
Prof. Dr. Stefan Brass December 1, 2017
Institut für Informatik
MLU Halle-Wittenberg

Databases IIB: DBMS-Implementation

— Exercise Sheet 9 —

Part a) and c) to e) will be discussed in class, you only have to submit the homeworks. This
week, there are two deadlines: Part f) should be submitted until December 13, 12:00, and
the programming exercise g) to i) until December 20. But please think about the questions
in a) before the meeting — all of them, not only the three you selected for Homework f).

Repetition Questions

a) What would you answer to the following questions in an oral exam?

• What is a “segment” in Oracle? What data can be stored in a segment?

• While the name “segment” is specific to Oracle, the task is required for any
DBMS. Can a DBMS use a function of the operating system for this task? Name
some advantages and disadvantages.

• Why is the relationship between tables and segments in Oracle normally “1:1”,
but in general “n:m”? Give at least a name of the constructs that cause exceptions
to the “1:1” rule.

• If you want to program a segment manager for your own DBMS, what would be
its interface? The segment manager is above the buffer manager in the DBMS
architecture, but it needs also direct access to the file manager (which is below
the buffer manager).

• What is an “extent” in Oracle? Why does Oracle allocate storage in extents, and
not in single blocks?

• How can a segment manager find free storage space in a file or tablespace if a
segment is created or needs to grow? Oracle has two different solutions:

– “EXTENT MANAGEMENT DICTIONARY” (the older version), and

– “EXTENT MANAGEMENT LOCAL” (the newer version). This has variants with
“UNIFORM SIZE” and “AUTOALLOCATE”.

How would you do this if you programmed a DBMS?

• How can one specify the initial amount of storage that is reserved for a table?
Why can that be useful if you know or can estimate the size of the table?

• If you do not specify storage parameters for a segment (e.g. for a table), where
are the default values defined in Oracle?



Databases IIB: DBMS-Implementation — Exercise Sheet 9 2

• What is a ROWID or TID (tuple identifier)? What are the main components?

• A main source of ROWIDs are indexes. Give a very high level view of an index.
What would be a (greatly simplified) interface of an index?

• What are the functions of the row manager in an DBMS? What are the two
basic ways in which rows can be accessed?

• Discuss advantages and disadvantages of guaranteeing stable ROWIDs for the
entire lifetime of a tuple.

• How can you see the ROWID of a tuple in Oracle? How can you get a readable
representation of the components.

• How can you select a row with a given ROWID in Oracle?

Some Intersting Information

b) Have a look at at least one of the following documents:

• MySQL Internals Manual
[https://dev.mysql.com/doc/internals/en/]

• MySQL Coding Guidelines:
[https://dev.mysql.com/doc/dev/mysql-server/latest/]

[PAGE CODING GUIDELINES.html]
This also refers to the Google C++ Style Guide:
[https://google.github.io/styleguide/cppguide.html]

• Oracle Database Administrator’s Guide: Managing Datafiles
[https://docs.oracle.com/cd/B28359 01/server.111/b28310/dfiles001.htm]
This contains an explanation of absolute and relative file numbers that appear
in the data dictionary tables.

• Bianca Schroeder, Garth A. Gibson: Disk failures in the real world: What does
an MTTF of 1,000,000 hours mean to you?
FAST’07: 5th USENIX Conference on File and Storage Technologies.
[http://www.usenix.org/event/fast07/tech/schroeder/schroeder.pdf]

https://dev.mysql.com/doc/internals/en/
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_CODING_GUIDELINES.html
https://dev.mysql.com/doc/dev/mysql-server/latest/PAGE_CODING_GUIDELINES.html
https://google.github.io/styleguide/cppguide.html
https://docs.oracle.com/cd/B28359_01/server.111/b28310/dfiles001.htm
http://www.usenix.org/event/fast07/tech/schroeder/schroeder.pdf


Databases IIB: DBMS-Implementation — Exercise Sheet 9 3

In-Class Exercises

c) Find out whether our database uses local extent management, and if yes, whether
with a uniform extent size or “AUTOALLOCATE”. You find the answer in the columns
EXTENT_MANAGEMENT and ALLOCATION_TYPE in the table DBA_TABLESPACES. The value
SYSTEM for ALLOCATION_TYPE means “AUTOALLOCATE”. It is possible that the settings
are different for different tablespaces, so you should also print the tablespace name.

d) Which different extent sizes are used in our database? Have a look at DBA_EXTENTS.
Find a database object with large extent sizes and list all its extents ordered by
EXTENT_ID.

e) How much free space is there in each tablespace or each data file? There are different
approaches to get this information, check whether they return the same values. For
instance, you can add the segment size for each segment in a tablespace and substract
it from the tablespace size. You can also add the extent sizes in each data file and
subtract it from the data file size. You can also have a look at DBA_FREE_SPACE.

Homework Exercises (Homework 9A, Deadline December 13)

f) Select any three questions from a) and write answers to them. I hope that not all
students select the first three items on the list. Please write in total at least 150 words
(if you write less than ten lines, I might have to count the words).



Databases IIB: DBMS-Implementation — Exercise Sheet 9 4

Homework Exercises (Homework 9B, Deadline December 20)

g) Create a file btype.h with the declaration of an enumeration type btype_t for types
of blocks. Probably, you will need the following constants:

• BTYPE_INVALID for blocks that are not really initialized,

• BTYPE_EMPTY for blocks that are not yet used,

• BTYPE_HEADER for the first block in the file with meta-data and control informa-
tion,

• BTYPE_BRANCH for branch blocks in the B+-tree,

• BTYPE_LEAF for leaf nodes in the B+-tree.

The exact set of values of this type can be extended later, at the moment it is only
important that the type is declared (so that you can use it in the class declaration for
blocks). For instance, if one wants to implement standard heap files to store tuples of
relations, one would add one or more block types.

If you want, you can add a function btype_name that returns a string representation
of the enumeration constant (i.e. it has an argument of type btype_t and returns the
constant name). That might be useful for debugging output, but is not required.

You could also define a function btype_valid with an argument of type btype_t that
returns true if the input value is really one of the defined enumeration constants. Since
we will read blocks from a file, it might be good to check the integrity of the data
structures. But again, it is your decision whether you want such a function.

h) Define a class block_c for database blocks (in the file block.h). You will later define
classes for specific kinds of blocks which might be subclasses of this class (depending
on the approach you take, see below).

Define a constant BLOCK_SIZE in block.h for the size of database blocks. Choo-
se the value 8192 (8 KByte). The objects of the class block_c should be exactly
BLOCK_SIZE bytes large. You can check that by printing sizeof(block_c) in the
main program.

When reading and writing data, always units of 8 KByte are moved between main
memory and disk (this file IO will be next weeks homework). Since block_c objects
are written to disk and later loaded again at a different memory location, normal
pointers in them would not be helpful (at least, they could be used only while the
block is pinned in memory).

Now there are several possibilities how you can work with the different types of blocks.

• One option that I used earlier is that the block_c objects contain mainly an
array of characters for the data. More precisely, I used a union of the char array,
a short array, and an int array so that I can access the space in the block with



Databases IIB: DBMS-Implementation — Exercise Sheet 9 5

different types. Of course, one has to be careful that one does not overwrite a
particular position in the block with a value of a different data type.

In my program, I had subclasses for special types of blocks. These subclasses
added methods, but no new attributes (because the size of the object is already
BLOCK_SIZE). That means of course that one has to construct the data structures
in the blocks on a low implementation level (basically, with byte offsets in the
block — of course, I defined constants and macros for computing the offsets).

• Another approach is to see the block_c objects only as a physical container for
objects that are specific for each type of block. Then you have several “block
contents” or “data” classes and put inside the block_c class again a union, but
this time a union of classes on a higher abstraction level.

Whereas in the previous approach, all the special cases of blocks depend on
block_c, in this approach, block_c depends on all contents classes. The contents
classes would not be subclasses of block_c.

If you follow this approach, you need to define an “empty contents” as the first
member of the union. This must ensure that the block_c objects have the right
size. Use a character array to make it fit.

There is also the problem that the contents classes need the constant BLOCK_SIZE
and also need to know the overhead of the block header that is the first part
of block_c (before the union). However, block.h vice versa needs to include
the definitions of the block contents classes. One solution would be to define the
block size in a general include file ver.h for parameters that can be configured.
You could also introduce a class bhead_c for the block header, and (if needed)
bfoot_c for the block footer. Then the block contents classes could compute the
remaining storage size in a block without including block.h.

Interface of the class block_c:

• The class block_c must have at least the method type() that returns the type
of the block (i.e. a value of type btype_t).

• The constructor of the class should initialize the block type to BTYPE_INVALID

to show that the main contents part contains garbage. In many cases, the object
will be immediately overwritten with data read from disk, therefore it seems
unnecessary to set the entire contents to 0.

• There should be a method init_empty that does an initialization as an empty
block. This must set the block type to BTYPE_EMPTY and ensure a defined contents
(all 0 bytes). Even if bytes in the block are not yet used, it would be strange if the
blocks in the file contain garbage in unused positions. Later other initialization
methods must be added for other block types.

• It is recommended (but not required) that there is a basic check for the integrity
of a block. For instance, if the user opens a file that was not constructed by
this program, there should be an error message. For instance, you could define a



Databases IIB: DBMS-Implementation — Exercise Sheet 9 6

method check_err() that returns an error message as string or a null pointer if
everything is ok. You could store a certain bit pattern (“magic number”) at the
beginning of every data block which is used to recognize blocks written by your
program.

• It might also be useful (but is again optional) to store the block number inside
the block object. Then one would define a method block_no() to query the
block number and a method set_block_no() to set the block number. The
block number is a 32-bit value (databases can be large). One could declare it as
unsigned, but then might get compiler warnings for type incompatibilities (one
has to write explicit casts). In my earlier program I defined a type bno_t (in
bno.h) for block numbers, but maybe that was too much.

• A well-known method to recognize partially written blocks is to store a certain
bit pattern at the start and end of every block and invert it each time before the
block is written. When reading a block, one checks whether the two bit patterns
are identical. If you want to do that, you can define a method prepare_write(),
that inverts the bit patterns and is called once before the block is written.

i) You have to change the objects of your buffer manager so that they contain a pointer
to objects of class block_c or contain such an object as an attribute. That also means
that memory must be actually allocated to buffer blocks (up to the defined limit).

In the next homework, we will actually read and write blocks from/to a file on disk.
Our goal is to implement a simple B+-tree.


