
7. Relational Normal Forms 7-1

Part 7: Relational
Normal Forms

References:
• Elmasri/Navathe: Fundamentals of Database Systems, 3rd Ed.,

Ch. 14, “Functional Dependencies and Normalization for Relational Databases”
Ch. 15, “Relational Database Design Algorithms and Further Dependencies”

• Silberschatz/Korth/Sudarshan: Database System Concepts, 3rd Ed.,
Ch. 7, “Relational Database Design”

• Ramakrishnan/Gehrke: Database Management Systems, 2nd Ed., Mc-Graw Hill, 2000.
Ch. 15, “Schema Refinement and Normal Forms”

• Simsion/Witt: Data Modeling Essentials, 2nd Ed.. Coriolis, 2001.
Ch. 2: “Basic Normalization”, Ch. 8: “Advanced Normalization”.

• Batini/Ceri/Navathe: Conceptual Database Design, An Entity-Relationship Approach.
Benjamin/Cummings, 1992.

• Kemper/Eickler: Datenbanksysteme (in German), Oldenbourg, 1997.
Ch. 6, “Relationale Entwurfstheorie”

• Rauh/Stickel: Konzeptuelle Datenmodellierung (in German). Teubner, 1997.

• Kent: A Simple Guide to Five Normal Forms in Relational Database Theory. Communi-
cations of the ACM 26(2), 120–125, 1983.

• Thalheim: Dependencies in Relational Databases. Teubner, 1991, ISBN 3-8154-2020-2.

• Lipeck: Skript zur Vorlesung Datenbanksysteme (in German), Univ. Hannover, 1996.

• Ehrich/Neumann: Skript zur Vorlesung Datenbanksysteme I (in German), TU Braun-
schweig, 2000.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-2

Objectives

After completing this chapter, you should be able to:

• work with functional dependencies (FDs),

Define them, detect them in applications, decide whether an FD is
implied by other FDs, determine a key based on FDs.

• explain insert, update, and delete anomalies.

• explain BCNF, check a given relation for BCNF,

and transform a relation into BCNF.

• detect and correct violations to 4NF.

• detect normal form violations on the ER-level.

• decide about denormalization.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-3

Overview

1. Functional Dependencies (FDs)

'

&

$

%
2. Anomalies, FD-Based Normal Forms

3. Multivalued Dependencies and 4NF

4. Normal Forms and ER-Design

5. Denormalization

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-4

Introduction (1)

• Relational database design theory is based mainly

on a class of constraints called “Functional Depen-

dencies” (FDs). FDs are a generalization of keys.

• This theory defines when a relation is in a certain

normal form (e.g. Third Normal Form, 3NF) for a

given set of FDs.

• It is usually bad if a schema contains relations that

violate the conditions of a normal form.

However, there are exceptions and tradeoffs.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-5

Introduction (2)

• If a normal form is violated, data is stored redun-

dantly, and information about different concepts is

intermixed. E.g. consider the following table:

COURSES

CRN TITLE INAME PHONE

22268 DB Management Brass 9404

42232 Data Structures Brass 9404

31822 Client-Server Spring 9429

• The phone number of “Brass” is stored two times.

In general, the phone number of an instructor will

be stored once for every course he/she teaches.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-6

Introduction (3)

• Third Normal Form (3NF) is today considered part

of the general database education.

• Boyce-Codd Normal Form (BCNF) is a little bit

stronger, easier to define, and better matches our

intuition.

BCNF should really replace 3NF. The only problem is that in rare
circumstances, a relation cannot be transformed into BCNF with the
FDs preserved. However, every relation can be transformed into 3NF
with the FDs preserved.

• In short, BCNF means that all functional depen-

dencies are already enforced by keys.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-7

Introduction (4)

• Normalization algorithms can construct tables from

a set of attributes and a set of functional depen-

dencies.

So in theory, database design can be done by only collecting attributes
and FDs. No ER-design is needed.

• In practice, normalization is only used as an addi-

tional check.

E.g. one does the ER-design, translates the ER-schema into the re-
lational model, and check the resulting tables for BCNF.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-8

Introduction (5)

• When an Entity-Relationship design is done well,

the resulting tables will automatically be in BCNF

(even 4NF).

If the resulting tables are not in BCNF, one must go back to the
ER-design, and correct the normal form violation there.

• Awareness of normal forms can help to detect de-

sign errors already in the ER-design phase.

There is a normal form theory for the ER-model, too, but it is quite
complicated. It is easier to understand relational normal forms and
combine them with the ER-to-relational translation.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-9

Theory vs. Intuition

• Once one understood normal forms, the intuition

should be sufficient in 97% of the cases.
It will all seem very obvious. But in order to develop the intuition, one
needs the theory. Good students showed me non-normalized designs.

• But in the remaining difficult 3% of the cases, it

might be necessary to apply the formal definitions.
In order to convince other people, it is also better if one can argue
with generally accepted formal definitions.

• Even Codd needed three tries to get the normal

form definition right (2NF, 3NF, BCNF).
To be fair, 2NF and 3NF were defined in the same paper.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-10

First Normal Form (1)

• First Normal Form only requires that all table ent-

ries are atomic (not lists, sets, records, relations).

• Today, the relational model is already defined in

this way. All further normal forms assume that the

tables are in 1NF (First Normal Form).

• Some modern database management systems allow

structured attributes. Such systems are call NF2

systems (“Non First Normal Form”).

Structured attributes are also usually considered a requirement for an
object-relational DBMS.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-11

First Normal Form (2)

• Example of an NF2-relation (not 1NF):

COURSES

CRN TITLE TAUGHT_BY STUDENTS

FNAME LNAME

22332 DB Management Brass John Smith

Ann Miller

31864 Client-Server Spring Ann Miller

• 1NF doesn’t really belong in this chapter.

It has nothing to do with functional dependencies.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-12

First Normal Form (3)

• Some authors feel that 1NF is already violated if

there are string-valued attributes that have an inner

structure (i.e. which could be further decomposed).

• Simple example: Last name and first name are put

together in one attribute, separated by a comma.

This means that one will have to use string operations in some queries.

• Really bad example: The CRNs of all courses a

student is registered for are put into an attribute

of the students table (separated by spaces).

Some interesting queries will need real programming now.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-13

First Normal Form (4)

• Some practical DB designers argue that 1NF is al-

ready violated if there are repeated attributes like

DEGREE1, DEGREE2, DEGREE3 in in the instructors table.

• Normally, such attributes make queries and updates

more difficult, and should be avoided.

And is there any guarantee that there cannot be an instructor with
four degrees? It is better to have a separate degree table with one
row for each degree (together with the key of the instructor).

• However, formally, this is no violation of First Nor-

mal Form.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-14

Functional Dependencies (1)

• An example of a functional dependency (FD) is

INAME → PHONE.

• It means that whenever two rows agree in the in-

structor name column INAME, they must also have

the same value in the column PHONE:

COURSES

CRN TITLE INAME PHONE

22268 DB Management Brass 9404

42232 Data Structures Brass 9404

31822 Client-Server Spring 9429

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-15

Functional Dependencies (2)

• The reason for the validity of INAME → PHONE is that

the contact phone number for the course depends

only on the instructor, not on the other course data.

• The FD is read as: “INAME (functionally, uniquely)

determines PHONE”.

• One says also that INAME is a determinant for PHONE.

Saying that A is a determinant for B is slightly stronger than
the FD A → B, see below (A must be minimal and 6=B).

• A determinant is like a partial key: It uniquely de-

termines some attributes, but in general not all.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-16

Functional Dependencies (3)

• A key uniquely determines every attribute, i.e. the

FDs CRN→TITLE, CRN→INAME, CRN→PHONE hold, too.
There will never be two distinct rows with the same CRN, so the con-
dition is trivially satisfied.

• E.g. the FD “INAME→TITLE” is not satisfied. There

are rows with the same INAME, but different TITLE:

COURSES

CRN TITLE INAME PHONE

22268 DB Management Brass 9404

42232 Data Structures Brass 9404

31822 Client-Server Spring 9429

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-17

Functional Dependencies (4)

• In general, an FD has the form

A1, . . . , An → B1, . . . , Bm.

• Sequence and multiplicity of attributes in an FD

are unimportant, since both sides are formally sets

of attributes: {A1, . . . , An} → {B1, . . . , Bm}.

• In discussing FDs, the focus is on a single relati-

on R. All attributes Ai, Bi are from this relation.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-18

Functional Dependencies (5)

• The FD A1, . . . , An → B1, . . . , Bm holds for a re-

lation R in a database state I if and only if for all

tuples t, u ∈ I(R):

If t.A1 = u.A1 and . . . and t.An = u.An,

then t.B1 = u.B1 and . . . and t.Bm = u.Bm.

• I.e. A1, . . . , An → B1, . . . , Bm holds if there no two

rows contain the same values in all columns Ai, but

different values in one of the columns Bj.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-19

Functional Dependencies (6)

• An FD with m attributes on the right hand side

A1, . . . , An → B1, . . . , Bm

is equivalent to the m FDs:
A1, . . . , An → B1

...
A1, . . . , An → Bm.

• Thus, it suffices to consider FDs with a single co-

lumn on the right hand side.

However, sometimes it is a useful abbreviation to put multiple columns
on the right hand side.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-20

FDs are Constraints (1)

• For database design, only FDs are interesting that

must hold in all possible database states.

• I.e. FDs are constraints (like keys).

• E.g. in the example state for “COURSES”, also the

FD “TITLE → CRN” holds, because no two courses

have the same title.

• But probably this is not true in general, only in this

small example state.

It would be important for the design to find out whether this holds in
general, i.e. there can never be two sessions of the same course.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-21

FDs are Constraints (2)

• There are tools for analyzing example data for pos-

sible FDs, and then asking the designer whether

these FDs hold in general.

• If an FD (or any constraint) does not hold in the

example state, it certainly cannot hold in general.

• If one wants to use normal forms, one needs to

collect all FDs that hold in general. This is a design

task, it cannot be done automatically.

Actually, only a representative subset is needed (that implies the re-
maining ones, see below). Of course, such tools could help.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-22

FDs vs. Keys (1)

• FDs are a generalization of keys: A1, . . . , An is a

key of R(A1, . . . , An, B1, . . . , Bm) if and only if the

FD “A1, . . . , An → B1, . . . , Bm” holds.

Under the assumption that there are no duplicate rows. Two distinct
rows that are identical in every attribute would not violate the FD,
but they would violate the key. In theory, this cannot happen, because
relations are sets of tuples, and tuples are defined only by their attri-
bute values. In practice, SQL permits two identical rows in a table as
long as one did not define a key (therefore, always define a key).

• Given the FDs for a relation, one can compute a key

i.e. a set of attributes A1, . . . , An that functionally

determines the other attributes (see below).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-23

FDs vs. Keys (2)

• Conversely, FDs can be explained with keys. FDs

are keys for some columns, e.g. “INAME → PHONE”

means that INAME is a key of πINAME, PHONE(COURSES):

INAME PHONE

Brass 9404

Spring 9429

I.e. one removes all columns from the table that do not appear in
the FD and then eliminates duplicate rows. A1, . . . , An → B1, . . . , Bm is
satisfied in the original table if the projection result has no two rows
with the same Ai-values (these would have to differ in a Bj).

• So an FD describes a key for part of the attributes.

The goal of normalization is to make it a real key.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-24

FDs Describe Functions (1)

• A key means that a relation (a table) really des-

cribes a partial function (with values for the key

attributes as inputs and values for the other attri-

butes as outputs).

• In the example, another function is represented in

the table: It maps instructors’ names to phone num-

bers.

It is a partial function, because it is not defined for arbitrary strings,
but only for instructor names that appear in the table.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-25

FDs Describe Functions (2)

• Sometimes there are functions which can be com-

puted: E.g. if the date of birth and the age are

stored in the same table. Then of course the FD

“BIRTHDATE → AGE” holds.

If two persons have the same birthdate, they have the same age.

• But we actually know much more than what the

FD expresses: we know the exact formula.

• Therefore, normalization theory does not help in

this case. AGE is simply redundant.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-26

Example (1)

• The following table is used to store information

about books and their authors:

BOOKS

AUTHOR NO TITLE PUBLISHER ISBN

Elmasri 1 Fund. of DBS Addison-W. 0805317554

Navathe 2 Fund. of DBS Addison-W. 0805317554

Silberschatz 1 DBS Concepts Mc-Graw H. 0471365084

Korth 2 DBS Concepts Mc-Graw H. 0471365084

Sudarshan 3 DBS Concepts Mc-Graw H. 0471365084

A book can have multiple authors. There is one row for every author
of a book. “NO” is used to keep track of their sequence (it is not
necessarily alphabetic, e.g. Silberschatz/Korth/Sudarshan).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-27

Example (2)

• The ISBN uniquely identifies a single book. Thus

the following FD holds:

ISBN → TITLE, PUBLISHER

• Equivalently, one can use the two FDs:
ISBN → TITLE

ISBN → PUBLISHER

• Since a book can have several authors, the followi-

ng FD does not hold:

ISBN → AUTHOR [Not Satisfied]

In the same way, ISBN does not determine NO.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-28

Example (3)

• One author can write many books, thus the follo-

wing FD cannot be assumed, although it happens

to hold in the given example state:

AUTHOR → TITLE [Not in general true]

• It is possible that there are books with the same

title but different authors and different publishers.

E.g. there are several unrelated books called “Database Manage-
ment”. So TITLE determines none of the other attributes.

• Books can have the same author and title, but dif-

ferent ISBNs (paperback and hardcover edition).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-29

Example (4)

• At every position, there can be only one author:

ISBN, NO → AUTHOR.

• At first, it seems impossible that the same author

appears in two different positions in the author list

of the same book:

ISBN, AUTHOR → NO [Questionable]

This would be violated if there is a book from Smith

& Smith.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-30

Example (5)

• Only unquestionable conditions should be used as

constraints.

The table structure depends on the FDs. Therefore, if it should turn
out later that an FD is too restrictive, it will normally not suffice to
simply remove a constraint (e.g. a key) with an ALTER TABLE state-
ment. Instead, one has to create new tables, copy data, and change
application programs. If conversely, new FDs are discovered later, the
old tables can still be used, but they violate a normal form.

• One might also be tempted to assume this FD:

PUBLISHER, TITLE, NO → AUTHOR [Questionable]

It is probably unlikely, but if e.g. in a new edition the author sequence
changes, one is in trouble.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-31

Example (6)

• A set of FDs can be displayed as a “hypergraph”:

ISBN
#
"

! - TITLE

PUBLISHER

'

&

$

%
NO

'

&

$

%
?

AUTHOR
#
"

!

#
"

!

?

PUB URL
#
"

!

In a hypergraph the edges are between sets of nodes, not only between
two nodes as in a standard graph.

A publisher URL was added to make the example more interesting.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-32

Exercise (1)

• Consider a one-relation version of the homework

grades DB:

HOMEWORK_RESULTS

STUD_ID FIRST LAST EX_NO POINTS MAX_POINTS

100 Andrew Smith 1 9 10

101 Dave Jones 1 8 10

102 Maria Brown 1 10 10

101 Dave Jones 2 11 12

102 Maria Brown 2 10 12

• Which FDs should hold for this table (in general)?

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-33

Exercise (2)

• What does the FD “LAST → FIRST” mean?

If students have the same first name,
they must have the same last name.
There cannot be siblings or other students
with the same last name, different first name.
There cannot be different students with
the same name (first and last).

• Name one FD which holds in this state, but not in

general.

• Draw the hypergraph displaying the FDs.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-34

Implication of FDs (1)

• CRN→PHONE is nothing new when one knows already

CRN→INAME and INAME→PHONE.
Whenever A → B and B → C are satisfied, A → C automatically holds.

• PHONE→PHONE holds, but is not interesting.
FDs of the form A → A always hold (for every DB state).

• A set of FDs {α1 → β1, . . . ,αn → βn} implies an

FD α → β if and only if every DB state which satis-

fies the αi → βi for i = 1, . . . , n also satisfies α → β.
α and β stand here for sets of attributes/columns. Note that this
notion of implication is not specific to FDs, the same definition is
used for general constraints.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-35

Implication of FDs (2)

• One is normally not interested in all FDs which

hold, but only in a representative set that implies

all other FDs.

• Implied dependencies can be computed by applying

the Armstrong Axioms:

� If β ⊆ α, then α → β trivially holds (Reflexivity).

� If α → β, then α ∪ γ → β ∪ γ (Augmentation).

� If α → β and β → γ, then α → γ (Transitivity).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-36

Implication of FDs (3)

• However, a simpler way to check whether α → β

is implied by given FDs is to compute first the co-

ver α+ of α and then to check whether β ⊆ α+.

• The cover α+ of a set of attributes α is the set of

all attributes B that are uniquely determined by the

attributes α (with respect to given FDs).

α+ := {B | The given FDs imply α → B}.
The cover α+ depends on the given FDs, although the set of FDs is
not explicitly shown in the usual notation α+. If necessary, write α+

F .

• A set of FDs F implies α → β if and only if β ⊆ α+
F .

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-37

Implication of FDs (4)

• The cover is computed as follows:

Input: α (Set of attributes)
α1 → β1, . . . , αn → βn (Set of FDs)

Output: α+ (Set of attributes, Cover of α)

Method: x := α;
while x did change do

for each given FD αi → βi do
if αi ⊆ x then

x := x ∪ βi;
output x;

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-38

Implication of FDs (5)

• Consider the following FDs:
ISBN → TITLE, PUBLISHER

ISBN, NO → AUTHOR

PUBLISHER → PUB_URL

• Suppose we want to compute {ISBN}+.

• We start with x = {ISBN}.
x is the set of attributes for which we know that there can be only a
single value. We start with the assumption that for the given attributes
in α, i.e. ISBN, there is only one value. Then the cover α+ is the set
of attributes for which we can derive under this assumption that their
value is uniquely determined (using the given FDs).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-39

Implication of FDs (6)

• The first of the given FDs, namely

ISBN → TITLE, PUBLISHER

has a left hand side that is entirely contained in the

current set x (actually, it happens to be the same).

I.e. there is a unique value for these attributes. Then the FD means
that also for the attributes on the right hand side have a unique value.

• Therefore, we can extend x by the attributes on the

right hand side of this FD, i.e. TITLE, and PUBLISHER:

x = {ISBN, TITLE, PUBLISHER}.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-40

Implication of FDs (7)

• Now the third of the FDs, namely

PUBLISHER → PUB_URL

is applicable: Its left hand side is contained in x.

• Therefore, we can add the right hand side of this

FD to x and get

x = {ISBN, TITLE, PUBLISHER, PUB_URL}.

• The last FD, namely

ISBN, NO → AUTHOR

is still not applicable, because NO is missing in x.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-41

Implication of FDs (8)

• After checking again that there is no way to ex-

tend the set x any further with the given FDs, the

algorithm terminates and prints

{ISBN}+ = {ISBN, TITLE, PUBLISHER, PUB_URL}.

• From this, we can conclude that the given FDs

imply e.g. ISBN → PUB_URL.

• In the same way, one can compute e.g. the cover

of {ISBN, NO}. It is the entire set of attributes.

This means that {ISBN, NO} is a key of the relation, see next slide.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-42

How to Determine Keys (1)

• Given a set of FDs (and the set of all attributes A
of a relation), one can determine all possible keys

for that relation.
Again, one must assume that duplicate rows are excluded.

• K ⊆ A is a key if and only if K+ = A.

• Normally, one is only interested in minimal keys.
The superset of a key is again a key, e.g. if {ISBN, NO} uniquely identifies
all other attributes, this automatically holds also for {ISBN, NO, TITLE}.
Therefore, one usually requires in addition that every A ∈ K must be
necessary, i.e. (K − {A})+ 6= A. Most authors make the minimality
requirement part of the key definition. But then a key is not only a
constraint, it also says that stronger constraints do not hold.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-43

How to Determine Keys (2)

Algorithm to compute one Key:

(1) K := ∅; /* Key to be constructed */
(2) U := A; /* Attributes still to be checked */
(3) while U 6= ∅ do
(4) /* (K ∪ U)+ = A is guaranteed */
(5) choose A ∈ U;
(6) U := U − {A};
(7) if A 6∈ (K ∪ U)+ then
(8) /* A is necessary */
(9) K := K ∪ {A};

(10) U := U − (K+);
(11) print K;

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-44

How to Determine Keys (3)

Theorem (some properties of the attribute closure):

• If X ⊆ Y, then X+ ⊆ Y+.

• If A ∈ X+, then X+ = (X ∪ {A})+.

Corollary:

• If U2 = U1 −K+, then (U1 ∪ K)+ = (U2 ∪ K)+.

Remark:

• Let A 6∈ (K ∪ U) in line 7, and let K′ be any later

value of K. Because K′ ⊆ K∪U ∪{A}, it follows that

A 6∈ (K′ − {A})+. Thus, the key is minimal.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-45

How to Determine Keys (4)

• An attribute B directly depends on an attribute A

if there is an FD α → β with A ∈ α and B ∈ β.

• One can construct a graph with the attributes as

nodes and the direct dependencies as edges.

• The set of strongly connected components of this

graph can be topologically sorted with respect to

the edges between these components. Then one

can construct a key in a modular way by construc-

ting a key for a component when one has already

keys for all components on which it depends.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-46

How to Determine Keys (5)

Theorem:

• Let A be partitioned in A1 and A2 (i.e. A = A1∪A2

and A1 ∩ A2 = ∅) such that no attribute in A1

directly depends on an attribute in A2.

• If K is a key of A, then K ∩A1 is a key of A1.

Corollary/Remark:

• If an attribute appears on no right side of a func-

tional dependency, it is contained in every key.

• The above algorithm also works if one starts with

K initialized to a subset of a (minimal) key.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-47

How to Determine Keys (6)

• The problem of the above approach is that it com-

putes only one key, not all keys.

Of course, one could try all permutations when one has to choose an
attribute (actually, only within a strongly connected component), but
that seems prohibitively expensive.

• In general, there can be exponentially many keys.

• I am still searching for an algorithm that does not

need much more time than the number of keys it

computes. If you find one (e.g., in the literature),

please tell me.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-48

Exercise (1)

• The following relation is used for storing homework

results:

RESULTS

STUD_ID EX_NO POINTS MAX_POINTS

100 1 9 10

101 1 8 10

102 1 10 10

101 2 11 12

102 2 10 12

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-49

Exercise (2)

• It is known that these FDs hold:

STUD_ID, EX_NO → POINTS

EX_NO → MAX_POINTS

• Do these FDs imply the following FD?

STUD_ID, EX_NO → MAX_POINTS

• Does this FD imply “EX_NO → MAX_POINTS”?

So which of the two is the stronger restriction?

• Determine a key of the relation RESULTS.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-50

Determinants

• A1, . . . , An is called a determinant for a set of attri-

butes B1, . . . , Bm if and only if

� The FD A1, . . . , An → B1, . . . , Bm holds.

� The left hand side is minimal, i.e. whenever an

attribute Ai is removed from the left hand side

A1, . . . , Ai−1, Ai+1, . . . , An → B1, . . . , Bm

does not hold.

� Left and right hand side are distinct,

i.e. {A1, . . . , An} 6= {B1, . . . , Bm}.
Together with the minimality requirement this excludes trivial
FDs.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-51

Overview

1. Functional Dependencies (FDs)

2. Anomalies, FD-Based Normal Forms

'

&

$

%
3. Multivalued Dependencies and 4NF

4. Normal Forms and ER-Design

5. Denormalization

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-52

Problems (1)

• It is usually bad if a tables contains an FD that is

not implied by a key (e.g. INAME→PHONE).

• Among other problems, this leads to the redundant

storage of certain facts. E.g. in the example table,

the phone number of “Brass” is stored two times:

COURSES

CRN TITLE INAME PHONE

22268 DB Management Brass 9404

42232 Data Structures Brass 9404

31822 Client-Server Spring 9429

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-53

Problems (2)

• If a schema contains redundant data, a constraint

must be specified to ensure that the copies of the

information agree.

• In the example, this constraint is precisely the FD

“INAME→PHONE”.

• But FDs are not supported as one of the standard

constraints of the relational model.

• Therefore, one should try to avoid FDs and trans-

form them into key constraints. This is what nor-

malization does.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-54

Problems (3)

• Redundant data leads to the Update Anomalies:

When a single fact needs to be changed, e.g. the

phone number of “Brass”, multiple tuples must be

updated. This complicates application programs.

• If one forgets to change one of the tuples, the red-

undant copies get out of sync, and it is not clear

which is the correct information.

Application programs may break if the data does not satisfy the as-
sumptions of the programmer. E.g. querying the phone number of an
instructor should normally yield a unique value, so “SELECT INTO may
be used. This gives an error if the query returns more than one value.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-55

Problems (4)

• In the example, information about two different en-

tities (Course and Instructor) is stored together in

one table.

• This leads to insertion and deletion anomalies.

• Insertion Anomalies: The phone number of a new

faculty member cannot be inserted until it is known

what course he/she will teach.

Since CRN is a key, it cannot be filled with “null”.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-56

Problems (5)

• Deletion Anomalies: When the last course of a fa-

culty member is deleted, his/her phone number is

lost.

Even if null values were possible, it would be strange that all courses
by an instructor can be deleted except the last. Then the course data
must be replaced by null values instead. This complicates the logic of
application programs.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-57

Boyce-Codd Normal Form (1)

• A Relation is in Boyce-Codd Normal Form (BCNF)

if and only if all its FDs are already implied by the

key constraints.

• So for every FD “A1, . . . , An → B1, . . . , Bm” for R

one of the following conditions hold:

� The FD is trivial, i.e. {B1, . . . , Bm}⊆{A1, . . . , An}.

� The FD follows from a key, because {A1, . . . , An}
or some subset of it is already a key of R.

It can be any key, not necessarily the primary key.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-58

Boyce-Codd Normal Form (2)

• BCNF ⇐⇒ Every determinant is a candidate key.

• So if a relation is in BCNF, FD constraints are not

needed, only key constraints.

• The anomalies do not occur.

At least not because of FDs: Since every (non-trivial) FD has a key
on the left-hand side, and each key value can appear only once in
the table, no redundancies occur because of the FDs. Again because
every FD has a key on the left-hand side, there is no indication that
information about different entities was merged.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-59

Examples (1)

• COURSES(CRN, TITLE, INAME, PHONE) with the FDs

� CRN→TITLE,INAME,PHONE

� INAME→PHONE

is not in BCNF because the FD “INAME → PHONE”

is not implied by a key:

� “INAME” is not a key of the entire relation.

� The FD is not trivial.

• However, without the attribute PHONE (and its FD),

the relation COURSE(CRN, TITLE, INAME) is in BCNF:

� CRN → TITLE, INAME corresponds to the key.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-60

Examples (2)

• Suppose that each course meets only once per week

and that there are no cross-listed courses. Then

CLASS(CRN, TITLE, DAY, TIME, ROOM)

satisfies the following FDs (plus implied ones):

� CRN → TITLE, DAY, TIME, ROOM

� DAY, TIME, ROOM → CRN

• The keys are CRN and DAY, TIME, ROOM.

• Both FDs have a key on the left hand side, so the

relation is in BCNF.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-61

Examples (3)

• Consider the relation PRODUCT(NO, NAME, PRICE) with

the following functional dependencies:

(1) NO → NAME (3) PRICE, NAME → NAME

(2) NO → PRICE (4) NO, PRICE → NAME

• This relation is in BCNF:

� The first two FDs show that NO is a key. Thus,

they have a key on the left hand side.

� The third FD is trivial and can be ignored.

� The fourth FD has a superset of the key on the

left hand side, which is also no problem.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-62

Exercises

• Is RESULTS(STUD_ID, EX_NO, POINTS, MAX_POINTS)

with the following FDs in BCNF?
(1) STUD_ID, EX_NO → POINTS

(2) EX_NO → MAX_POINTS

• Is the relation

INVOICE(INV_NO, DATE, AMOUNT, CUST_NO, CUST_NAME)

with the following FDs in BCNF?

(1) INV_NO → DATE, AMOUNT, CUST_NO

(2) INV_NO, DATE → CUST_NAME

(3) CUST_NO → CUST_NAME

(4) DATE, AMOUNT → AMOUNT

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-63

Third Normal Form (1)

• Third Normal Form is a bit weaker than BCNF.

If a relation is in BCNF, it is automatically in 3NF.

However, the differences are small. For most practical applications,
the two can be considered as equivalent.

• BCNF is easy and clear: We want no non-trivial FDs

except those which are implied by a key constraint.

• In some rare circumstances, the “preservation of

FDs” (see below) is lost when a relation is trans-

formed into BCNF, whereas 3NF can always be

reached without this problem.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-64

Third Normal Form (2)

• A Relation R is in Third Normal Form (3NF) if and

only if every FD “A1, . . . , An → B” satisfies at

least one of the following conditions:

An FD A1, . . . , An → B1, . . . , Bm with multiple attributes on the right
hand side is treated as abbreviation for the FDs A1, . . . , An → Bi

(i = 1, . . . , m).

� The FD is trivial, i.e. B ∈ {A1, . . . , An}.
� The FD follows from a key, because {A1, . . . , An}

or some subset of it is already a key of R.

� B is a key attribute, i.e. element of a minimal

key of R.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-65

Third Normal Form (3)

• The only difference to BCNF is the additional third

possibility for showing that an FD does not violate

the normal form.

• An attribute is called a non-key attribute if it does

not appear in any minimal key.
Not necessarily the primary key, but any candidate key. The minimality
requirement is important here because otherwise the entire set of
attributes of a relation would always qualify as a key.

• 3NF means that every determinant of a non-key

attribute is a key.
Again, not necessarily the primary key, but any candidate key.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-66

Transitive Dependencies (1)

• BCNF and 3NF can also be defined via transitive

dependencies.

• A relation is in BCNF iff there are no attribute

sets α, β, γ such that

� α → β and β → γ are implied by the given FDs,

� β 6→ α (i.e. β → α is not implied),

� γ 6⊆ β.

• It suffices to consider sets γ that consist of a single

attribute C.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-67

Transitive Dependencies (2)

• The charactization of 3NF is again the same, ex-

cept that now γ must consist of non-key attributes.

Or alternatively, its single element C must be a non-key attribute.

• In the literature, transitive dependencies are often

mentioned in connection with 3NF. But they apply

equally well to BCNF.

The reason is probably that transitive dependencies motivate why
2NF is not enough, and most textbooks use the sequence (1NF),
2NF, 3NF, BCNF. It is quite obvious that a definition with transitive
dependencies is more complicated than the definition given above.
Note especially that here implied FDs must be taken into account.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-68

Second Normal Form (1)

• 2NF is only interesting for historical reasons. It is

too weak, e.g. the “COURSES” example actually sa-

tisfies 2NF.

• If a relation is in 3NF or BCNF, it is automatically

in 2NF.

• A relation is in Second Normal Form (2NF) if and

only if every non-key attribute depends on the com-

plete key.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-69

Second Normal Form (2)

• I.e. a relation is in 2NF if and only if the given FDs

do not imply an FD A1, . . . , An → B such that:

� A1, . . . , An is a strict subset of a minimal key, and

� B is not contained in any minimal key.

I.e. a non-key attribute.

• E.g., the homework results table is not in 2NF:

RESULTS(STUD_ID, EX_NO, POINTS, MAX_POINTS)

MAX_POINTS depends only on part of the key.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-70

Splitting Relations (1)

• When a table is not in BCNF, one can split it into

two tables (“decomposition”).

• E.g. COURSES(CRN, TITLE, INAME, PHONE) is split into

COURSES_NEW(CRN, TITLE, INAME)

INSTRUCTORS(INAME, PHONE)

• If the FD A1, . . . , An → B1, . . . , Bm violates BCNF,

one creates a new relation S(A1, . . . , An, B1, . . . , Bm)

and removes B1, . . . , Bm from the original relation.

In unusual cases (multiple violations), it might be necessary to repeat
the splitting step with one or both of the resulting relations. Then
you have to consider also implied FDs.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-71

Splitting Relations (2)

• It is important that this transformation is “loss-

less”, i.e. that the original relation can be recon-

structed by means of a join:

COURSES = COURSES_NEW ��@@ INSTRUCTORS.

• I.e. the original relation can be defined as a view:

CREATE VIEW COURSES(CRN, TITLE, INAME, PHONE)

AS

SELECT C.CRN, C.TITLE, C.INAME, I.PHONE

FROM COURSES_NEW C, INSTRUCTORS I

WHERE C.INAME = I.INAME

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-72

Splitting Relations (3)

Definition:

• Let a relation R(A1, . . . , Ak, B1, . . . , Bm, C1, . . . , Cn)

be decomposed (split) into relations

� R1(A1, . . . , Ak, B1, . . . , Bm)

� R2(A1, . . . , Ak, C1, . . . , Cn)

• The decomposition is lossless if and only if

R = πA1,...,Ak,B1,...,Bm(R) ��@@ πA1,...,Ak,C1,...,Cn(R)

for all valid database states.
I.e. for all states that satisfy the constraints, which means in normal
form theory usually the given functional dependencies. But later, also
other types of constraints are studied, e.g. multivalued dependencies.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-73

Splitting Relations (4)

Theorem (Decomposition Theorem):

• Consider again the decomposition of a relation

R(A1, . . . , Ak, B1, . . . , Bm, C1, . . . , Cn) into

� R1(A1, . . . , Ak, B1, . . . , Bm)

� R2(A1, . . . , Ak, C1, . . . , Cn)

• If the intersection of the attributes of the resulting

relations, i.e. A1, . . . , Ak, is key in at least one of

them, the decomposition is lossless.

Note that is not an “if and only if”-condition. The decomposition
might be lossless even wehn the condition is not satisfied.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-74

Splitting Relations (5)

• In the example, the intersection of the attributes

of the result of the decomposition is:

{CRN, TITLE, INAME} ∩ {INAME, PHONE} = {INAME}.

• Since INAME is key in INSTRUCTOR(INAME, PHONE), the

decomposition is lossless.

• The above method for transforming relations into

BCNF does only splits that satisfy this condition.

• It is always possible to transform a relation into

BCNF by lossless splitting (if necessary repeated).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-75

Splitting Relations (6)

• Not every lossless split is reasonable:

STUDENTS

SSN FIRST_NAME LAST_NAME

111-22-3333 John Smith

123-45-6789 Maria Brown

• Splitting this into STUD_FIRST(SSN,FIRST_NAME) and

STUD_LAST(SSN,LAST_NAME) is lossless, but

� is not necessary to enforce a normal form and

� only requires costly joins in later queries.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-76

Splitting Relations (7)

• Losslessness means that the resulting schema can

represent all states which were possible before.

We can translate states from the old schema into the new schema and
back (if the FD was satisfied). The new schema supports all queries
which the old schema supported: We can define the old relations as
views.

• However, the new schema allows states which do

not correspond to a state in the old schema: Now

instructors without courses can be stored.

• Thus, the two schemas are not equivalent: The new

one is more general.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-77

Splitting Relations (8)

• If instructors without courses are possible in the

real world, the decomposition removes a fault in

the old schema (insertion and deletion anomaly).

• If they are not,

� a new constraint is needed that is not necessarily

easier to enforce than the FD, but at least

None of the two can be specified declaratively in the CREATE TABLE

statement. Thus, nothing is gained or lost.

� the redundancy is avoided (update anomaly).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-78

Splitting Relations (9)

• It should also be remarked that although compu-

ted columns (such as AGE from BIRTHDATE) lead to

violations of BCNF, splitting the relation is not the

right solution.

The split would give a table R(BIRTHDATE, AGE) which does not have
to be stored because it can be computed.

• The right solution is to eliminate AGE from the table,

but to define a view which contains all columns of

the table plus the computed column AGE.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-79

Preservation of FDs (1)

• Another property, which a good decomposition of

a relation should satisfy, is the preservation of FDs.

• The problem is that an FD can refer only to attri-

butes of a single relation.

Of course, you could still have a general constraint which states that
the join of the two tables must satisfy an FD.

• When you split a relation, there might be FDs that

can no longer be expressed.

Of course, you can try to find implied FDs such that each FD refers
only to the attributes of one of the resulting relations, but together
imply the global FD. But even this is not always possible.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-80

Preservation of FDs (2)

• A classical example is

ADDRESSES(STREET_ADR, CITY, STATE, ZIP)

with the FDs:
(1) STREET_ADR, CITY, STATE → ZIP

(2) ZIP → STATE

• The second FD violates BCNF and would force us

to split the relation into

� ADDRESSES1(STREET_ADR, CITY, ZIP)

� ADDRESSES2(ZIP, STATE)

• But now the first FD can no longer be expressed.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-81

Preservation of FDs (3)

• Probably most database designers would not split

the table (it is actually in 3NF, but violates BCNF).

• Textbooks say that it is more important to preserve

FDs than to achieve BCNF.

• This is probably not the real reason: Few DB desi-

gners would actually write programs/triggers which

check the FD.

• It does not often happen that there are two custo-

mers with exactly the same address.
Only then the first FD could be potentially violated.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-82

Preservation of FDs (4)

• If there are many addresses with the same ZIP co-

de, there will be redundancies. If you split, you need

expensive joins.

• Here the dependencies between ZIP code and other

parts of the address are not considered as an inde-

pendent fact, they are only interesting in the con-

text of a given address (so insertion and deletion

anomalies do not arise).

Modifications are also relatively uncommon.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-83

Preservation of FDs (5)

• If this were a DB for a mailing company, a table of

ZIP codes might be of its own interest. Then the

split should be done.

• The following table (with added customer number)

is not even in 3NF, yet the same considerations

apply:

CUSTOMER(NO, NAME, STREET_ADR, CITY, STATE, ZIP)

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-84

Algorithm for 3NF (1)

• The following algorithm (“Synthesis Algorithm”)

produces a lossless decomposistion of a given rela-

tion into 3NF relations that preserve the FDs.

• First, one determines a minimal (canonical) set of

FDs that is equivalent to the given FDs as follows:

� Replace every FD α → B1, . . . , Bm by the cor-

responding FDs α → Bi (i = 1, . . . , m). Let the

result be F.

� Continued on next slide . . .

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-85

Algorithm for 3NF (2)

• Computation of canonical set of FDs, continued:

� Minimize the left hand side of every FD:

For each FD A1, . . . , An → B and each i = 1, . . . , n compute the co-
ver {A1, . . . , Ai−1, Ai+1, . . . , An}+ (with respect to F). If the result
contains B, the attribute Ai is not necessary to uniquely determi-
ne B. F already implies A1, . . . , Ai−1, Ai+1, . . . , An → B. Thus, set
F := (F − {A1, . . . , An → B}) ∪ {A1, . . . , Ai−1, Ai+1, . . . , An → B}.

� Remove implied FDs.

For each FD α → B in F, compute the cover α+ with respect to
F ′ := F−{α → B}. If the cover contains B, remove the FD α → B,
i.e. continue with F := F ′ (α → B is implied by the other FDs).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-86

Algorithm for 3NF (3)

• Synthesis Algorithm:

� Compute the above minimal set of FDs F.

� For each left hand side α of an FD in F, create a

relation with attributes A := α∪{B | α → B ∈ F}.
Assign to this relation all FDs α′ → B′ ∈ F with α′ ∪ {B′} ⊆ A.

� If none of the constructed relations contains a

key of the given relation, add one relation with

all attributes of a key.

� If one of the constructed relations has a set of

attributes that is a subset of another relation,

remove the relation with the subset of attributes.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-87

Summary

• Tables should not contain FDs other than those im-

plied by the keys (i.e. all tables should be in BCNF).

Such FDs indicate a redundancy created by combining pieces of in-
formation which should be stored separately.

• You can transform tables into BCNF by splitting

them.

• Sometimes there is no really good solution, and not

doing the split (which would give BCNF) might be

the better of two bad things. But you should know

what you are doing.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-88

Overview

1. Functional Dependencies (FDs)

2. Anomalies, FD-Based Normal Forms

3. Multivalued Dependencies and 4NF

'

&

$

%
4. Normal Forms and ER-Design

5. Denormalization

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-89

Introduction (1)

• The development of BCNF has been guided by a

particular type of constraints: FDs.

• The goal of 3NF/BCNF is to

� eliminate the redundant storage of data that fol-

lows from these constraints, and to

� transform the tables such that the constraints

are automatically enforced by means of keys.

• However, there are other types of constraints which

are also useful for determining the table structure.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-90

Introduction (2)

• The condition in the decomposition theorem is only

� sufficient (it guarantees losslessness),

� but not necessary (a decomposition may be loss-

less even if the condition is not satisfied).

• Multivalued dependencies are constraints which gi-

ve a necessary and sufficient condition for lossless

decomposition.

• They lead to Fourth Normal Form (4NF).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-91

Introduction (3)

• Intuitively, 4NF means: Whenever it is possible to

split a table (i.e. the decomposition is lossless), and

this is not superfluous (see, e.g., slide 7-75), do it.

• Still shorter: 4NF means “Do not store unrelated

information in the same relation.”

• Probably, in practice it is very seldom that a relation

violates 4NF, but not BCNF.

However, I have seen students merging two binary relationships to one
ternary relationship, which gives such a case. See below.

• But theoretically, it is a nice roundoff.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-92

Multivalued Dependencies (1)

• Suppose that every employee knows a set of pro-

gramming languages and a set of DBMS and that

these are independent facts about the employees:

EMP_KNOWLEDGE

ENAME PROG_LANG DBMS

John Smith C Oracle

John Smith C DB2

John Smith C++ Oracle

John Smith C++ DB2

Maria Brown Prolog Access

Maria Brown Java Access

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-93

Multivalued Dependencies (2)

• If the sets of known DBMS and known program-

ming languages are independent facts, the table

contains redundant data, and must be split:

EMP_LANG

ENAME PROG_LANG

John Smith C

John Smith C++

Maria Brown Prolog

Maria Brown Java

EMP_DBMS

ENAME DBMS

John Smith Oracle

John Smith DB2

Maria Brown Access

• The original table is in BCNF (no non-trivial FDs).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-94

Multivalued Dependencies (3)

• The table can only be decomposed if the knowled-

ge of DBMS and programming languages is indeed

independent.

• If a row means that the employee knows the in-

terface between the language and DBMS, the split

would lead to a loss of information.

Then it would be only by chance that e.g. “John Smith” knows all four
possible interfaces. If e.g. he would know only the interface between
C and Oracle, and the interface between C++ and DB2, the contents
of the two tables would be the same. One would not know exactly
which interface the employee knows.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-95

Multivalued Dependencies (4)

• The multivalued dependency

ENAME −→→ PROG_LANG

means that the set of values for PROG_LANG that is

associated with every ENAME is independent of the

other columns.

Hidden in the table is a mapping from “ENAME” to sets of “PROG_LANG”.

• Formally, “ENAME −→→ PROG_LANG” holds if whenever

two tuples agree in the value for ENAME, one can

exchange their values for PROG_LANG and get two

other tuples in the table.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-96

Multivalued Dependencies (5)

• E.g. from the two table rows

ENAME PROG_LANG DBMS

John Smith C Oracle

John Smith C++ DB2

and the multivalued dependency, one can conclude

that the table must contain also these two rows:

ENAME PROG_LANG DBMS

John Smith C++ Oracle

John Smith C DB2

• This expresses the independence of PROG_LANG for a

given ENAME from the rest of the table.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-97

Multivalued Dependencies (6)

• A multivalued dependency (MVD)

A1, . . . , An −→→ B1, . . . , Bm.

is satisfied in a DB state I if and only if for all

tuples t and u that have the same values for the

columns A1, . . . , An (i.e. t.Ai = u.Ai for i = 1, . . . , n),

there are two further tuples t′ and u′ such that

� t′ has the same values as t for all columns except

that t′.Bj = u.Bj for j = 1, . . . , m, and

� u′ agrees with u except that u′.Bj = t.Bj

(i.e. the values for the Bj are exchanged).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-98

Multivalued Dependencies (7)

• Multivalued dependencies come always in pairs:

If “ENAME −→→ PROG_LANG” holds,

then “ENAME −→→ DBMS” is automatically satisfied.

For R(A1, . . . , Ak, B1, . . . , Bn, C1, . . . , Cm) the multivalued dependency
A1, . . . , Ak −→→ B1, . . . , Bn is equivalent to A1, . . . , Ak −→→ C1, . . . , Cm.
Exchanging the Bj values in the two tuples is the same as exchan-
ging the values for all other columns (the Ai values are identical, so
exchanging them has no effect).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-99

Multivalued Dependencies (8)

• An MVD A1, . . . , An −→→ B1, . . . , Bm for a relation R

is trivial if and only if

� {B1, . . . , Bm} ⊆ {A1, . . . , An} or

The precondition for exchanging the Bj-values in the two tuples
is that they agree in the Ai-values. But if every Bj is also an Ai,
only equal values are exchanged, which has no effect.

� {A1, . . . , An} ∪ {B1, . . . , Bm} are all columns of R.

In this case, exchanging the Bj values of tuples t and u gives the
tuples u and t, and no new tuples.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-100

Multivalued Dependencies (9)

• If the FD A1, . . . , An → B1, . . . , Bm holds, the corre-

sponding MVD A1, . . . , An −→→ B1, . . . , Bm is trivially

satisfied.
The functional dependency means that if t and u have the same values
for the Ai, then they also have the same values for the Bj. But then
exchanging their Bj values changes nothing.

• As an FD can be implied (i.e. automatically true)

given a set of FDs, FDs and MVDs can also follow

from a set of given FDs and MVDs.
A constraint ϕ is implied by constraints {ϕ1, . . . , ϕn} if and only if every
database state which satisfies {ϕ1, . . . , ϕn} also satisfies ϕ.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-101

FD/MVD Deduction Rules

• The following deduction rules permit to derive all

implied FDs/MVDs (they are sound and complete):

� The three Armstrong axioms for FDs.

� If α −→→ β then α −→→ γ, where γ are all remaining

columns of the relation.

� If α1 −→→ β1 and α2 ⊇ β2, then α1∪α2 −→→ β1∪β2.

� If α −→→ β and β −→→ γ, then α −→→ (γ − β).

� If α → β, then α −→→ β.

� If α −→→ β, β′ ⊆ β, and there is γ with γ ∩ β = ∅
and γ → β′, then α → β′.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-102

Fourth Normal Form (1)

• A relation is in Fourth Normal Form (4NF) with

respect to given FDs and MVDs if and only if no

MVD A1, . . . , An −→→ B1, . . . , Bm is implied which is

� not trivial and

� not directly implied by a key, i.e. A1, . . . , An does

not functionally determine all other attributes.

• The definition of 4NF is very similar to the BCNF

definition: It only looks at implied MVDs instead of

given FDs.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-103

Fourth Normal Form (2)

• Since every FD is also an MVD, 4NF is stronger

than BCNF (i.e. if a relation is in 4NF, it is auto-

matically in BCNF).

If might first seem that an FD violating BCNF could lead to a tri-
vial MVD: The second case for trivial MVDs has no counterpart for
FDs. But if {A1, . . . , An} ∪ {B1, . . . , Bm} are all columns of R, the FD
corresponds to a key and cannot violate BCNF.

• EMP_KNOWLEDGE(ENAME, PROG_LANG, DBMS) is an exam-

ple of a relation that is in BCNF, but not in 4NF.

It has no non-trivial FDs (the key consists of all attributes).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-104

Fourth Normal Form (3)

• But if there are other columns besides the key of

the entity (ENAME) and a multivalued attribute, even

2NF is violated:

EMPLOYEES

ENAME PROG_LANG SALARY

John Smith C 58000

John Smith C++ 58000

Maria Brown Prolog 62000

Maria Brown Java 62000

• It is not very common that 4NF is violated, but

BCNF is not.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-105

Fourth Normal Form (4)

• Splitting a relation

R(A1, . . . , An, B1, . . . , Bm, C1, . . . , Ck)

into relations
R1(A1, . . . , An, B1, . . . , Bm) and

R2(A1, . . . , An, C1, . . . , Ck)

is lossless, i.e.

R = πA1,...,An,B1,...,Bm(R) ��@@ πA1,...,An,C1,...,Ck
(R)

if and only if A1, . . . , An −→→ B1, . . . , Bm.

Or equivalently A1, . . . , An −→→ C1, . . . , Ck.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-106

Fourth Normal Form (5)

• Any relation can be transformed into 4NF by split-

ting it as shown above.

It might be necessary to split it multiple times.

• So the essence of 4NF is:

� If a decomposition into two relations is lossless

(i.e. the original relation can always be recon-

structed by a join),

� and the two resulting relations do not have iden-

tical keys (then the split would be superfluous),

� then this decomposition must be done.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-107

Fifth Normal Form (1)

• Fifth normal form is very seldom used in practice.

Many textbooks actually do not discuss it at all (more than half of tho-
se I checked). 5NF is also called projection-join normal form (PJNF).

• 4NF handles all cases where a decomposition into

two tables is needed.

• However, it is theoretically possible that only a de-

composition into three or more tables is lossless,

but no decomposition in two tables is lossless.

This means that the required decomposition cannot be reached by
repeated splitting into two tables. Instead, one needs additional tables
with overlapping columns which only serve as a filter in the join.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-108

Fifth Normal Form (2)

• E.g. consider

COURSE_OFFER(TITLE, TERM, INSTRUCTOR)

• Normally, information is lost by the split into

� OFFERED(TITLE, TERM),

� EMPLOYED(INSTRUCTOR, TERM),

� TEACHES(TITLE, INSTRUCTOR).

• But the split would be lossless if following cons-

traint were true: “If a course C is offered in a

term T , and instructor I ever taught C and tea-

ches some course in T , then I teaches C in T .”

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-109

Fifth Normal Form (3)

• A join dependency (JD) states that a split into n

relations is lossless:

R = πAi1,1
,...,Ai1,k1

(R) ��@@ · · · ��@@ πAin,1
,...,Ain,kn

(R).

Of course, every attribute of R must appear in at least one of the
projections. Then “⊆” is always satisfied, only “⊇” is interesting. It
states that if there are n tuples t1, . . . , tn in R that agree in the values
for the attributes listed in more than one projection, then one can
construct a tuple from them that must also appear in R.

• An MVD A1, . . . , An −→→ B1, . . . , Bm corresponds to

R = πA1,...,An,B1,...,Bm(R) ��@@ πA1,...,An,C1,...,Ck
(R).

where C1, . . . , Ck are the remaining columns of R.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-110

Fifth Normal Form (4)

• A relation R is in Fifth Normal Form (5NF) if and

only if every join dependency that holds for it is

already implied by a key for R.

Note that trivial constraints are always implied, so they do not have
to be treated specially.

• Of course, 5NF implies 4NF, BCNF, 3NF, 2NF.

• If a relation is in 3NF, and all its keys consist of a

single column each, it is automatically in 5NF.

So in this case, it is not necessary to consider multivalued dependen-
cies and join dependencies.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-111

Domain-Key Normal Form (1)

• Consider a table for possible answers in multiple

choice tests:

ANSWERS

QUESTION ANSWER TEXT CORRECT

1 A ... Y

1 B ... N

1 C ... N

2 A ... N

2 B ... Y

2 C ... N

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-112

Domain-Key Normal Form (2)

• The following is an example for a constraint that

is not an FD, MVD, or JD:

Each question can have only one correct answer.

• Domain-Key Normal Form (DKNF) requires that

every constraint on the relation is implied by the

domains and keys defined for that relation.

• It is of course nice if a relation is in DKNF: One

only has to enforce domains and keys.

• Many relations cannot be transformed into DKNF.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-113

Domain-Key Normal Form (3)

• Here, a horizontal decomposition might be useful:

CORRECT_ANSWERS

QUESTION ANSWER TEXT

1 A ...

2 B ...

WRONG_ANSWERS

QUESTION ANSWER TEXT

1 B ...

1 C ...

2 A ...

2 C ...

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-114

Domain-Key Normal Form (4)

• Now the key of CORRECT_ANSWERS enforces that every

question has only one correct answer.

CORRECT_ANSWERS may even be merged with a table QUESTIONS that con-
tains the text of each question. In this way, it is certain that every
question has exactly one correct answer.

• Each relation (considered in isolation) is in DKNF.

• However, a new inter-relational constraint must be

enforced: The same question with the same answer

may not appear in both relations.

• Exercise: Discuss which schema is better.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-115

Domain-Key Normal Form (5)

• If every domain contains at least two values, DKNF

implies 4NF.

It also implies 5NF if every domain contains at least as many values
as there are components in a join dependency.

• One important goal of normalization is indeed to

replace general constraints as far as possible by

standard constraints.

Domain and key constraints are very simple constraints, supported
in (nearly) every DBMS. Today, also CHECK-constraints defined on
entire tuples could be used (domain constraints are basically CHECK-
constraints for single attributes).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-116

Domain-Key Normal Form (6)

Summary:

• If one has only FDs, BCNF is probably the best one

can do. The next step was to look at more general

constraints.

• 5NF is the end of vertical decomposition, i.e. using

projections for normalization.

• But, as the example showed, also horizontal decom-

position or other schema transformations should be

considered.

• DKNF is the ultimate normal form.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-117

Overview

1. Functional Dependencies (FDs)

2. Anomalies, FD-Based Normal Forms

3. Multivalued Dependencies and 4NF

4. Normal Forms and ER-Design

'

&

$

%
5. Denormalization

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-118

Introduction (1)

• If a good ER-schema is transformed into the re-

lational model, the resulting tables will satisfy all

normal forms.
Otherwise it was not a good ER-schema . . .

• If normal form violations are detected in the relatio-

nal schema, one must go back to the ER-schema

and correct them there.
Unless one has done special tricks during the logical design, a normal
form violation always means that the same problem occurs in the ER-
schema. It is important that ER-schema and relational schema remain
in sync, otherwise the ER-schema loses its value as a documentation
for the actually implemented database.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-119

Introduction (2)

• Of course, it is better to detect the errors directly

in the ER-schema.
The earlier one detects an error, the cheaper it is to correct it.

• There is no independent normalization theory for

ER-schemas.
It is possible to define normal forms like BCNF for ER-schemas, but
this is significantly more complicated than for relational schemas, and
does not really give something new (as far as I know).

• The definition is simply: An entity or a relationship

is in BCNF if and only if the corresponding table is

in BCNF.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-120

Examples (1)

• Consider again the first example of this chapter:

Course
�

�
�

�

�
�

�
�CRN

��
��

�
�

�
�Title

HH
HH

�
�

�
�IName@

@
@

@
�
�

�
�Phone

• Here the functional dependency “IName → Phone”

leads to the violation of BCNF discussed above.

• Also in the ER-model, FDs between attributes of

an entity should be implied by a key constraint.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-121

Examples (2)

• In the ER-model the solution is the same as in the

relational model: We have to split the construct.

• In this case, we discover that “Instructor” is an

independent entity:

Instructor

�
�

�
�IName

�
�
� �
�

�
�Phone

@
@

@

(0,∗)
���

����

HHH
HHHH

teaches ���
����

HHH
HHHH

(1,1)
Course

�
�

�
�CRN

�
�
� �
�

�
�Title

@
@

@

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-122

Examples (3)

• Functional dependencies between attributes of a

relationship always violate BCNF:

Customer

�
�

�
�CustNo

(0,∗)
���

���

H
HHH

HH

orders �
���

��

HHH
HHH

(0,∗)
�

�
���

�
�
�OrderNo

@
@

@@�
�

�
�Date

Product

�
�

�
�ProdNo

• The FD “OrderNo → Date” violates BCNF.

The key of the table corresponding to the relationship “orders” con-
sists of “CustNo” and “ProdNo”.

• This shows that “Order” is an independent entity.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-123

Examples (4)

• Violations of BCNF might also be due to the wrong

placement of an attribute:

Student

�
�

�
�Stud ID

��
����

H
HHH

HH

takes �
���

��

HH
HHHH

�
�

�
�Email

Course

�
�

�
�CRN

• The relationship is translated into

Takes(Stud ID, CRN, Email).

• Then the FD “Stud ID → Email” violates BCNF.

• Obviously “Email” is an attribute of “Student”.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-124

Examples (5)

• If an attribute of a ternary relationship depends only

on two of the entities, this violates BCNF (2NF):

Instructor ���
����

HHH
HHHH

taught ���
����

HHH
HHHH

@
@
�
�

�
�Room

Course

Term

• If every course is taught only once per term, the

“Room” depends only on “Course” and “Term”.

Solution hint: Create “Course Offer” as association entity between
“Course” and “Term”.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-125

Examples (6)

• If independent relationships are combined, 4NF is

violated:

Employee ��
���

��

H
HHH

HHH

knows �
���

���

HH
HHH

HH

Prog Lang

DBMS

• If the knowledge of programming languages and

DBMSs is independent, one must use two binary

relationships instead.
One between “Employee” and “Prog Lang”, and one between “Em-
ployee” and “DBMS”.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-126

Summary (1)

• Many errors in ER-design manifest themselves later

as violations of relational normal forms.

• So it is a good test to think about FDs on the

created tables and check for normal forms.

One should check whether the tables make sense and not blindly
trust the automatic generation from an ER-schema. Of course, the
automatic translation preserves equivalence. However, the ER-schema
might contain errors which have been overlooked earlier.

• Think about FDs already when developing the ER-

schema, and not only after the translation!

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-127

Summary (2)

• Normalization is about:

� Avoiding redundancy.

� Storing separate facts separately.

� Transforming general integrity constraints into

constraints that are supported by the DBMS.

• Relational normalization theory is based mainly on

FDs, but there are other types of constraints.
The ER-model is also richer in constructs and built-in constraints.

• Instead of simply applying relational normal forms

to ER-schemas, follow the above three goals!

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-128

Overview

1. Functional Dependencies (FDs)

2. Anomalies, FD-Based Normal Forms

3. Multivalued Dependencies and 4NF

4. Normal Forms and ER-Design

5. Denormalization

'

&

$

%

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-129

Denormalization (1)

• Denormalization is the process of adding redundant

columns and tables to the database in order to im-

prove performance.

• E.g. if the phone number of the instructor of a

course is often needed, the column PHONE can be

added to the table COURSES.

• Then the join between COURSES and INSTRUCTORS can

often be avoided, because the required instructor

information (PHONE) is stored redundantly in the sa-

me row as the course information.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-130

Denormalization (2)

• Since there is a separate table INSTRUCTORS (which

contains the phone number, too), insertion and de-

letion anomalies are avoided.

• But there will be update anomalies (changing a

single phone number requires updating many rows).

• Thus, one must pay for the performance gain with

a more complicated application logic, the need for

triggers, and some remaining insecurity (will all co-

pies always agree?).

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-131

Denormalization (3)

• If the tables COURSES and INSTRUCTORS are small, it

is certainly a bad decision to violate BCNF here,

since performance is anyway no problem.

• Koletzke/Dorsey state that if your tables have less

than 100000 rows, you need no denormalization.

Of course, it also depends on the number of queries per second.

• Too much denormalization can make a database

nearly unmodifiable.

The requirements often change, so one must anticipate that the DB
application system will need changes.

Stefan Brass: Datenbanken II A Universität Halle, 2007

7. Relational Normal Forms 7-132

Denormalization (4)

• In the above example, denormalization helped to

avoid joins.

• Denormalization also includes creating tables or co-

lumns which hold aggregated values.
In this case, formally no normal form is violated, but the information
is of course redundant.

• E.g. suppose one stores invoices to a customer, and

payments from a customer. One could e.g. store in

the CUSTOMERS table the current balance.
This is redundant, because it can be computed as the sum of all
payments minus the sum of all invoices.

Stefan Brass: Datenbanken II A Universität Halle, 2007

