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Objectives

After completing this chapter, you should be able to:

• explain the difference between negation in logic pro-

gramming and negation in classical logic

• explain why stratification is helpful, check a given

program for the stratification condition.

• compute supported, perfect, well-founded, and sta-

ble models of a given program.

• explain the well-founded semantics with conditional

facts and elementary program transformations.
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Example (Small Library)

book

BID Author Title

Ull89 Ullman Princ. of DBS and KBS

Llo87 Lloyd Found. of Logic Progr.

borrowed

BID

Ull89

available(Author, Title) ← book(BID, Author, Title) ∧
not borrowed(BID).

available

Lloyd Found. of Logic Progr.
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Motivation (1)

• Queries or view definitions as in the above example

are possible in SQL, but cannot be expressed with

definite Horn clauses (classical Datalog).

� A good query language should be relationally

complete, i.e. it should be possible to transla-

te every relational algebra expression into that

language.

� This goal is reached for Datalog with negation

(Datalogneg) (even without recursion).

• Prolog has an operator not (also written \+).
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Motivation (2)

• Set difference is a natural operation. If it misses in

a query language, the user will pose several queries

and compute the set difference himself/herself.
If a query language computes sets, it should be closed under the
usual set operations. I.e. a set operation applied to the result of two
queries should be expressable as a single query. (One could also require
other simple operations, such as counting.) For relations, it should be
closed under relational algebra operations. This is not quite the same
as relational completeness, because this closure condition holds also
e.g. for recursive queries (not expressible in relational algebra).

• It was defined above which facts are false in the

minimal model. Up to now, knowledge about false

facts cannot be used within in the program.
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Not vs. Classical Negation (1)

• The negation operator not in Prolog / Datalogneg

is not logical negation ¬ known from classical logic.

• From the formulas
book(’Ull89’, ’Ullman’, ’Princ. of DBS and KBS’).
book(’Llo87’, ’Lloyd’, ’Found. of Logic Progr.’).
borrowed(’Ull89’).
available(Author, Title)← book(BID, Author, Title) ∧

¬borrowed(BID).
one cannot conclude that ’Llo87’ is not borrowed.

The given formulas specify only the positive information. This was
also the motivation for defining the minimal model.
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Not vs. Classical Negation (2)

• Therefore, also this is not a logical consequence:

available(’Lloyd’, ’Found. of Logic Progr.’)

• This is a difference to Horn clause Datalog: There,

all answer-facts in the minimal model are logical

consequences of the given program.

• Negative facts must be assumed “by default” if the

corresponding positive fact is not provable.

• In order to prove not A, Prolog first tries to prove

A. If this fails, not A is considered “proven”:

“Negation as (Finite) Failure”/“Default Negation”.
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Not vs. Classical Negation (3)

• Classical logic is monotonic: If ψ follows from Φ, it

also follows from Φ ∪ {ϕ′} for any ϕ′.
If one has more preconditions, one can derive more (or at least the
same).

• This important property does not hold in logic pro-

gramming: If one adds borrowed(’Llo87’) to the gi-

ven formulas, one can no longer conclude

available(’Lloyd’, ’Found. of Logic Progr.’)

• Thus, “Nonmonotonic Logic” is used to explain ne-

gation in logic programming.
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Not vs. Classical Negation (4)

• Not all classical equivalences hold in logic program-

ming: For instance,

available(Author, Title)← book(BID, Author, Title) ∧
¬borrowed(BID).

is logically equivalent to

available(Author, Title) ∨ ¬book(BID, Author, Title) ∨
¬¬borrowed(BID).

and thus to

borrowed(BID)← book(BID, Author, Title) ∧
¬available(Author, Title).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007



8. Negation 8-11

Not vs. Classical Negation (5)

• In logic programming (with not instead of ¬), the

two formulas have a completely different semantics:

borrowed(BID)← book(BID, Author, Title) ∧
not available(Author, Title).

• Because no available-facts can be derived, Prolog

now concludes that also ’Llo87’ is borrowed.

• In logic programming, rules can be used in only one

direction. The distinction between head and body

is important.

The contraposition of a rule is not used.
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Not vs. Classical Negation (6)

• To understand not, it is helpful to assume that for

every predicate p there is a new, system-defined

predicate not_p.

One can also use modal logic (with an operator “I know that”).

• Then exchanging the head literal and a negated

body literal is no longer logical contraposition, since

not_p is not necessarily ¬p.

• It is not even astonishing that some negation se-

mantics make neither p nor not_p true for difficult

programs like p← not p.
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Syntax

• Now two types of body literals are allowed:

� Postive body literals (atomic formulas, as usual):

p(t1, . . . , tn)

� Negative body literals (default negation of an

atomic formula):

not p(t1, . . . , tn)

• The default negation operator not cannot be used

in the head of a rule.

This corresponds to the above view that “not_p” is a system defined
predicate. One cannot introduce rules that define this predicate.
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SLDNF-Resolution (1)

• SLDNF-Resolution (SLD-resolution with negation

as failure) is a generalization of SLD-resolution to

programs with negative body literals.
Some authors think that it is more precise to say “finite failure”.

• As in SLD-resolution, a tree is constructed, where

the nodes are marked with goals (conjunctions of

positive and negative literals).
Seen as a refutation proof, one can also view the goals as disjunction
of the opposite literals.

• If the selected literal is a positive literal, child nodes

are constructed as in SLD-resolution.
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SLDNF-Resolution (2)

• If the selected literal is a negative literal, SLDNF-

resolution calls itself recursively with the correspon-

ding positive literal as query.

I.e. a new tree is constructed, the root marked the the positive literal.

� If this tree is finite and contains no success node

(empty goal), the negative literal is considered

proven, and the calling node gets a single child

node with the negative literal removed.

� If the tree contains a success node, the calling

node is a failure node (without child nodes).
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SLDNF-Resolution (3)

• Most authors require that a negative literal can only

be selected if it is ground.

• The reason is the probably unexpected local quan-

tification, see next slides.

• If the goal is not empty, but the selection functi-

on cannot select a literal (because only nonground

negative literals are left), evaluation “flounders”.

This is an error condition.

• Most Prolog systems do not obey this restriction.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007



8. Negation 8-18

Range Restriction (1)

• not_p can only be called with the binding pattern

bb . . . b.

• I.e. every variable of the rule must occur in a posi-

tive body literal.
With further restrictions if built-in predicates are used.

• Many Prolog systems evaluate also negative literals

with variables. But then the usual quantification is

inverted:

� not p(X) is successful if p(X) fails for all X.

� p(X) is successful if it succeeds for at least one X.
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Range Restriction (2)

• Consider the following example:

p(X)← not r(X) ∧ q(X).
q(a).
r(b).

• Most Prolog systems will answer the query “p(X)”

with “no”, since already not r(X) fails.

In this case, there are actually two different variables named “X”, since
X within not is implicitly ∃-quantified.

• If one exchanges the two body literals, every Prolog

systems answers withe same query with X = a.
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Range Restriction (3)

Remark (Anonymous Variables):

• Anonymous variables in negated body literals can

be useful.

• Suppose that the table borrowed is extended:

borrowed

BID User

Ull89 Brass

• Formally, the following rule would not be range-

restricted, but Prolog would work as expected:

available(Author, Title)← book(BID, Author, Title) ∧
not borrowed(BID, ).

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007



8. Negation 8-21

Range Restriction (4)

Remark, continued:

• Probably, most deductive database systems permit

negative body literals with anonymous variables.

However, these variables are ∀-quantified in the body, whereas all
other variables that occur only in the body are ∃-quantified.

One can also say that anonymous variables are ∃-quantified immedia-
tely in front of the atomic formula, i.e. inside the negation.

• This is also consistent with the idea that anony-

mous variables project away unnecessary columns.

• Exercise: If anonymous variables were not allowed

in negated literals, how would one define available?
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Exercise

• Let the following EDB-relations be given:

� lecture_hall(RoomNo, Capacity).

� reservation(RoomNo, Day, From, To, Course).

• Which lecture halls are free on tuesdays, 830–1000?

• What is the largest capacity of a lecture hall?

• Is there a time at which all lecture halls are used?

If there is such a time at all, also one of the times in From satisfies
this condition (Proof: Go back from the given time, when all lecture
halls are used, to the nearest start of a reservation.). Thus, it is not
necessary to check all possible times.
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Clark’s Completion (1)

• The first approach to define a semantics of ne-

gation in logic programming non-operationally was

(probably) Clark’s Completion (also called CDB:

“completed database”) [1978].

• Basically, the idea was to turn “←” into “↔.

• E.g., if the only rule about p is

p(X)← q(X) ∧ r(X)

the definition of p in the CDB is (equivalent to)

∀X: p(X)↔ q(X) ∧ r(X)
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Clark’s Completion (2)

• When variables occur only in the body, e.g. Y in

p(X)← q(X,Y )

it is normally not important whether

� it is universally quantified over the entire rule:

∀X,Y : p(X)← q(X,Y )

� or existentially over the body (equivalent):

∀X: p(X)← ∃Y : q(X,Y )

• But for the CDB only the second version works:

∀X: p(X)↔ ∃Y : q(X,Y )
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Clark’s Completion (3)

• If there are several rules about one predicate, the

rule bodies must be connected disjunctively.

• E.g. consider
p(a,X)← q(X).
p(b,X) ← r(X).

• The rule heads must be normalized: New variables

are introduced for the arguments of the head, and

equated with the original arguments in the body:

∀Y1,Y2: p(Y1, Y2)↔
(
∃X:Y1 = a ∧ Y2 = X ∧ q(X)

)
∨(

∃X:Y1 = b ∧ Y2 = X ∧ r(X)
)
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Clark’s Completion (4)

• E.g., consider this program:

p(X)← q(X) ∧ not r(X).
q(a).
q(b).
r(b).

• Clark’s completion (as follows) implies e.g. p(a):

∀X p(X)↔ q(X) ∧ ¬r(X).
∀X q(X)↔X = a ∨X = b.

∀X r(X)↔X = b.

In addition it contains an equality theory that inclu-

des, e.g., a 6= b (unique names assumption, UNA).
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Clark’s Completion (5)

• Consider the program
p← p.

• The definition of p in Clark’s Completion is

p↔ p

i.e. p can be true or false.

• SLDNF resolution can prove neither p nor not p.
It always gets into an infinite loop.

• However, if one uses a deductive database with

bottom-up evaluation, it is clear that p is false.
This motivates the search for stronger negation semantics, see below.
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Clark’s Completion (6)

• Consider the program
p← not p.

• The definition of p in Clark’s Completion is

p↔ ¬p
which is inconsistent.

• SLDNF resolution can prove neither p nor not p.

• However, if the program contains other, unrelated

predicates, SLDNF resolution would give reasona-

ble positive and negative answers for them, while

Clark’s completion implies everything.
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Clark’s Completion (7)

• Of course, the rule p ← not p is strange and con-

tradictory: p is provable iff p is not provable.

In classical logic p ← ¬p is simply equivalent to p, i.e. p is true. Ho-
wever, as explained above, when negation is used, logic programming
rules do not behave as the corresponding formulas in classical logic.

• However, such a case can be hidden in a large pro-

gram, and totally unrelated to a given query.

• In order to support goal-directed query evaluation

procedures, such cases must be excluded or the

semantics must “localize” the consistency problem.
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Stratification (1)

• In order to avoid the p ← not p problem, the class

of stratified programs is introduced.

• Note that negative body literals not p(t1, . . . , tn) can

be easily evaluated if the complete extension of p

was already computed previously.
Variables among the arguments are already bound to a concrete value
because of the range restriction. Thus, one only has to check whether
the argument tuple is contained in the extension of p.

• This means that p must not depend on a predicate

that depends on not p.

In short: Recursion through negation is excluded.
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Stratification (2)

Definition (Level Mapping of the Predicates):

• A level mapping of the predicates is a mapping

`:P → lN0.

• The domain of this mapping is extended to atomic

formulas through

`
(
p(t1, . . . , tn)

)
:= `(p).

Note:

• The purpose of this level mapping is to define an

evaluation sequence: One starts with predicates of

level 0, continues with level 1, and so on.
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Stratification (3)

Definition (Stratified Program):

• A program P is stratified if and only if there is a

level mapping ` such that for each rule

A← B1 ∧ · · · ∧Bm ∧ not C1 ∧ · · · ∧ not Cn

the following holds:

� `(Bi) ≤ `(A) for i = 1, . . . ,m, and

� `(Cj) < `(A) for i = 1, . . . , n.

• Such a level mapping is called a stratification of P .
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Stratification (4)

• One can compute a stratification as follows:

� Let k be the number of different predicates in

the program.

� Assign level 0 to every predicate.

� Whenever the condition is violated for a rule,

and the level of the predicate in the head is less

than k, increment it.

� If the level of a predicate reaches k, the program

is not stratified. Otherwise, when a stable state

is reached, this is a valid stratification.
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Stratification (5)

• The predicate dependency graph for programs with

negation is defined as follows:

� Nodes: Predicates that occur in the program.

Here not p does not count as a predicate on its own.

� There is a positive edge from q to p iff there is

a rule of the form p(. . .)← . . . ∧ q(. . .) ∧ . . .
� There is a negative edge from q to p iff there is

a rule of the form p(. . .)← . . . ∧ not q(. . .) ∧ . . ..

• A program is stratified if and only if there is no

cycle that contains at least one negative edge.
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Perfect Model (1)

• For defining when an interpretation is a model of a

program one treats not like classical negation ¬.

• Thus, an interpretation I is a model of a program P

iff for every rule

A← B1 ∧ · · · ∧Bm ∧ not C1 ∧ · · · ∧ not Cn

and every variable assignment A the following holds:

� If (I,A) |= Bi for i = 1, . . . ,m and (I,A) 6|= Cj
for j = 1, . . . , n, then (I,A) |= A.

If one identifies again a Herbrand model I with its set of true facts, a
ground literal not p(c1, . . . , cn) is true in I if and only if p(c1, . . . , cn) 6∈ I.
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Perfect Model (2)

Problem:

• With negation, the minimal Herbrand model is no

longer unique:
p← not q.

This program has two minimal models (it is logically

equivalent to p ∨ q):
� I1 = {p}.
� I2 = {q}.

• Of these, only I1 is intuitively right (intended mo-

del): Since there are no rules about q, one cannot

prove q. Thus, it should be false.
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Perfect Model (3)

Idea:

• Predicate minimization with priorities:

� It is natural to compute the predicate extensions

in the sequence given by the level mapping.

� Then predicates with lower level are minimized

with higher priority.
They can choose first and they want to have a minimal extension.

� In the example p← not q (e.g., `(q)=0, `(p)=1)

q is minimized with higher priority, i.e. it is more

important to make q false than to make p false.

Therefore, one chooses I1 = {p}.
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Perfect Model (4)

Definition (Prioritized Minimal Model):

• Let a level mapping ` for a program P be given.

• A Herbrand model I1 of P is preferable to a Her-

brand model I2 (I1 ≺` I2) iff there is i ∈ lN0 with

� I1(p) = I2(p) for all predicates p with `(p) < i.

� I1(p) ⊆ I2(p) for all predicates p with `(p) = i.

� I1(p) 6= I2(p) for at least one p with `(p) = i.

• I1 �` I2 iff I1 ≺` I2 or I1 = I2.
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Perfect Model (5)

Theorem/Definition:

• Every stratified program P minimales Modell I0
with respect to �`.

• This model I0 is called the perfect model of P .

• The perfect model does not depend on the exact

stratification. If ` und `′ are two stratifications for P ,

the minimal model with respect to �` is also mini-

mal with respect to �`′.
Actually, the original definition of the perfect model does not use a
level mapping but the priority relation between the predicates given
by the rules of the program.
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Bottom-Up Evaluation (1)

• One first applies rules about predicates of level 0.

These do not contain negation.

• Then one applies the rules about predicates of le-

vel 1. These refer negatively only to predicates of

level 0. But the extensions of these predicates are

already known. And so on.

• When the rules are applied in a sequence obtained

from topologically sorting the predicate dependency

graph, one automatically gets this order compatible

with the predicate levels.
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Bottom-Up Evaluation (2)

Definition (Generalized TP -Operator):

TP,J (I) := {F ∈ BΣ |There is a rule
A← B1 ∧ · · · ∧Bm

∧ not C1 ∧ · · · ∧ not Cn
in P and ground substitution θ,
such that
θ(A) = F ,
θ(Bi) ∈ I ∪ J for i = 1, . . . ,m,
θ(Ci) 6∈ J for i = 1, . . . , n}.

Stefan Brass: Deductive Databases and Logic Programming Univ. Halle, 2007



8. Negation 8-43

Bottom-Up Evaluation (3)

Iterated Fixpoint Computation:

• Let ` be a stratification of P with maximal level k.

• Let Pi be the rules about predicates of level i, i.e.

Pi := {A← B1 ∧· · ·∧Bm ∧ not C1 ∧· · ·∧ not Cn ∈ P |
`(A) = i}.

• Let I0 := ∅ and Ii+1 := Ii ∪ lfp(TPi,Ii).

• Then Ik+1 is the perfect model of P .
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Ausblick (1)

Nicht-Stratifizierte Negation:

• Manche praktisch sinnvollen Programme sind nicht

stratifiziert.

• Dies kommt z.B. immer dann vor, wenn Prädikate

als ein Argument einen
”
Zustand“ haben, und man

sich bei der Definition für den nächsten Zustand

negativ auf den vorigen Zustand bezieht.

• Ein einfaches Beispiel wäre etwa:

even(0).
even(X)← X > 0 ∧ succ(Y, X) ∧ not even(Y).
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Ausblick (2)

• Da succ azyklisch ist, hängt ein even-Fakt nicht

wirklich negativ von sich selbst ab.

• Die Semantik der Negation ist noch relativ pro-

blemlos, wenn es so ein
”
dynamische Stratifikation“

der Fakten gibt.

• Die meisten deduktiven DBS können auch bei sol-

chen Programmen die Negation auswerten.

• Allerdings hängt es nun von den Daten ab, ob ein

Programm auswertbar ist oder nicht (nur falls succ

azyklisch).
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Ausblick (3)

• Semantiken für noch allgemeinere Programme (in-

klusive p ← not p) sind etwa die wohlfundierte Se-

mantik (WFS) und die stabile Modelle Semantik.

• Die wohlfundierte Semantik würde im Beispiel

p← not p

weder p noch not p wahr machen (d.h. p einen drit-

ten Wahrheitswert zuordnen).

• Für stratifizierte Programme stimmt sie (wie prak-

tisch alle anderen vorgeschlagenen Semantiken) mit

dem perfekten Modell überein.
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Ausblick (4)

Aggregationen:

• Die gleichen Probleme ergeben sich im Zusammen-

hang mit Aggregationen wie count, sum, min, max.
In Prolog verwendet man dazu findall, um die Menge der Lösungen
zu einer Anfrage zu berechnen. Anschließend kann man diese Menge
aggregieren (zu einem Wert zusammenfassen).

• Negation bedeutet ja auch nur: count(. . .) = 0.

• Auch hier verlangt man häufig eine Stratifizierung,

verbietet also Rekursionen durch Aggregationen.

• Allerdings ist schon das bekannte
”
Bill of Materi-

als“-Problem nur dynamisch stratifiziert.
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