
9. Constraint Logic Programming 9-1

Deductive Databases and Logic Programming

(Winter 2007/2008)

Chapter 9: Constraint Logic
Programming

• Introduction, Examples

• Basic Query Evaluation

• Finite Domain Constraint Solver

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-2

Introduction (1)

• Constraint logic programming (CLP) extends stan-

dard logic programming by constraints, which can

in principle be any kind of logical formulae.

• A concrete system permits only a subset of formu-

lae, because it needs a constraint solver that can

� check a set of constraints for consistency,
Sometimes incomplete constraint solvers are used, which are not
able to detect all inconsistencies.

� simplify a set of constraints, so that it can be

presented to the user as an answer.
Optimal would be Variable = Value, but this is not always possible.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-3

Introduction (2)

• Normally, the constraints are simply literals with

special predicates.

• The semantics of these predicates is not defined by

rules, but by a logical “constraint theory”.

• The semantics is implemented or approximated by

the constraint solver in the system.

“Constraint Handling Rules” (CHR) is an approach to define cons-
traint solvers by special rules. However, these look quite different from
the usual logic programming rules.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-4

Introduction (3)

• The function symbols that can be used for term

construction in constraint literals is limited: It must

be evaluable functions which the constraint solver

knows (e.g., +, -, *, /).

• Variables in constraints have a specific domain (e.g.,

integers). They cannot be bound to arbitrary terms.

• Note the difference between

� The value of variable X is the term Y+3.

� The value of variable X is an integer, at the mo-

ment it is known that X = Y+3.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-5

Introduction (4)

• For instance, the following logic program would

work in the Ciao System with the package CLP(R)

for constraint programming over reals:

:- use_package(clpr).

p(X,Y) :- X .=. Y * 3, q(X,Y).

q(X,Y) :- X - 2 .=. Y.

Ciao can be downloaded from [http://www.ciaohome.org/].

• The operator .=. means simply =, but that symbol

is used for unification already.

• For the query p(X,Y), one gets the answer Y.=.1.0,

X.=.3.0 (system of linear equations was solved).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-6

Introduction (5)

• In SWI-Prolog, the same example looks as follows:

:- use_module(library(clpr)).

p(X,Y) :- {X = Y * 3}, q(X,Y).

q(X,Y) :- {X - 2 = Y}.

In the Debian/Ubuntu Linux distribution, this constraint solver is mis-
sing (probably a bug). The Windows distribution contains it. Under
Linux, one can put the files to /usr/lib/swi-prolog/library/clp.

• Here, constraints are marked with {...}.

This shows that working with constraints is not very portable. In
ECLiPSe, e.g. the operator $= is used and type declarations for the
variables are important.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-7

Introduction (6)

• For comparison, consider the logic program

p(X,Y) :- X = Y * 3, q(X,Y).

q(X,Y) :- X - 2 = Y.

• Here, the answer is “no”: The call to q is q(Y*3,Y).

Then it is required to unify (Y*3)-2 and Y.

This only fails if the system uses an occur check. If the second equa-
tion were written X = Y+2, it would fail in any Prolog system.

• If one uses “is” instead of “=”, one would get an

instantiation fault.

“is” requires that all variables occurring on the right hand side are
bound to an arithmetic expression.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-8

Basic Query Evaluation (1)

• Query evaluation works as SLD-resolution, however

besides the current goal, there is also a current set

of constraints.

• If the first/selected literal in the current goal is a

constraint,

� it is moved to the current set of constraints.

� The current set of constaints is then checked for

consistency (with the constraint solver). If it is

inconsistent, the current derivation fails.
Since one typically searches the derivation tree depth first, back-
tracking to the last untried choice point will then occur.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-9

Basic Query Evaluation (2)

• If the first/selected literal is a normal literal (not a

constraint), a usual SLD-step is done, however

� Instead of unifying the head p(t1, . . . , tn) of a pro-

gram clause (with fresh variables) with the selec-

ted literal p(u1, . . . , un), one adds the constraints

u1 = t1, . . . , un = tn to the constraint store.

Furthermore, as usual, the body of the clause is inserted into the
goal (replacing the selected/calling literal).

� In this way, unification can be seen as a very

specific constraint solver.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-10

Basic Query Evaluation (3)

• The constraint solver may also transform the cur-

rent set of constraints into an equivalent one (sim-

plify them, e.g. solve equations).

This will typically occur when a constraint is added.

• A derivation is successful when it ends in an empty

goal and a satisfiable constraint store.

• Instead of an answer substitution, the contents of

the constraint store will then be printed.

Possibly restricted to the variables that occurred in the query.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-11

Delaying Conditions (1)

• One specific feature of CLP is that constraints are

usually not immediately evaluated, but delayed un-

til more information becomes available about the

variables occurring in them.

• For instance, consider the program:

p(X) :- X .<. 5, q(X).

q(X) :- r(X,Y).

r(7,Y) :- very_complex_calculation(Y).

• The condition X .<. 5 cannot be evaluated at the

point where it is called.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-12

Delaying Conditions (2)

• The constraint X .<. 5 waits in the background and

as soon as X is bound to 7, it causes the failure.

• In Prolog (with < instead of .<.) one would get an

instantiation fault.

• One would have to move X < 5 after the call q(X),

but then the very_complex_calculation is done, and

the failure is detected only afterwards.

• This gives logic programming a kind of coroutining.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-13

Unification vs. Equations (1)

• The above example also explains why unification is

conceptually replaced by solving special equations:

� The variable X gets the value 7 by a unification

step, and the constraint solver must react.

• This does not necessarily mean that when a CLP

system executes a standard logic program, the im-

plementation is different.

Actually, most modern Prolog systems have CLP libraries.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-14

Unification vs. Equations (2)

• However, the following example does not work:

p(X,Y) :- X .=. Y * 3, q(X,Y).

q(Z+2,Z).

• Formally, one gets the system of equations

X = Y * 3, X = Z + 2, Y = Z.

This could be solved with solution X=3, Y=1, Z=1.

• But in SWI-Prolog and Ciao, one gets a kind of

instantiation fault.
Unification introduces equations with “=”, while the constraint sol-
ver mainly works with “.=.”. A problem might also be to determine
whether Z is a standard Prolog variable or a numerical one.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-15

Finite Domain Constraints (1)

• A finite domain solver keeps for each variable a fini-

te domain of values, usually an interval of integers

(or union of such intervals).

• For the CLP-FD Solver in SWI-Prolog, one declares

a domain for a variable e.g. with

X in 0..9

• It is also possible to do this for a list of variables,

e.g.

[X, Y, Z] ins 0..100

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-16

Finite Domain Constraints (2)

• Equality for the CLP-FD solver is written #=.

Note that the constraints are not written in {..}.

Besides #=, the solver knows e.g. about #<, #<=, #>=, #>, #\=. Boolean
values are treated as 0 and 1, and then boolean connections #\ (not),
#\/ (or), #/\ (and), #<==> (iff), #==> (then), #<== (if) can be used.
The expressions can contain +, -, *, /, mod, rem, abs, min, max, ^.

• One can ask the solver to try all possible values for

a variable (or list of variables) one by one with

label(X)

When this variable has a concrete value, often the

constraints entail values for other variables.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-17

Finite Domain Constraints (3)

• A well-known puzzle is

S E N D
+ M O R E
M O N E Y

• The task is to find digits for the letters (all dif-

ferent, S and M not zero) such that this addition

gives the correct result.

• A solution can easily be found with a finite domain

solver. One only needs a formal specification of the

problem as shown on the next slide.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-18

Finite Domain Constraints (4)

• Puzzle in SWI-Prolog:

:- use_module(library(clpfd)).

puzzle([S,E,N,D],[M,O,R,E],[M,O,N,E,Y]) :-

Vars = [S,E,N,D,M,O,R,Y],

Vars ins 0..9,

all_different(Vars),

S * 1000 + E * 100 + N * 10 + D +

M * 1000 + O * 100 + R * 10 + E #=

M * 10000 + O * 1000 + N * 100 + E * 10 + Y,

M #\= 0, S #\= 0.

Example from [http://www.swi-prolog.org/man/clpfd.html]
(with one small modification in the head).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011



9. Constraint Logic Programming 9-19

Finite Domain Constraints (5)

• To solve the puzzle, call

puzzle(A, B, C), label(A).

Of course, one could call label also for the other variable lists, but
that is not necessary. The constraint solver can uniquely determine
their values once it has assigned concrete values to the variables in A.

• CLP can also be used to make functions with arith-

metic invertible:

:- use_module(library(clpfd)).

fac(0, 1).

fac(N, F) :- N #> 0, N1 #= N-1, F #= N*F1,

fac(N1, F1).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2011


