace a rule of the form

A LiA-ALi_1 ABALiz1 A A Ln,

where B + true is given as a fact, by

ALy A--ALi_y NLig1 A--- A Ly,

Delaying Positive Literals (4)

“Failure’ :

Delete a rule of the form

A« Li{AN---ANBA---A Lp,

where B does not appear in any rule head.

Remark:
The four transformations Success, Failure,
positive and negative Reduction together cor-

respond to the Fitting operator.

Example:
These transformations are not sufficient for
computing the well-founded model:

D.
not p.

a <
q <«
r <

o =

Loop Check (1)

Elimination of Positive Loops:
Let A be a set of ground atoms such that

For all rules A «— B in P:
If Ac A, then BN A # 0.

Then delete all rules A «+— B with

BN A#0.

Implementation of Loop Check:

e The maximal A consists of all facts which
are not derivable even if one assumes that
all negative body literals are true.

e Can be computed in polynomial time.

Lemma:

e If a semantics allows unfolding and elimina-
tion of tautologies, it also allows loop check.

e ground(P) s Ifp(Tp).

Program Remainder

T heorem:

e The rewriting system consisting of these
transformations (Success, Failure, pos/neg
Reduction, Loop Elimination) is again ter-
minating and confluent.

e We call the normal form under this rewriting
system the “program remainder’ of P.

T heorem:

e T he program remainder is equivalent to the
original program under WFS, STABLE, and
may other semantics.

e The program remainder can be computed
in polynomial time.

e The well-founded model can be read from
the program remainder as from the residual
program.

e The remainder of P results from the ground
instantiation of P by evaluating all body li-
terals known in WFS(P).

WFS-Computation (1)

Remark:

In order to turn a transformation system into
an algorithm, one needs to specify

e in which order the transformations are app-
lied

e which data structures are used to represent
the conditional facts.

Strongly Connected Components:

e Partition program into sets of mutual recur-
sive rules (or single nonrecursive rules).

e DO computation componentwise (in some
topological order wrt the dependencies).

Componentwise Grounding:

e Like the above intelligent grounding, but
only for a single component, and
e body literals defined in lower components

and having a definite truth value are eva-
luated.

WFEFS-Computation (2)

Lemma:

After this intelligent grounding, an explicit
application of “loop check” is only needed
if a predicate in the component depends on
itself positively as well as through negation.

Alternating Fixpoint:

Compute possibly true and surely true facts
in alternating sequence.

Comparison:
e AFP reduces the bodies of the conditional
facts to one bit and recomputes them when
needed.

e We can simulate AFP (using loop check +
negative reduction and success + positive
reduction in alternating sequence).

e We beat AFP when components contain
only negative recursion (like in the *“odd
number” example).

Conclusions (1)

The WES is Important:

e Stratified programs are not enough,
Runtime-stratification also problematic.

e The WFS has a uniqgue model
and is computable in polynomic time.

e The WEFS is really very simple.

e Support for arbitrary programs under the
WES is announced for XSB and LOLA.

Comparison with Stable Semantics:

e In the stable semantics, non stratified nega-
tion is really used to specify problems which
are beyond polynomial complexity.

e WFS = runtime stratification plus
localized error messages.

Conclusions (2)

Computation:

e T he presented method is faster than the
alternating fixpoint procedure.

e It is much simpler to understand than SLG-
resolution (however, it is not goal-directed).

Future Work:

e Complexity: quadratic or maybe linear?
e Extension to aggregations.
e Combination with SLDMagic technique.

e Construction of bottom-up machine with
support for WFS and using DB techniques.

