
Prof. Dr. Stefan Brass January 20, 2017
Institut für Informatik
MLU Halle-Wittenberg

Databases IIB: DBMS-Implementation

— Exercise Sheet 12 —

As requested by the students, the repetition questions a) will not be discussed in class
unless somebody asks for the solution to a specific question. So please have a look at them
before the meeting and decide which questions do you wish to be discussed. Of course,
you can also ask any question of your own on the topics of the course.

You only have to submit solutions to the homework exercises, i.e. Part c) to h). The
official deadline for Homework 12A is January 24, 12:00 (before the problem/lab session).
For Homework 12B, it is January 31.

Repetition Questions

a) What would you answer to the following questions in an oral exam? The following are
questions about special data structures for relations and indexes:

• The standard storage structure for a table is a heap file. Name at least one other
data structure that can be used in Oracle to store table rows.

• What is an index-organized table? Name advantages and disadvantages compa-
red with a heap file and a normal index. What is the problem if one wants to
create additional indexes for an index-organized table? Explain a solution to this
problem.

• What is the purpose of a cluster in Oracle? What is the main advantage? What
is the price one has to pay for that?

• What is a hash cluster? How can one find a row with a given key value in one
block access?

• What is a bitmap index? In which situations should one consider bitmap indexes?

• What is an advantage of a partitioned table?

The following questions are about the execution of queries (query evaluation plans):

• A query evaluation plan (or “access plan”) is relatively similar to an expression
(operator tree) of relational algebra. What are the main differences?

• Name some operations that appear in Oracle QEPs.

Databases IIB: DBMS-Implementation — Exercise Sheet 12 2

• How can one view the query evaluation plan the the Oracle optimizer has chosen
for a query?

• How can one check whether Oracle really uses an index? What are the options
if Oracle does not use an index that one has created to speed up a particular
query?

• Why is it good to avoid the materialization of temporary results during the
evaluation of a QEP, i.e. the storage of the result relation of a subtree of the
QEP?

• For which operation is it unavoidable to materialize temporary results?

• Are there situations in which the storage of intermediate results might be ad-
vantageous? Discuss advantages and disadvantages of pipelined/lazy evaluation.

• Explain the interface of nodes in the QEP operator tree if one wants to use
pipelined/lazy evaluation.

• Explain the parameters sort_area_size and sort_area_retained_size of the
Oracle server. Why does it make sense to choose sort_area_retained_size

smaller than sort_area_size if memory is scarce?

• Where does Oracle store temporary data for sorting if memory is not sufficient?

In-Class Exercises

b) We will discuss the exam from 2015/16, which you find here:

[http://www.informatik.uni-halle.de/˜brass/dbi17/exam15.pdf]

http://www.informatik.uni-halle.de/~brass/dbi17/exam15.pdf

Databases IIB: DBMS-Implementation — Exercise Sheet 12 3

Homework 12A (Deadline: January 24)

Consider a database with the following tables:

• EMP(EMPNO, ENAME, SAL, DEPTNO→DEPT, MGR◦→EMP)

• DEPT(DEPTNO, DNAME, LOC)

This is a simplified version of the well-known example database from Oracle. Suppose that
the employee table EMP contains 10000 rows, the department table DEPT contains 25 rows,
and each department has approximately the same number of employees. A manager (MGR)
supervises on average 10 subordinates. Furthermore assume that 10 rows are stored per
block in both tables. The following query is given:

SELECT EMPNO, SAL, DNAME

FROM EMP E, DEPT D

WHERE E.DEPTNO = D.DEPTNO

AND E.MGR = 7839

ORDER BY SAL

Describe how the query can be evaluated if one has the following indexes:

c) None.

d) An index I1 on EMP(EMPNO) and an index I2 on DEPT(DEPTNO) (both are UNIQUE).

e) Like d), but in addition a third index I3 on EMP(MGR).

f) If you could select an index (including an index on a combination of attributes), which
would you choose? The goal is that the above query is executed as fast as possible.

Homework 12B (Deadline: January 31)

This exercise continues the implementation project.

g) Please extend the buffer manager such that it actually reads blocks from a data file
and writes them back. First define a class file_c in file.h and file.cpp. As already
mentioned in the definition of buf_c (Homework 8B), files are identified by small non-
negative numbers (type int). For instance, it would be possible that another module
(which you do not have to write) reads a “control file” as in Oracle that contains the
names and IDs of all files that constitute the database. When ROWIDs/TIDs refer to
tuples in other files (e.g. from an index file to the file of the corresponding relation),
then file IDs must remain stable.

An advantage of this method is that you can define system-dependent details in
file.cpp, while the interface file.h does not necessarily need to include definiti-
ons of streams or other methods to access files. If you want to structure your program

Databases IIB: DBMS-Implementation — Exercise Sheet 12 4

in this way, file.cpp would contain the definition of an auxiliary class that does the
“real work”, and contains an attribute for the stream. file pointer, file descriptor or
file handle. One would then manage a small array of objects of this class which maps
the IDs to the objects with the real file data.

The class file_c should offer the following static members in its public interface
(basically it translates these static function calls with a file ID to normal method calls
of the auxiliary (possibly system-dependend) class for the objects in the file array):

• A constant FILE_MAXID for the maximal file ID (e.g. 20). The array of the auxi-
liary objects would be one larger than this value.

• A static method open(id, name), to open the file name with ID id. The file
must be opened for reading and writing in binary mode (i.e. line ends should
not be mapped from Windows to Unix). The function should return true if the
file was successfully opened, and false, if not (e.g. the file does not exist or the
access rights were not sufficient). The ID cannot be currently in use (i.e. no other
file can be open with the same ID), or else the function should return false.

• A static method filename(id), that returns the file name for the file with ID id.
The return type should be const char *. Of course, the file must be opened
before this function may be called.

• A static method size(id), that returns the size (in blocks) of an open file with
ID id. The file size of all files that are processed with this class must be a multiple
of the block size block_c::BLOCK_SIZE. Again, the file must be opened before
this function may be called.

• A static method read(id, blockno, ptr), for reading the block with num-
ber blockno from the file with ID id. The result (BLOCK_SIZE bytes) should
be written to the memory at address ptr (this is a pointer to an object of
class block_c). The method should return true, if the operation was successful,
and false, if not (e.g. the file was too short). Again, the file must be open when
this method is called.

• A static method write(id, blockno, ptr) that stores the block at address ptr
in the file with ID id at the block position blockno. Of course, the file must be
open when with method is called.

• A static method sync(id) to ensure that all written blocks were really written
to disk (and are not waiting in a buffer of the operating system for later writing,
which might not happen in case of a power failure). Of course, the file id must
be open. If you are having problems with the buffering of the operating system
you should at least call the method flush() to empty the buffer of the streams
library.

• A static method close(id), that closes the file with ID id.

• A static method create(id, name, numblocks), that create a file named name

and writes numblocks empty blocks to the file. Afterwards, the file should be

Databases IIB: DBMS-Implementation — Exercise Sheet 12 5

open as if open(id, name) has been called.

• A static method extend(id, numblocks) that grows the file with ID id by
numblocks empty blocks. The file must be open when this method is called.

Please note that when you call the library function read in a class that has its own
method read, you must write ::read. The classical UNIX/POSIX-function to set the
read/write position in a file is lseek. The C stdio library function for file pointers
is fseek. If you use C++ streams, read about the methods seekg and seekp. The
following web page might be useful:

[http://stackoverflow.com/questions/15670359/fstream-seekg-seekp-and-write]

You can find out how long a file is by positioning at the end of the file (i.e. positi-
on 0 counted from the end) and then ask for the current position counted from the
beginning (lseek returns this position as a result, for C++ streams there are tellg

and tellp).

In my program, I have used UNIX file descriptors. The method sync() contains the
following calls:

// Call OS sync function:

int n = -1;

#if _POSIX_C_SOURCE >= 199309L || _XOPEN_SOURCE >= 500

n = fdatasync(FD);

#elif _BSD_SOURCE || _XOPEN_SOURCE || _POSIX_C_SOURCE >= 200112L

n = fsync(FD);

#else

CHECK_IMPOSSIBLE("file_c::sync: No fdatasync and no fsync");

#endif

// Check return value:

if(n != 0) {

alert_c::err_sync(Filename, strerror(errno));

return false;

}

In my program, the class alert_c is used to store error messages. You are not required
to program error messages, but it might be useful to think about error handling. You
may extend the interface of a class. My macro CHECK_IMPOSSIBLE generates a runtime
error, similar to a failed assert.

h) Please write a test program that creates a file with 50000 blocks. If your class for
blocks does not contain the block number, extend it in this way. Then check the total
runtime for the block accesses from refstring2.txt, where now the blocks are really
read from the file. Check that the block number of the block returned by the pin-
method is correct. On Linux/UNIX systems, the total runtime of a program p can be
measured with /usr/bin/time p. Since the test data file must be created only the

http://stackoverflow.com/questions/15670359/fstream-seekg-seekp-and-write

Databases IIB: DBMS-Implementation — Exercise Sheet 12 6

first time, your program should have a command line argument “init” for creating
the database file (as long as this is the only command line parameter value it suffices
to check whether argc is 1). If this parameter is not present (i.e.codeargc is 0) your
program should only do the block lookups and print the hit ratio. I will measure the
time for each submitted program in this second run when the data file already exists.

