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1 Introduction

In this paper, we combine two very useful algorithmic techniques (the inductive
counting technique of [Imm88, Sze88] and the isolation lemma of [MVV87]) to
give a simple proof that two fundamental concepts in complexity theory coincide
in the context of nonuniform computation: nondeterminism and unambiguity.

Unambiguous computation has been the focus of much attention over the
past three decades. The notion of nondeterminism is a fundamental notion in
many areas of computer science, and the version of nondeterminism where at
most one nondeterministic path is accepting has proved to be one of the most
meaningful restrictions of nondeterminism to study. For example:

• Unambiguous context-free languages form one of the most important sub-
classes of the class of context-free languages.

• The complexity class UP (unambiguous polynomial time) was first defined
and studied by Valiant [Val76]; a necessary precondition for the existence
of one-way functions is for P to be properly contained in UP [GS88].

Although UP is one of the most intensely-studied subclasses of NP, it is nei-
ther known nor widely-believed that UP contains any sets that are hard for NP
under any interesting notion of reducibility. (Recall that Valiant and Vazirani
showed that “Unique.Satisfiability” – the set of all Boolean formulae with ex-
actly one satisfying assignment – is hard for NP under probabilistic reductions
[VV86]. However, the language Unique.Satisfiability is hard for coNP under ≤pm
reductions, and thus is not in UP unless NP = coNP.)

Nondeterministic and unambiguous space-bounded computation have also
been the focus of much work in computer science. For instance, the question of
whether every context-sensitive language has an unambiguous context-sensitive
grammar is really a question about whether nondeterministic and unambiguous
linear space coincide. This question remains open. In recent years, nondeter-
ministic logspace (NL) has been the focus of much attention, in part because
NL captures the complexity of many natural computational problems [Jon75].
The unambiguous version of NL, denoted UL, was first explicitly defined and
studied in [BJLR91, AJ93]. A language A is in UL if and only if there is a
nondeterministic logspace machine M accepting A such that, for every x, M
has at most one accepting computation on input x.

Our results indicate that NL and UL are probably equal, but we cannot
prove this equality. In order to state our theorem, we first need to discuss the
issue of uniformity.

Complexity classes such as P, NP, and NL that are defined in terms of ma-
chines are known as “uniform” complexity classes, in contrast to “non-uniform”
complexity classes, which are defined most naturally in terms of families of cir-
cuits {Cn}, with a circuit for each input length. In order to make a circuit
complexity class “uniform”, it is necessary to require that the function n 7→ Cn
be “easy” to compute in some sense. (We will consider “logspace-uniform” cir-
cuits, where the function n 7→ Cn can be computed in space logn.) P and
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NL (and many other uniform complexity classes) have natural definitions in
terms of uniform circuits; for instance, NL can be characterized in terms of
switching-and-rectifier networks (see, e.g. [Raz92, Raz90]) and skew circuits
[Ven92]. Uniform complexity classes can be used to give characterizations of
the non-uniform classes, too, using a formalism presented in [KL82]: Given any
complexity class C, C/poly is the class of languages A for which there exists a
sequence of “advice strings” {α(n) | n ∈ N} and a language B ∈ C such that
x ∈ A if and only if (x, α(|x|)) ∈ B.

Our main result is that NL/poly is equal to UL/poly.
(It is worth emphasizing that, in showing the equality UL/poly = NL/poly,

we must show that for every B in NL/poly, there is a nondeterministic logspace
machine M that never has more than one accepting path on any input, and
there is an advice sequence α(n) such that M(x, α(|x|)) accepts if and only
x ∈ B. This is stronger than merely saying that there is an advice sequence
α(n) and a nondeterministic logspace machine such that M(x, α(|x|)) never has
more than one accepting path, and it accepts if and only if x ∈ B.)

Our work extends the earlier work of Wigderson and Gál. Motivated in part
by the question of whether a space-bounded analog of the result of [VV86] could
be proved, Wigderson [Wig94, GW96] proved the inclusion NL/poly⊆ ⊕L/poly.
(An alternative proof of this inclusion is sketched in [Reg97, p. 284].) This is
a weaker statement than NL ⊆ ⊕L, which is still not known to hold. ⊕L is
the class of languages A for which there is a nondeterministic logspace bounded
machine M such that x ∈ A if and only M has an odd number of accepting
computation paths on input x.

In the proof of the main result of [Wig94, GW96], Wigderson observed that
a simple modification of his construction produces graphs in which the shortest
distance between every pair of nodes is achieved by a unique path. We will refer
to such graphs in the following as min-unique graphs. Wigderson wrote: “We
see no application of this observation.” The proof of our main result is just such
an application.

2 Nondeterministic Logspace

The s-t connectivity problem takes as input a directed graph with two distin-
guished vertices s and t, and determines if there is a path in the graph from s
to t. It is well-known that this is a complete problem for NL [Jon75].

The following lemma is implicit in [Wig94, GW96], but for completeness we
make it explicit here.

Lemma 2.1 There is a logspace-computable function f and a sequence of “ad-
vice strings” {α(n) | n ∈ N} (where |α(n)| is bounded by a polynomial in n)
with the following properties:

• For any directed acyclic graph G on n vertices, f(G, α(n)) = 〈G1, . . . , Gn2〉.

• For each i, the directed acyclic graph Gi has an s-t path if and only if G
has an s-t path.
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• There is some i such that Gi is a min-unique graph.

Proof: We first observe that a standard application of the isolation lemma
technique of [MVV87] shows that, if each edge in G is assigned a weight in the
range [1, 4n4] uniformly and independently at random, then with probability
at least 3

4
, for any two vertices x and y such that there is a path from x to

y, there is only one path having minimum weight. (Sketch: The probability
that there is more than one minimum weight path from x to y is bounded by
the sum, over all edges e, of the probability of the event Bad(e, x, y) ::= “e
occurs on one minimum-weight path from x to y and not on another”. Given
any weight assignment w′ to the edges in G other than e, there is at most
one value z with the property that, if the weight of e is set to be z, then
Bad(e, x, y) occurs. Thus the probability that there are two minimum-weight
paths between two vertices is bounded by

∑
x,y,e

∑
w′ Bad(e, x, y|w′)Prob(w′)

≤
∑
x,y,e

∑
w′ 1/(4n

4)Prob(w′) =
∑
x,y,e 1/(4n4) ≤ 1/4.)

Our advice string α will consist of a sequence of n2 weight functions, where
each weight function assigns a weight in the range [1, 4n4] to each edge. (There
are A(n) = 2O(n5) such advice strings possible for each n.) Our logspace-
computable function f takes as input a digraph G and a sequence of n2 weight
functions, and produces as output a sequence of graphs 〈G1, . . . , Gn2〉, where
graph Gi is the result of replacing each directed edge e = (x, y) in G by a
directed path of length j from x to y, where j is the weight given to e by the
i-th weight function in the advice string. Note that, if the i-th weight function
satisfies the property that there is at most one minimum weight path between
any two vertices, then Gi is a min-unique graph. To see this, it suffices to
observe that, for any two vertices x and y of Gi, either (a) there exist vertices u
and v such that x and y were both added in replacing the edge (u, v) (in which
case there is exactly one path connecting u to v, or (b) there are vertices x′ and
y′ such that

• x′ and y′ are vertices of the original graph G, and they lie on every path
between x and y,

• there is only one path from x to x′, and only one path from y′ to y, and

• the minimum weight path from x′ to y′ is unique.

Let us call an advice string “bad for G” if none of the graphs Gi in the
sequence f(G) is a min-unique graph. For each G, the probability that a
randomly-chosen advice string α is bad is bounded by (probability that Gi is
not min-unique)n

2 ≤ (1/4)n
2

= 2−2n2
. Thus the total number of advice strings

that are bad for some G is at most 2n
2
(2−2n2

A(n)) < A(n). Thus there is some
advice string α(n) that is not bad for any G.

Theorem 2.2 NL⊆UL/poly

Proof: It suffices to present a UL/poly algorithm for the s-t connectivity
problem.
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We show that there is a nondeterministic logspace machine M that takes as
input a sequence of digraphs 〈G1, . . . , Gr〉, and processes each Gi in sequence,
with the following properties:

• If Gi is not min-unique, M has a unique path that determines this fact
and goes on to process Gi+1;1 all other paths are rejecting.

• If Gi is a min-unique graph with an s-t path, then M has a unique ac-
cepting path.

• If Gi is a min-unique graph with no s-t path, then M has no accepting
path.

Combining this routine with the construction of Lemma 2.1 yields the desired
UL/poly algorithm.

Our algorithm is an enhancement of the inductive counting technique of
[Imm88] and [Sze88]. We call this the double counting technique since in each
stage we count not only the number of vertices having distance at most k from
the start vertex, but also the sum of the lengths of the shortest path to each such
vertex. In the following description of the algorithm, we denote these numbers
by ck and Σk, respectively.

Let us use the notation d(v) to denote the length of the shortest path in a
graph G from the start vertex to v. (If no such path exists, then d(v) = n+ 1.)
Thus, using this notation, Σk =

∑
{x|d(x)≤k} d(x).

A useful observation is that if the subgraph of G induced by vertices having
distance at most k from the start vertex is min-unique (and if the correct values
of ck and Σk are provided), then an unambiguous logspace machine can, on input
(G, k, ck,Σk, v), compute the Boolean predicate “d(v) ≤ k”. This is achieved
with the routine shown in Figure 1.

To see that this routine truly is unambiguous if the preconditions are met,
note the following:

• If the routine ever guesses incorrectly for some vertex x that d(x) > k,
then the variable count will never reach ck and the routine will reject.
Thus the only paths that run to completion guess correctly exactly the
set {x | d(x) ≤ k}.

• If the routine ever guesses incorrectly the length l of the shortest path to
x, then if d(x) > l no path of length l will be found, and if d(x) < l then
the variable sum will be incremented by a value greater than d(x). In the
latter case, at the end of the routine, sum will be greater than Σk, and
the routine will reject.

Clearly, the subgraph having distance at most 0 from the start vertex is
min-unique, and c0 = 1 and Σ0 = 0. A key part of the construction involves

1More precisely, our routine will check if, for every vertex x, there is at most one minimal-
length path from the start vertex to x. This is sufficient for our purposes. A straightforward
modification of our routine would provide an unambiguous logspace routine that will determine
if the entire graph Gi is a min-unique graph.
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Input (G, k, ck,Σk, v)
count := 0; sum := 0; path.to.v := false;
for each x ∈ V do

Guess nondeterministically if d(x) ≤ k.
if the guess is d(x) ≤ k then

begin
Guess a path of length l ≤ k from s to x

(If this fails, then halt and reject).
count := count +1; sum := sum +l;
if x = v then path.to.v := true;
end

endfor
if count = ck and sum = Σk

then return the Boolean value of path.to.v
else halt and reject

end.procedure

Figure 1: An unambiguous routine to determine if d(v) ≤ k.

computing ck and Σk from ck−1 and Σk−1, at the same time checking that
the subgraph having distance at most k from the start vertex is min-unique.
It is easy to see that ck is equal to ck−1 plus the number of vertices having
d(v) = k. Note that d(v) = k if and only if there is some edge (x, v) such that
d(x) ≤ k − 1 and it is not the case that d(v) ≤ k − 1. (Note that both of these
latter conditions can be determined in UL, as discussed above.) The subgraph
having distance at most k from the start vertex fails to be a min-unique graph
if and only if there exist some v and x as above, as well as some other x′ 6= x
such that d(x′) ≤ k − 1 and there is an edge (x′, v). The code shown in Figure
2 formalizes these considerations.

Recall that we are building an algorithm that takes as input a sequence of
graphs 〈G1, . . . , Gr〉 and processes each graph G in the sequence in turn, as
outlined at the start of this proof. Searching for an s-t path in a graph G in the
sequence is now expressed by the routine shown in Figure 3.

We complete the proof by describing how our algorithm processes the se-
quence 〈G1, . . . , Gr〉, as outlined at the start of the proof. Each Gi is processed
in turn in turn. If Gi is not min-unique (or more precisely, if the subgraph of
Gi that is reachable from the start vertex is not a min-unique graph), then one
unique computation path of the routine returns the value BAD.GRAPH and
goes on to process Gi+1; all other computation paths halt and reject. Other-
wise, if Gi is min-unique, the routine has a unique accepting path ifGi has an s-t
path, and if this is not the case the routine halts with no accepting computation
paths.

Corollary 2.3 NL/poly = UL/poly

Proof: Clearly UL/poly is contained in NL/poly. It suffices to show the
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Input (G, k, ck−1,Σk−1)
Output (ck,Σk), and also the flag BAD.GRAPH

ck := ck−1; Σk := Σk−1;
for each vertex v do

if ¬(d(v) ≤ k − 1) then
for each x such that (x, v) is an edge do

if d(x) ≤ k − 1 then
begin
ck := ck + 1; Σk := Σk + k;
for x′ 6= x do

if (x′, v) is an edge and d(x′) ≤ k − 1
then BAD.GRAPH := true:

endfor
end

endfor
endfor
At this point, the values of ck and Σk are correct.

Figure 2: Computing ck and Σk.

Input (G)
BAD.GRAPH := false; c0 := 1; Σ0 := 0; k := 0;
repeat

k := k + 1 :
compute ck and Σk from (ck−1,Σk−1);

until ck−1 = ck or BAD.GRAPH = true.
If BAD.GRAPH = false then there is an s-t path in G if and only if d(t) ≤ k.

Figure 3: Finding an s-t path in a min-unique graph.
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converse inclusion. Let A be in NL/poly. By definition, there is a language
B ∈ NL and there is an advice sequence αn such that x is in A if and only if
(x, α|x|) is in B. By the preceding theorem, B is in UL/poly, and thus there
is a C in UL and an advice sequence βn such that (x, αn) is in B if and only
if ((x, α|x|), β|x|+|α|x||) is in C. It is now obvious how to construct the desired
advice sequence from αn and βn+|αn .

3 LogCFL

LogCFL is the class of problems logspace-reducible to a context-free language.
Two important and useful characterizations of this class are summarized in
the following proposition. (SAC1 and AuxPDA(logn, nO(1)) are defined in the
following paragraphs.)

Proposition 3.1 [Sud78, Ven91]
LogCFL = AuxPDA(log n, nO(1)) = SAC1.

An Auxiliary Pushdown Automaton (AuxPDA) is a nondeterministic Tur-
ing machine with a read-only input tape, a space-bounded worktape, and a
pushdown store that is not subject to the space-bound. The class of languages
accepted by Auxiliary Pushdown Automata in space s(n) and time t(n) is de-
noted by AuxPDA(s(n), t(n)). If an AuxPDA satisfies the property that, on
every input x, there is at most one accepting computation, then the AuxPDA
is said to be unambiguous. This gives rise to the class UAuxPDA(s(n), t(n)).

SAC1 is the class of languages accepted by logspace-uniform semi-unbounded
circuits of depth O(logn); a circuit family is semi-unbounded if the AND gates
have fan-in 2 and the OR gates have unbounded fan-in.

Not long after NL was shown to be closed under complementation [Imm88,
Sze88], LogCFL was also shown to be closed under complementation in a proof
that also used the inductive counting technique ([BCD+89]). A similar history
followed a few years later: not long after it was shown that NL is contained
in ⊕L/poly [Wig94, GW96], the isolation lemma was again used to show that
LogCFL is contained in ⊕SAC1/poly [Gál95, GW96]. (As is noted in [GW96],
this was independently shown by H. Venkateswaran.)

In this section, we show that the same techniques that were used in Section
2 can be used to prove an analogous result about LogCFL. (In fact, it would
also be possible to derive the result of Section 2 from a modification of the proof
of this section. Since some readers may be more interested in NL than LogCFL,
we have chosen to present a direct proof of NL/poly = UL/poly.) The first
step is to state the analog to Lemma 2.1. Before we can do that, we need some
definitions.

A weighted circuit is a semiunbounded circuit together with a weighting
function that assigns a nonnegative integer weight to each wire connecting any
two gates in the circuit.

Let C be a weighted circuit, and let g be a gate of C. A certificate for
g(x) = 1 (in C) is a list of gates, corresponding to a depth-first search of
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the subcircuit of C rooted at g. The weight of a certificate is the sum of the
weights of the edges traversed in the depth-first search. This informal definition
is made precise by the following inductive definition. (It should be noted that
this definition differs in some unimportant ways from the definition given in
[Gál95, GW96].)

• If g is a constant 1 gate or an input gate evaluating to 1 on input x, then
the only certificate for g is the string g. This certificate has weight 0.

• If g is an AND gate of C with inputs h1 and h2 (where h1 lexicographically
precedes h2), then any string of the form gyz is a certificate for g, where y
is any certificate for h1, and z is any certificate for h2. If wi is the weight
of the edge connecting hi to g, then the weight of the certificate gyz is
w1 +w2 plus the sum of the weights of certificates y and z.

• If g is an OR gate of C, then any string of the form gy is a certificate for
g, where y is any certificate for a gate h that is an input to g in C. If w is
the weight of the edge connecting h to g, then the weight of the certificate
gy is w plus the weight of certificate y.

Note that if C has logarithmic depth d, then any certificate has length bounded
by a polynomial in n and has weight bounded by 2d times the maximum weight
of any edge. Every gate that evaluates to 1 on input x has a certificate, and no
gate that evaluates to 0 has a certificate.

We will say that a weighted circuit C is min-unique on input x if, for every
gate g that evaluates to 1 on input x, the minimal-weight certificate for g(x) = 1
is unique.

Lemma 3.2 For any language A in LogCFL, there is a sequence of advice
strings α(n) (having length polynomial in n) with the following properties:

• Each α(n) is a list of weighted circuits of logarithmic depth 〈C1, . . . , Cn〉.

• For each input x and for each i, x ∈ A if and only if Ci(x) = 1.

• For each input x, there is some i such that Ci is min-unique on input x.

Lemma 3.2 is in some sense implicit in [Gál95, GW96]. We include a proof
for completeness.
Proof: Let A be in LogCFL, and let C be the semiunbounded circuit of size nl

(i.e., having at most nl gates) and depth d = O(logn) recognizing A on inputs
of length n.

As in [Gál95, GW96], a modified application of the isolation lemma technique
of [MVV87] shows that, for each input x, if each wire in C is assigned a weight in
the range [1, 4n3l] uniformly and independently at random, then with probability
at least 3

4 , C is min-unique on input x. (Sketch: The probability that there is
more than one minimum weight certificate for g(x) = 1 is bounded by the sum,
over all wires e, of the probability of the event Bad(e, g) ::= “e occurs in one
minimum-weight certificate for g(x) = 1 and not in another”. Given any weight
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assignment w′ to the edges in C other than e, there is at most one value z with
the property that, if the weight of e is set to be z, then Bad(e, g) occurs. Thus
the probability that there are two minimum-weight certificates for any gate in
C is bounded by

∑
g,e

∑
w′ Bad(e, g|w′)Prob(w′) ≤

∑
g,e

∑
w′ 1/(4n

3l)Prob(w′)
=
∑
g,e 1/(4n3l) ≤ 1/4.)

Now consider sequences β consisting of n weight functions 〈w1, . . . , wn〉,
where each weight function assigns a weight in the range [1, 4n3l] to each edge
of C. (There are B(n) = 2n

O(1)
such sequences possible for each n.) There must

exist a string β such that, for each input x of length n, there is some i ≤ n such
that the weighted circuit Ci that results by applying weight function wi to C is
min-unique on input x. (Sketch of proof: Let us call a sequence β “bad for x”
if none of the circuits Ci in the sequence is min-unique on input x. For each x,
the probability that a randomly-chosen β is bad is bounded by (probability that
Ci is not min-unique)n ≤ (1/4)n = 2−2n. Thus the total number of sequences
that are bad for some x is at most 2n(2−2nB(n)) < B(n). Thus there is some
sequence β that is not bad for any C.)

The desired advice sequence α(n) = 〈C1, . . . , Cn〉 is formed by taking a
good sequence β = 〈w1, . . . , wn〉 and letting Ci be the result of applying weight
function wi to C.

Theorem 3.3 LogCFL ⊆ UAuxPDA(logn, nO(1))/poly.

Proof: Let A be a language in LogCFL. Let x be a string of length n, and let
〈C1, . . . , Cn〉 be the advice sequence guaranteed by Lemma 3.2.

We show that there is an unambiguous auxiliary pushdown automaton M
that runs in polynomial time and uses logarithmic space on its worktape that,
given a sequence of circuits as input, processes each circuit in turn, and has the
following properties:

• If Ci is not min-unique on input x, then M has a unique path that deter-
mines this fact and goes on to process Ci+1; all other paths are rejecting.

• If Ci is min-unique on input x and evaluates to 1 on input x, then M has
a unique accepting path.

• If Ci is min-unique on input x but evaluates to zero on input x, then M
has no accepting path.

Our construction is similar in many respects to that of Section 2. Given a
circuit C, let ck denote the number of gates g that have a certificate for g(x) = 1
of weight at most k, and let Σk be the sum, over all gates g having a certificate
for g(x) = 1 of weight at most k, of the minimum-weight certificate of g. (Let
W (g) denote the weight of the minimum-weight certificate of g(x) = 1, if such
a certificate exists, and let this value be ∞ otherwise.)

A useful observation is that if all gates of C having certificates of weight
at most k have unique minimal-weight certificates (and if the correct values
of ck and Σk are provided), then on input (C, x, k, ck,Σk, g), an unambiguous
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AuxPDA can determine if W (g) > k, and if W (g) ≤ k, the AuxPDA can
compute the value of W (g). This is achieved with the routine shown in Figure
4.

Input (C, x, k, ck,Σk, g)
count := 0; sum := 0; a :=∞;
for each gate h do

Guess nondeterministically if W (h) ≤ k.
if the guess is W (h) ≤ k then

begin
Guess a certificate of size l ≤ k for h

(If this fails, then halt and reject).
count := count +1; sum := sum +l;
if h = g then a := l;
end

endfor
if count = ck and sum = Σk

then return a
else halt and reject

end.procedure

Figure 4: An unambiguous routine to calculate W (g) if W (g) ≤ k and return
∞ otherwise.

To see that this routine truly is unambiguous if the preconditions are met,
note the following:

• If the routine ever guesses incorrectly for some gate h that W (h) > k,
then the variable count will never reach ck and the routine will reject.
Thus the only paths that run to completion guess correctly exactly the
set {h |W (h) ≤ k}.

• For each gate h such that W (h) ≤ k, there is exactly one minimal-weight
certificate that can be found. An UAuxPDA will find this certificate using
its pushdown to execute a depth-first search (using nondeterminism at the
OR gates, and using its O(logn) workspace to compute the weight of the
certificate), and only one path will find the minimal-weight certificate. If,
for some gate h, a certificate of weight greater than W (h) is guessed, then
the variable sum will not be equal to Σk at the end of the routine, and
the path will halt and reject.

Clearly, all gates at the input level have unique minimal-weight certificates
(and the only gates g with W (g) = 0 are at the input level). Thus we can set
c0 = n + 1 (since each input bit and its negation are provided, along with the
constant 1), and Σ0 = 0. A key part of the construction involves computing
ck and Σk from (ck−1,Σk−1), at the same time checking that no gate has two
minimal-weight certificates of weight k. Consider each gate g in turn. If g is an
AND gate with inputs h1 and h2 and weights w1 and w2 connecting g to these
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inputs, then W (g) ≤ k if and only if (W (g) = l ≤ k−1) or ((W (g) > k−1) and
(W (h1)+W (h2)+w1+w2 = k)). If g is an OR gate, then it suffices to check, for
each gate h that is connected to g by an edge of weight w, if (W (g) = l ≤ k−1)
or ((W (g) > k − 1) and (W (h) + w = k)); if one such gate is found, then
W (g) = k; if two such gates are found, then the circuit is not min-unique on
input x. If no violations of this sort are found for any k, then C is min-unique
on input x. The code shown in Figure 5 formalizes these considerations.

Input (C, x, k, ck−1,Σk−1)
Output (ck,Σk), and also the flag BAD.CIRCUIT

ck := ck−1; Σk := Σk−1;
for each gate g do

if W (g) > k − 1 then
begin
if g is an AND gate with inputs h1, h2, connected

to g with edges weighted w1, w2 and
W (h1) +W (h2) +w1 + w2 = k then

ck := ck + 1; Σk := Σk + k
if g is an OR gate then

for each h connected to g by an edge
weighted w do

if W (h) = k −w then
begin
ck := ck + 1; Σk := Σk + k
for h′ 6= h connected to g by an edge

of weight w′ do
if W (h′) = k −w′

then BAD.CIRCUIT := true:
endfor
end

endfor
end

endfor
At this point, if BAD.CIRCUIT = false, the values of ck and Σk are correct.

Figure 5: Computing ck and Σk.

Evaluating a given circuit Ci is now expressed by the routine shown in Figure
6.

We complete the proof by describing how our algorithm processes the se-
quence 〈C1, . . . , Cn〉, as outlined at the start of the proof. Given the sequence
〈C1, . . . , Cn〉, the algorithm processes each Ci in turn. If Ci is not min-unique
on input x, then one unique computation path of the routine returns the value
BAD.CIRCUIT and goes on to process Ci+1; all other computation paths halt
and reject. Otherwise, the routine has a unique accepting path if Ci(x) = 1, and
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Input (Ci)
BAD.CIRCUIT := false; c0 := n+ 1; Σ0 := 0;
for k = 1 to 2d4n3l

compute (ck,Σk) from ck−1,Σk−1;
if BAD.CIRCUIT = true, then exit the for loop.

endfor
If BAD.CIRCUIT = false then the output gate g evaluates to 1 if and only if
W (g) <∞.

Figure 6: Evaluating a circuit.

if this is not the case the routine halts with no accepting computation paths.

Corollary 3.4 LogCFL/poly = UAuxPDA(logn, nO(1))/poly.

4 Discussion and Open Problems

Rytter [Ryt87] (see also [RR92]) showed that any unambiguous context-free
language can be recognized in logarithmic time by a CREW-PRAM. In contrast,
no such CREW algorithm is known for any problem complete for NL, even in
the nonuniform setting, although one might initially suspect that our results,
combined with those of [Ryt87], would yield such algorithms, because of the
following considerations:

• NL is the class of languages reducible to linear context-free languages
[Sud75].

• The class of languages accepted by deterministic AuxPDAs in logarithmic
space and polynomial time coincides with the class of languages logspace-
reducible to deterministic context-free languages.

• LogCFL coincides with AuxPDA(logn, nO(1)).

That is, there is a close connection between deterministic and nondeterministic
context-free languages, and related deterministic and nondeterministic complex-
ity classes. Shouldn’t similar relationships hold for the unambiguous classes?
Unfortunately, it is not known that UAuxPDA(logn, nO(1)) or UL is reducible
to unambiguous context-free languages. The work of Niedermeier and Ross-
manith does an excellent job of explaining the subtleties and difficulties here
[NR95]. CREW algorithms are closely associated with a version of unambigu-
ity called strong unambiguity. In terms of Turing-machine based computation,
strong unambiguity means that, not only is there at most one path from the
start vertex to the accepting configuration, but in fact there is at most one path
between any two configurations of the machine.

Strongly unambiguous classes have more efficient algorithms than are known
for general NL or UL problems. It is shown in [AL98] that problems in strongly
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unambiguous logspace have deterministic algorithms using less than log2 n space,
and it is shown in [BJLR91] that this class is also in LogDCFL (and hence has
logarithmic-time CROW-PRAM algorithms and is in SC2). For more informa-
tion on this connection to CROW-PRAM algorithms, see [FLR96].

The reader is encouraged to note that, in a min-unique graph, the shortest
path between any two vertices is unique. This bears a superficial resemblance to
the property of strong unambiguity. We see no application of this observation.

It is natural to ask if the randomized aspect of the construction can be
eliminated using some sort of derandomization technique to obtain the equality
UL = NL. In more recent work [ARZ], we observe that if DSPACE(n) contains a
language with sufficiently high circuit complexity, then the techniques of [NW94]
can be used to build pseudorandom generators of sufficiently high quality, so
that the results of this paper would also hold in the uniform setting.

A corollary of our work is that UL/poly is closed under complement. It
remains an open question if UL is closed under complement, although some of
the unambiguous logspace classes that can be defined using strong unambiguity
are known to be closed under complement [BJLR91]. Similarly, UL/poly has
a complete set under the natural types of reducibility to consider (nonuniform
logspace reductions, or even nonuniform projections). In contrast, UL itself is
not known to have any complete sets under logspace reducibility. In this regard,
note that Lange has shown that one of the other unambiguous logspace classes
does have complete sets [Lan97].

It is disappointing that the techniques used in this paper do not seem to
provide any new information about complexity classes such as NSPACE(n) and
NSPACE(2n). It is straightforward to show that NSPACE(s(n)) is contained
in USPACE(s(n))/2O(s(n)), but this is interesting only for sublinear s(n). (In
a personal communication, Fortnow has pointed out that our argument does
show that NSPACE(n) = USPACE(n) relative to a random oracle.)

There is a natural class of functions associated with NL, denoted FNL [AJ93].
This can be defined in several equivalent ways, such as

• The class of functions computable by NC1 circuits with oracle gates for
problems in NL.

• The class of functions f such that {(x, i, b) | the i-th bit of f(x) is b} is in
NL.

• The class of functions computable by logspace-bounded machines with
oracles for NL.

Another important class of problems related to NL is the class #L, which counts
the number of accepting paths of a NL machine. #L characterizes the complex-
ity of computing the determinant [Vin91]. (See also [Tod, Dam, MV97, Val92,
AO96].) It was observed in [AJ93] that if NL = UL, then FNL is contained in
#L. Thus a corollary of the result in this paper is that FNL/poly ⊆ #L/poly.

Many questions about #L remain unanswered. Two interesting complexity
classes related to #L are PL (probabilistic logspace) and C=L (which character-
izes the complexity of singular matrices, as well as questions about computing
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the rank). It is known that some natural hierarchies defined using these com-
plexity classes collapse:

• AC0(C=L) = C=LC=L.·
.C=L

= NC1(C=L) = LC=L [AO96, ABO96].

• AC0(PL) = PLPL.·
.PL

= NC1(PL) = PL [AO96, Ogi98, BF97].

In contrast, the corresponding #L hierarchy (equal to the class of problems AC0

reducible to computing the determinant) AC0(#L) = FL#L.·
.#L

is not known
to collapse to any fixed level. Does the equality UL/poly = NL/poly provide
any help in analyzing this hierarchy in the nonuniform setting?

It is instructive to view our results in terms of arithmetic circuits. An equiv-
alent definition of the class of functions #L results by taking the Boolean circuit
characterization of NL (see [Ven92]) and replacing each Boolean AND and OR
gate by integer multiplication and addition, respectively. The class #SAC1 can
be defined similarly. This notion of arithmetic circuit complexity has been in-
vestigated in a series of papers including [Vin91, CMTV96, AAD97, All97]. Our
results say that the zero-one valued characteristic function of any language in
NL (or LogCFL) can be computed by the corresponding (nonuniform) class of
arithmetic circuits. Note that, although the output gate is producing a value
in {0,1}, some of the interior gates will be producing larger values. Are there
equivalent arithmetic circuits where all gates take values in {0,1}? (This is es-
sentially the notion of strong unambiguity.) Note that each such gate is itself
defining a language in NL (or LogCFL), and thus there is a zero-one valued
arithmetic circuit for it – but this circuit may itself have gates that produce
large values.
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