The Well-Founded Semantics
Characterizations and Computation

Stefan Brass

University of Hildesheim
On leave from: University of Hannover

Based on joint work with:
Jürgen Dix, Ulrich Zukowski, Burkhard Freitag
Introduction (1)

Nonmonotonic Negation:

* Prolog’s „Negation as Failure“:
 If \(A \) is not provable, assume \textit{not} \(A \) as proven.
* The specified positive knowledge is complete (everything else is false).

Example:

\[
\begin{align*}
\text{book}(1, \text{"Ullman"}, \text{"DBS"}). \\
\text{book}(2, \text{"Lloyd"}, \text{"LP"}). \\
\text{borrowed}(1). \\
\text{available}(\text{Author}, \text{Title}) \leftarrow \\
\quad \text{book}(\text{Book}, \text{Author}, \text{Title}) \land \\
\quad \text{not} \ \text{borrowed}(\text{Book}).
\end{align*}
\]

\textbf{NOT is useful/necessary:}

* Already the specification of finite relations (as in relational databases) is quite complicated in first order logic.
* The transitive closure cannot be defined in first order logic.
Introduction (2)

Problem:
- There are about 20 proposals for the exact semantics of nonmonotonic negation.
- Which one is natural and free of surprises?
- Are there good semantics which we do not know yet?
- Efficient computation.

Stratified Programs:
- Semantics of negation is clear, but stratified programs are not enough in practice.
- Negation is a special case of aggregation: “bill of materials”-Problem not stratified.
- The SQL3 standard proposal requires stratification, but IBM DB2 allows more.
- “Runtime stratification” inconvenient.
Abstract Semantics

Semantics for Logic Programs:

- A semantics is a mapping S, which assigns to every program P the set of derivable positive and negative ground literals.
- $S(P) = S(\text{ground}(P))$.
- If $A \leftarrow \text{true} \in P$, then $A \in S(P)$.
- If A is not ground instance of any rule head, then not $A \in S(P)$.

Program-Transformation:

- A program-transformation is a relation \mapsto between ground logic programs.
- A semantics S allows a transformation \mapsto iff

$$P_1 \mapsto P_2 \implies S(P_1) = S(P_2).$$
A Normal Form (1)

Deletion of Tautologies:

\[P_1 \rightarrow_T P_2 \text{ iff } P_1 \text{ contains a rule of the form } A \leftarrow \ldots \land A \land \ldots, \]

and \(P_2 \) is the result of deleting this rule from \(P_1 \).

Unfolding (Partial Evaluation):

- Replace a positive body literal \(B \) by the bodies of all rules about \(B \).

\(P_1 \):

\[
\begin{align*}
p & \leftarrow q \land \textbf{not} \ r. \\
q & \leftarrow s \land \textbf{not} \ t. \\
q & \leftarrow u.
\end{align*}
\]

\(P_2 \):

\[
\begin{align*}
p & \leftarrow s \land \textbf{not} \ t \land \textbf{not} \ r. \\
p & \leftarrow u \land \textbf{not} \ r. \\
q & \leftarrow s \land \textbf{not} \ t. \\
q & \leftarrow u.
\end{align*}
\]
A Normal Form (2)

Deletion of Nonminimal Rules:

- A rule \(A \leftarrow L_1 \land \cdots \land L_n \) can be deleted if there is another rule \(A \leftarrow L_{i_1} \land \cdots \land L_{i_k} \) such that \(\{L_{i_1}, \ldots, L_{i_k}\} \subset \{L_1, \ldots, L_n\} \).

Normal Form:

\(P_0 \) is a normal form of \(P \) wrt \(\rightarrow \) iff

- \(P \rightarrow^* P_0 \) and
- there is no \(P_1 \) with \(P_0 \rightarrow P_1 \).

Theorem:

- The rewriting system \(\rightarrow \) consisting of the above three transformations is terminating, i.e. every program has a normal form.
- The rewriting system \(\rightarrow \) is also confluent (if \(P_1 \rightarrow^* P_2 \) and \(P_1 \rightarrow^* P_3 \), then there is \(P_4 \) such that \(P_2 \rightarrow^* P_4 \) and \(P_3 \rightarrow^* P_4 \)).
- So every program has a unique normal form.
Conditional Facts (1)

Conditional Fact:
Ground rule with only negative body literals:

\[A \leftarrow \text{not } B_1 \land \cdots \land \text{not } B_n. \]

Direct Consequence Operator \(T_P: \)

\[p(a) \leftarrow \text{not } s(b) \land \text{not } r(b). \]

\[\uparrow \quad \uparrow \quad \uparrow \]

\[p(X) \leftarrow q_1(X) \land q_2(X, Y) \land \text{not } r(Y). \]

\[\uparrow \quad \uparrow \]

\[q_1(a) \quad q_2(a, b) \leftarrow \text{not } s(b). \]

Theorem:
\(\text{lfp}(T_P) \) (without nonminimal cond. facts) is exactly the normal form of ground(\(P \)).
Conditional Facts (2)

Example:
borrowed(1).
available(Author, Title) ←
book(Book, Autor, Titel) ∧
not borrowed(Book).

Normal Form:
borrowed(1).
available(“Ullman”, “DBS”) ←
not borrowed(1).
available(“Lloyd”, “LP”) ←
not borrowed(2).
Relation to Minimal Models

Model:
- Set I of positive and negative ground literals
- satisfying the rules.

Order Among the Models:

$I_1 \prec I_2$ iff
- $I_1 \subset I_2$, but
- I_1 and I_2 contain the same negative literals.

Theorem:
- A semantics S allows unfolding, elimination of tautologies and of nonminimal rules iff
- $S(P_1) = S(P_2)$ for all programs P_1 and P_2, which have the same set of minimal models.
WFS-Characterization (1)

Positive Reduction:
Replace a rule of the form

\[A \leftarrow L_1 \land \cdots \land L_{i-1} \land \textbf{not } B \land L_{i+1} \land \cdots \land L_n, \]

where \(B \) occurs in no rule head, by

\[A \leftarrow L_1 \land \cdots \land L_{i-1} \land L_{i+1} \land \cdots \land L_n. \]

Negative Reduction:
Delete a rule of the form

\[A \leftarrow L_1 \land \cdots \land \textbf{not } B \land \cdots \land L_n, \]

where \(B \leftarrow \text{true} \) is given as a fact.

Theorem:
Also the rewriting system extended by these two transformations is terminating and con- fluent.
WFS-Characterization (2)

Residual Program:
The normal form of a program P is called the residual program $\text{res}(P)$ of P.

Example:
borrowed(1).
available(“Ullman”, “DBS”) ←
 not borrowed(1).
available(“Lloyd”, “LP”) ←
 not borrowed(2).

Residual Program:
borrowed(1).
available(“Lloyd”, “LP”).
WFS-Characterization (3)

Example:
odd(X) ← succ(Y, X) ∧ not odd(Y).
succ(0, 1).
succ(1, 2).
...
succ(n − 1, n).

Derivable Conditional Facts:
odd(1) ← not odd(0).
odd(2) ← not odd(1).
odd(3) ← not odd(2).
...

Residual Program:
odd(1).
odd(3).
...
succ(0, 1).
succ(1, 2).
...
succ(n − 1, n).
WFS-Characterization (4)

Example:
\[p \leftarrow \text{not } p. \]

Theorem:
The well-founded semantics allows the above five transformations.

Theorem:
The well-founded model of \(P \) can be directly read from the residual program \(\text{res}(P) \):
- \(A \) is true in the well-founded model iff \(\text{res}(P) \) contains the fact \(A \leftarrow \text{true} \).
- \(A \) is false in the well-founded model iff \(\text{res}(P) \) contains no rule about \(A \).
- All other ground atoms are undefined in the well-founded model.
WFS-Characterization (5)

Weaker Semantics:
A semantics S_1 is weaker than (or equal to) a semantics S_2 iff for all programs P:

$$S_1(P) \subseteq S_2(P).$$

Theorem:
The WFS is the weakest semantics which allows the above five transformations.

Remarks:
- There is such a weakest semantics for any set of transformations.
- Another parameter is the basic definition of a semantics. E.g. one can require that a semantics yields a set of models.
Delaying Positive Literals (1)

Problem:
The residual program can grow to exponential size:

\[
\begin{align*}
p(0) & . \\
p(X) & \leftarrow p(Y) \land \text{succ}(Y, X) \land \text{not} \ q(Y) . \\
p(X) & \leftarrow p(Y) \land \text{succ}(Y, X) \land \text{not} \ r(Y) . \\
q(X) & \leftarrow \text{succ}(X, Y) \land \text{not} \ q(X) . \\
r(X) & \leftarrow \text{succ}(X, Y) \land \text{not} \ r(X) . \\
\text{succ}(0, 1) . \\
\text{succ}(1, 2) . \\
\ldots \\
\text{succ}(n - 1, n) .
\end{align*}
\]

\[
\begin{tikzpicture}[->,>=stealth',node distance=2cm,thick]
 \node (p0) at (0,0) {\text{not} \ q(0)};
 \node (p1) at (2,0) {\text{not} \ q(1)};
 \node (p2) at (4,0) {\text{not} \ r(0)};
 \node (p3) at (6,0) {\text{not} \ r(1)};

 \draw (p0) edge (p1)
 edge (p2)
 edge (p3)

 \draw (p1) edge (p2)
 edge (p3)

 \draw (p2) edge (p3);
\end{tikzpicture}
\]
Delaying Positive Literals (2)

Solution:

- “Unfolding” is too powerful.
- Delay also the positive body literals (as in Chen/Warrens’s SLG-Resolution).

Generalized Conditional Facts:

- Let $\bar{T}_P(F)$ be the set of ground instances

 $A\theta \leftarrow L_1\theta \land \cdots \land L_n\theta$

 of rules in P, such that for every positive L_i there is a rule instance about $L_i\theta$ in F.
- “Intelligent Grounding”
Delaying Positive Literals (3)

Example:

borrowed(1).

available(“Ullman”, “DBS”) ←
book(1, “Ullman”, “DBS”) ∧
not borrowed(1).
available(“Lloyd”, “LP”) ←
book(2, “Lloyd”, “LP”) ∧
not borrowed(2).

“Success” (Simplification):
Replace a rule of the form

\[A \leftarrow L_1 \land \cdots \land L_{i-1} \land B \land L_{i+1} \land \cdots \land L_n, \]

where \(B \leftarrow \text{true} \) is given as a fact, by

\[A \leftarrow L_1 \land \cdots \land L_{i-1} \land L_{i+1} \land \cdots \land L_n. \]
Delaying Positive Literals (4)

“Failure”:
Delete a rule of the form

\[A \leftarrow L_1 \land \cdots \land B \land \cdots \land L_n, \]

where \(B \) does not appear in any rule head.

Remark:
The four transformations Success, Failure, positive and negative Reduction together correspond to the Fitting operator.

Example:
These transformations are not sufficient for computing the well-founded model:

\[
\begin{align*}
p. \\
q & \leftarrow \text{not } p. \\
q & \leftarrow r. \\
r & \leftarrow q.
\end{align*}
\]
Loop Check (1)

Elimination of Positive Loops:
Let A be a set of ground atoms such that
For all rules $A \leftarrow B$ in P:
If $A \in A$, then $B \cap A \neq \emptyset$.
Then delete all rules $A \leftarrow B$ with
$B \cap A \neq \emptyset$.

Implementation of Loop Check:
• The maximal A consists of all facts which are not derivable even if one assumes that all negative body literals are true.
• Can be computed in polynomial time.

Lemma:
• If a semantics allows unfolding and elimination of tautologies, it also allows loop check.
• $\text{ground}(P) \xrightarrow{L} \text{lfp}(\overline{T}_P)$.
Program Remainder

Theorem:
- The rewriting system consisting of these transformations (Success, Failure, pos/neg Reduction, Loop Elimination) is again terminating and confluent.
- We call the normal form under this rewriting system the “program remainder” of P.

Theorem:
- The program remainder is equivalent to the original program under WFS, STABLE, and may other semantics.
- The program remainder can be computed in polynomial time.
- The well-founded model can be read from the program remainder as from the residual program.
- The remainder of P results from the ground instantiation of P by evaluating all body literals known in WFS(P).
WFS-Computation (1)

Remark:
In order to turn a transformation system into an algorithm, one needs to specify
• in which order the transformations are applied
• which data structures are used to represent the conditional facts.

Strongly Connected Components:
• Partition program into sets of mutual recursive rules (or single nonrecursive rules).
• Do computation componentwise (in some topological order wrt the dependencies).

Componentwise Grounding:
• Like the above intelligent grounding, but only for a single component, and
• body literals defined in lower components and having a definite truth value are evaluated.
WFS-Computation (2)

Lemma:
After this intelligent grounding, an explicit application of “loop check” is only needed if a predicate in the component depends on itself positively as well as through negation.

Alternating Fixpoint:
Compute possibly true and surely true facts in alternating sequence.

Comparison:
- AFP reduces the bodies of the conditional facts to one bit and recomputes them when needed.
- We can simulate AFP (using loop check + negative reduction and success + positive reduction in alternating sequence).
- We beat AFP when components contain only negative recursion (like in the “odd number” example).
Conclusions (1)

The WFS is Important:

- Stratified programs are not enough, Runtime-stratification also problematic.
- The WFS has a unique model and is computable in polynomial time.
- The WFS is really very simple.
- Support for arbitrary programs under the WFS is announced for XSB and LOLA.

Comparison with Stable Semantics:

- In the stable semantics, non stratified negation is really used to specify problems which are beyond polynomial complexity.
- \(\text{WFS} = \) runtime stratification plus localized error messages.
Conclusions (2)

Computation:
- The presented method is faster than the alternating fixpoint procedure.
- It is much simpler to understand than SLG-resolution (however, it is not goal-directed).

Future Work:
- Complexity: quadratic or maybe linear?
- Extension to aggregations.
- Combination with SLDMagic technique.
- Construction of bottom-up machine with support for WFS and using DB techniques.