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e-mail: reinhard@informatik.uni-tuebingen.de

Abstract. In this paper we present a new notion of what it means for
a problem in P to be inherently sequential. Informally, a problem L is
strictly sequential P-complete if when the best known sequential algo-
rithm for L has polynomial speedup by parallelization, this implies that
all problems in P have a polynomial speedup in the parallel setting. The
motivation for defining this class of problems is to try and capture the
problems in P that are truly inherently sequential. Our work extends
the results of Condon who exhibited problems such that if a polyno-
mial speedup of their best known parallel algorithms could be achieved,
then all problems in P would have polynomial speedup. We demonstrate
one such natural problem, namely the Multiplex-select Circuit Problem
(MCP). MCP has one of the highest degrees of sequentiality of any prob-
lem yet defined. On the way to proving MCP is strictly sequential P -
complete, we define an interesting model, the register stack machine, that
appears to be of independent interest for exploring pure sequentiality.

1 Introduction

An important question in parallel complexity theory is whether problems in P
have a speedup by parallelization. If we demand the speedup to be ‘exponential’,
this means a speedup to polylogarithmic time, and allowing a polynomial number
of processors on a PRAM, we get the famous open problem ‘P=NC ?’. This
problem can be instantiated to any P-complete problem as for example the
circuit value problem or the context-free emptiness problem which means that
P = NC iff one of those P-complete problems is in NC (see [Coo85,GHR95]).

We believe an even more realistic and interesting open question is whether
problems in P have polynomial speedup by parallelization. This means for every
sequential algorithm solving a problem in time t(n) there is a parallel algorithm
solving the problem in time T (n) ∈ O((t(n))1−ε). For practical applications it is
more important that the parallelization has a low inefficiency. The inefficiency is
the quotient of the time processor product and the sequential time. Kruskal et al.
defined the class EP (AP, SP, respectively) as the class of problems with poly-
nomial speedup by parallelization and constant (polylogarithmic, polynomial,
respectively) inefficiency [KRS90].
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Unfortunately, the question P⊆EP (AP, SP, respectively) cannot be instan-
tiated to an arbitrary P-complete problem since a lot of them have polynomial
speedup by parallelization (see [VS86]).

As a step towards addressing the issues above, Condon defined a problem
as strictly T (n) complete for P, if it has a parallel algorithm with running time
t(n)(log(t(n)))O(1) and if the existence of a parallel algorithm improving this by
a polynomial factor, meaning to O((T (n))1−ε), would imply that all problems in
P have polynomial speedup [Con92]. She showed that the Square Circuit Value
Problem SCVP is strictly

√
n P-complete.

This was the first result showing that P⊆SP if a specific problem has a
polynomial speedup relative to a known parallel running time, i.e., if SCVP has
a polynomial speedup relative to

√
n. Since SCVP already has a polynomial

speedup of
√

n relative to its linear sequential time, we do not get the other
direction. This means it may still be that P⊆SP but SCVP has no polynomial
speedup relative to

√
n.

What we need is a P complete candidate for not having polynomial speedup
at all, that means in P\SP if P6⊆SP. Thus in this paper we go one step further
and look for a problem such that P⊂SP iff this specific problem has a polyno-
mial speedup relative to a known sequential running time. This means a strictly
sequential P-complete problem must be strictly t(n) P-complete, where t(n) is
now the sequential time. Accordingly, we define a problem with a sequential
running time t(n) as strictly sequential efficient P-complete (strictly sequential
almost efficient P-complete, respectively) if the existence of a parallel algorithm
improving this by a polynomial factor, meaning to O((t(n))1−ε), with a constant
(polylogarithmic, respectively) inefficiency would imply that every problem in
P, which has an efficient prediction of termination, is in EP (AP, respectively).

In this paper we use the multiplex select gate in combination with a com-
pressed representation of the wires connecting the gates. We show that the prob-
lem MCP to calculate the output of a circuit consisting of such gates which is
given by a representing input, is strictly sequential P-complete. Furthermore we
are able to prove that MCP is strictly sequential almost efficient P-complete,
where we restrict our attention to those problems in P, which have an efficient
prediction of termination.

As the sequential model we use the RAM which must read its complete
input and needs at least linear time by definition. Additionally, we introduce
the register stack machine as a new sequential model, which avoids the hidden
parallelism in the storage of a RAM. Using this model for sequential algorithms,
we can show that MCP is strictly sequential efficient Pept-complete.

As the parallel model we use the PRAM but the same results can be obtained
if we use more restricted models such as grids of processors or linear arrays of
processors, as long as this model is strong enough to calculate the reduction
function f(x) in time |f(x)|1−ε and an accordingly low inefficiency.

Thus far we have only been able to identify one natural strictly sequential
P-complete problem. An interesting open question is to find more problems of
this type.



2 Register stack machine

If we consider the simulation of a RAM by a circuit, in some sense the storage of
a RAM contains a kind of parallelism on the circuit level: every cell must detect
at every step, whether it is the one, where the processor it just writing on. To
avoid this, we need a new model, where we have a write once storage and where
we are able to simulate normal RAM’s with only a logarithmic loss in time. Such
a model is interesting on its own right.

A register stack machine (RSM) has a constant number c of registers and, in
addition, a (non-erasing) stack of registers, i.e., a push-down like managed list
of registers, which the machine is only allowed to read. In each step it simulta-
neously

– pushes the contents of the register number 2 on the stack,
– loads the contents of the stack indexed by the contents of register number 1

to register number 0 (if register number 1 is not negative) and
– all the registers with number >0 can be loaded by a constant or by the sum

or the difference between other registers.

The next instruction can depend on a ≤ 0-test of register 3.
Formally an RSM M is a 5-tuple (c, Q, q0, δ, Qf ) with the transition function

δ : Q× {1, 0} 7→ Q× ((N∪ {+,−}× {1, ...c}2){1,...c}). The start configuration is
s0, ..., sn, r0, ..., rc, q0, where s0, ..., sn contains the input, r4 = n and r0 = r1 =
r2 = r3 = r5 = ... = rc = 0. The configuration transition is

s0, ..., sm, r0, ..., rc, q |
M

s0, ..., sm+1, r
′
0, ..., r

′
c, q

′

where the test t := 0 if r3 ≤ 0 and t := 1 if r3 > 0 determines the transition by
(q′, a) := δ(q, t). We set sm+1 := r2, r′0 := sr1

, and r′i := a(i) if a(i) ∈ N and
r′i := rjt

′rk if a(i) = (t′, j, k) ∈ {+,−} × {1, ...c}2 for i > 0. The input s0, ..., sn

is accepted if a final state in Qf is reached.
In the description of an algorithm for an RSM every line has the following

shape:

q: if r3 ≤ 0 then r1:=...,r2:=... , ... rc:=... goto q′

else r1:=...,r2:=... , ... rc:=... goto q′′

For convention we may add and subtract constants (which means add or
subtract an additional register, which was loaded with this constant before), if
a register ri is not mentioned, it means ri := ri (which means ri := ri + 0) and
if a goto is missing in line qi it means goto qi+1. Also ’if r3 ≤ 0 then ... else‘ may
be missing, if the same is done in both cases.

Proposition 1. [Wie90] A RAM with running time t(n) under logarithmic cost
measure can be simulated in time O(t(n)) by a RAM using integers of length
O(log(t(n))) and addresses of value in O((t(n))2).



Lemma 2. A RAM with running time t(n) under logarithmic cost measure
can be simulated by a RSM in time O(t(n) log(t(n))) using integers of length
O(log(t(n))).

Proof. The registers Rj which are accessed by the RAM directly (constantly
many) are simulated by the RSM directly in registers rj′ . The indirect addressed
storage of the RAM is simulated as a binary tree. The address of the root node
is stored in r5, r4 contains the address of the top of the stack (it is incremented
in every step). Each inner node is represented as 3 consecutive register contents
on the stack: one number containing the smallest address in the subtree with the
bigger addresses and two pointers to subtrees. The leave nodes are represented
as 2 consecutive register contents on the stack: one marking (by -1 or -2), which
tells that this is a leave node and whether this is one of the (constantly many)
directly accessed cells (-2) and the contents of the register of the simulated RAM.

Because of Proposition 1, the tree has logarithmic depth and we do not have
to do balancing.

In order to simulate an indirect reading of the RAM indexed by register Rj to
register rk, the RSM walks down the tree in the following way: first the pointer
to the root node is loaded to r1, then, as long as r0 does not contain a leave
marking, it sets r3 := rj′ − r0 which allows to set r1 := r1 + 1 or r1 := r1 + 2 in
the two possible following states depending whether r3 ≤ 0 and continue with
r1 := r0. If the leave node is found, it sets r1 := r1 + 1 (if RRj

is not one of the
directly accessed cells) and in the next step r0 contains the contents of RRj

.

q0: r1 := r5, r4 := r4 + 1
q1: r3 := rj′ − r0, r4 := r4 + 1
q2: if r3 ≤ 0 then r1 := r1 + 1, r4 := r4 + 1

else r1 := r1 + 2, r4 := r4 + 1
q3: r1 := r0, r4 := r4 + 1
q4: r3 := r0 + 1, r4 := r4 + 1
q5: if r3 ≤ 0 then r3 := r3 + 1, r4 := r4 + 1

else r3 := rj′ − r0, r4 := r4 + 1, goto q2

q6: if r3 ≤ 0 then rk := r0, r4 := r4 + 1
else rk := rk′ , r4 := r4 + 1

This takes O(log(t(n))) many steps.
In order to simulate an indirect writing of register rk of the RAM indexed

by register Rj , the RSM first checks whether RRj
is not one of the directly

accessed cells. Then the complete path to the corresponding node in the binary
tree is copied on top of the stack in reverse order by replacing the pointers on the
path by the new ones which are the current position in r4 plus a constant. This
constant is the number of steps until the RSM is copying the child node. Then
it writes the new leave node on top of the stack. Again this takes O(log(t(n)))
many steps.

Remark 3. It is easy to see that an RSM with running time t(n) can be simulated
by a RSM in time O(t(n)).



In [LN93] K.-J. Lange and R. Niedermeier introduce the notion of write data-
independence, which means that it is determined only by the length of the input,
which memory cell is written at each time. This notion can be sharpened to strict
write data-independence, which means that at any time for any memory cell the
time, when this cell was written the last time, can be calculated in constantly
many steps. It is easy to see that such a strict write data-independent RAM
can be simulated by an RSM without a logarithmic loss of time. (Of course any
RSM is strictly write data-independent.) In this manor for example Merge-sort
can be performed on an RSM as fast as on an RAM.

3 The corresponding circuit

Analogously to the CVP we define MCP as the problem to calculate the output
of a circuit, which has multiplex select gates like the ones which are used in
[FLR96] to characterize OROW-PRAM’s.

Such a multiplex select gate has two kinds of input signals: One bundle of
O(log(n)) steering signals and up to n bundles of O(log(n)) data signals. The
number which is binary encoded by the steering signals is the number of the
bundle of data signals which is switched through to the output.
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A multiplex select gate can be described by the (binary) encoding of (?, g, c, k)
where g is the number of the gate whose output bundle is connected to the
steering input bundle, k is the number of data input bundles and c + j is the
number of the gate whose output is connected to the j’th data input bundle for
j ≤ k. This means that the encoding can still have a logarithmic size although
the number of input bundles can be linear.

Analogously we have gates for and (∧), or (∨), addition (+) and subtraction
(-) which are encoded by a symbol and two numbers of gates (for example
(+, d1, d2)), gates for the >0 test and negation (¬) which have one number of a
gate in the encoding and gates having no input and a fixed output o, where the
encoding is ($, o).

(All those gates could be simulated by polylogarithmically many multiplex
select gates with independently connected steering signals and no bundles.)



MCP is the language of inputs encoding a circuit with multiplex select gates,
where each gate has only inputs from gates with smaller numbers and where the
last gate has the value 1.

Remark 4. To simulate one multiplex select gate with (unbounded fan-in) ∧, ¬
and ∨ gates would need a number of gates, which is linear in the size of the
circuit.

Lemma 5. An RSM with running time t(n) using only integers having the
length O(log(t(n))) with a general log cost measure (that means that every step
costs O(log(t(n))) time units) can be simulated by a uniform family of multiplex
circuits of size O(t(n) + n).

Proof. Given an RSM and an input s0, ..., sm, we construct a circuit starting
with m stages for the input having the form ($, 0)p−3($, si)($, 0)($, 0) for i < m

and one stage having the form ($, 0)p−5($, m)($, 0)($, sm)($, 0)($, 0), where the
period p of the circuit is the number of gates in one stage simulating one step of
the RSM. Thus p is determined by the simulated RSM. We may assume that p

is a power of 2. (Furthermore we may assume that the starting state is encoded
by zeros.)

Since one step costs O(log(t(n))) time units, the circuit must simulate t(n)
log(t(n))

steps of the RSM. This is done by t(n)
log(t(n)) stages having the form

...(+, p(i − 1) − log p − 1, p(i − 1) − log p − 1)(+, pi − log p, pi − log p)
(+, pi − log p + 1, pi − log p + 1)...(+, pi − 2, pi − 2)(?, pi − 1, p − 2, p(i − 1))
for i > m being shown by the picture
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where all input wires to this stage come from the last stage except the bundles
or wires from register 2, where gates simulating register 2 from all preceding



stages are connected as data input to the multiplex select gate simulating register
0. The ??-gate in the picture is a shorting for a ?-gate and log p addition-gates,
which multiply the value for the steering input by p. Hence (p − 2) + jp is the
number of the gate whose output is switched through to the output of gate
number pi if j < i is the output of gate number p(i − 1) − log p − 1, which
simulates register r1 in the previous stage. This simulates indexed reading from
the stack which contains the input s0, ..., sm as well as all contentses of register
2. For each register with a number j > 0, the arithmetic looks like
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which preserves every possible assignment to the register depending on the state.
The encodings of the stages look almost the same, except gate numbers appearing
in them, which are linear dependent from the number of the stage. Thus the only
difficulty to calculate the encoding of the circuit is to calculate t(n).

The last stage contains only some logic gates such that the output of the last
gate is 1 iff a final state in Qf is reached.

Lemma 6. MCP∈DTIME(O(n)) with log cost measure.

Proof. The input s0, ..., sm on the stack of an RSM (or in the register of a
RAM) contains the encoding of the circuit, where the specifying symbol and the
numbers encoding one gate are contained in consecutive registers. An RSM can
evaluate one gate in a constant k number of steps. (For example k = 16 should
be sufficient.) Thus it can write the output of gate number j to the position
m + kj on the stack.

To evaluate a gate, the RSM first reads the specifying symbol to detect the
kind of gate. To evaluate a multiplex select gate, the machine first reads the
number g, which is in the next position in the input, multiplies it by k in log k

steps and loads m+kg to register r1. Then r0 contains the number l of the input
bundle, which is switched through to the output. The next position in the input
contains c, which has to be added to get the number l + c of the gate whose
output is connected to this input bundle. Also the RSM has to check l ≤ k,
which is in the following position on the input. Now m + k(l + c) is loaded to
register r1 (again in log k steps). Then r0 contains the output value of the gate,
which is loaded to r2 to store it on the stack, if k steps took place since the
evaluation of the last gate. The evaluation of the other kinds of gates works in
analogous way.

In this way an RSM can evaluate the circuit in linear time. The same holds
for a RAM.



For proving the next theorem we need the following lemma which was proved
by J. Hoover.

Lemma 7. [Con94] Let l be an eventually non-decreasing function such that
l(n) ∈ Ω(n) and l(n) ∈ nO(1). For all δ > 0, there is a rational number σ and a
natural number n0 such that

– l(n) ≤ nσ for n ≥ n0 and
– nσ ∈ O(l(n)nδ).

Theorem 8. MCP is strictly sequential P-complete.

Proof. According to Lemma 6, MCP∈DTIME(O(n)) with log cost measure. We
have to show that if MCP has polynomial speedup, this means if it can be
solved by a PRAM in time O(n1−2δ) for a δ > 0, then every problem in P has
polynomial speedup.

Let L be a language in P which is recognized by a RAM with running time
t(n) ∈ Ω(n). According to Lemma 2, it can be recognized by a RSM in time
l(n) ∈ O(t(n) log(t(n))) using only integers of length O(log(t(n))). Applying
Lemma 7 it can also be recognized by a RSM in time nσ. Thus according to
Lemma 5 it can be reduced to MCP by a function f , which generates on input
x the encoding of the circuit, which simulates the RSM on input x. For |x| = n

we have |f(x)| ∈ O(nσ). Obviously the reduction f(x) can be calculated by a
PRAM in polylogarithmic time since nσ can be calculated fast. The same PRAM
can afterwards test in O(nσ(1−2δ)) steps whether f(x) ∈MCP. Thus this PRAM
can recognize L in time

O(nσ(1−2δ)) ⊆ O((l(n)nδ)1−2δ) ⊆ O((l(n)1+δ)1−2δ)

⊆ O((l(n)1−δ−2δ2

) ⊆ O((t(n)1−δ).

This means that L ∈SP.

Corollary 9. If MCP∈SP then P⊆SP.

4 Using prediction of termination

The inefficiency of the polynomial speedup of a problem in P in Theorem 8 is
caused by the inefficiency for the speedup of MCP and by nδ, which we have to
sacrifice in order to get a a time limit, which can be calculated fast.

For practical reasons we are interested in those problems L in P having an
optimal t(n) time bounded sequential algorithm (this means no other algorithm
recognizes L in time o(t(n)) with efficient prediction of termination which means
t(n) can be calculated in sublinear time.

Theorem 10. MCP is strictly sequential almost efficient P-complete.



Proof. According to Lemma 6, MCP∈DTIME(O(n)) with log cost measure. We
have to show that if MCP has almost efficient polynomial speedup, this means
if it can be solved by a PRAM in time O(n1−ε) with Õ(nε) processors, then

every problem in Pept has almost efficient polynomial speedup. Let Õ(t(n)) :=
t(n)(log(t(n)))O(1).

Let L be a language in P which is recognized by a RAM with running time
t(n) ∈ Ω(n), which can be calculated in sublinear time. According to Lemma

2 it can be recognized by a RSM in time Õ(t(n)) using only integers of length
O(log(t(n))). Thus according to Lemma 5 it can be reduced to MCP by a function
f , which generates on input x the encoding of the circuit, which simulates the
RSM on input x. For |x| = n we have |f(x)| ∈ Õ(t(n)). The reduction f(x) can
be calculated by a PRAM in O(|f(x)|1−ε) steps and O(|f(x)|ε) processors. The

same PRAM can afterwards test whether f(x) ∈MCP in time Õ(|f(x)|1−ε) and
O(|f(x)|ε) processors. This means that L ∈AP.

Corollary 11. If MCP∈AP, then every problem in P, which has an efficient
prediction of termination, is in AP.

The inefficiency of the polynomial speedup of a problem in P in Theorem 8 is
caused by the inefficiency for the speedup of MCP and by the log n factor for the
simulation of a RAM by an RSM. Thus in analogous way we get the following
result:

Theorem 12. If we regard the RSM with a general log cost measure as the model
to define sequential time complexity, then, MCP is strictly sequential efficient P-
complete.

Corollary 13. If we regard the RSM with a general log cost measure as the
model to define sequential time complexity and if MCP∈EP, then every problem
in P, which has an efficient prediction of termination, is in EP.

Remark 14. We can use the uniformity of the stages in the construction of the
circuit to invent more compressed representations which can be padded after-
wards. In this way we can create artificial variants of MCP which are also strictly
sequential P-complete complete but which are in DTIME(nσ)\DTIME(nσ−ε) for
σ > 1 and ε > 0.

Open Problems: Is CVP strictly sequential P-complete? Is CVP∈ SP? Are
there other natural strictly sequential P-complete problems?
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