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Abstract

We show that the perfect matching problem is in the complexity class SPL (in the
nonuniform setting). This provides a better upper bound on the complexity of the
matching problem, as well as providing motivation for studying the complexity
class SPL.

Using similar techniques, we show that counting the number of accepting
paths of a nondeterministic logspace machine can be done in NL/poly, if the
number of paths is small. This clari�es the complexity of the class FewL (de�ned
and studied in [BDHM91, BJLR91]). Using derandomization techniques, we
then improve this to show that this counting problem is in NL.
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Determining if our other theorems hold in the uniform setting remains an
important open question, although we provide evidence that they do. More pre-
cisely, if there are problems in DSPACE(n) requiring exponential-size circuits,
then all of our results hold in the uniform setting.

1 Introduction

In [RA97], two of the authors presented new results concerning NL, UL, and
#L. The current paper builds on this earlier work, in an attempt to better
understand these complexity classes, as well as some related classes. In the
process, we present a new upper bound on some problems related to matchings
in graphs.

The perfect matching problem is one of the best-studied graph problems
in theoretical computer science. (For de�nitions, see Section 2.) It is known
to have polynomial-time algorithms [Edm65], and it is known to be in RNC
[KUW86, MVV87], although at present no deterministic NC algorithm is known.
Our new upper bound for matching builds on the RNC algorithm. Before we
can explain the nature of our bound, we need some de�nitions.

In [FFK94], Fenner, Fortnow, and Kurtz de�ned the complexity class SPP
to be fA : �A 2 GapPg. They also showed that this same class of languages
can be de�ned equivalently as fA : GapPA = GapPg.

The analogous class SPL (namely, the set: fA : �A 2 GapLg) has not
received very much attention. In this work, we show that SPL can be used to
provide a better classi�cation of the complexity of some important and natural
problems, whose exact complexity remains unknown. In particular, we show
that the following problems are in the non-uniform version of SPL:

� perfect matching (i.e., does a perfect matching exist).

� maximum matching (i.e., constructing a matching of maximum possible
size)

� maximum 
ow with unary weights

All of these problems were previously known to be hard for NL, and were known
to be (nonuniformly) reducible to the determinant [KUW86, MVV87].

It was observed in [BGW] that the perfect matching problem is in (nonuni-
form) ModmL for every m, and as reported in [ABO], Vinay has pointed out
that a similar argument shows that the matching problem is in (nonuniform)
co-C=L. A di�erent argument seems to be necessary to show that the matching
problem is itself in (nonuniform) C=L. Since SPL is contained in C=L\co-C=L,
this follows from our new bound on matching.

Under a natural hypothesis (that DSPACE(n) has problems of \hardness"
2�n), all of our results hold in the uniform setting, as well. (See Theorem 5.4.)

Most natural computational problems turn out to be complete for some nat-
ural complexity class. The perfect matching problem is one of the conspicuous
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examples of a natural problem that has, thus far, resisted classi�cation by means
of completeness. Our results place the matching problem between NL and SPL.

There are many complexity classes related to counting the number of accept-
ing paths of an NL machine. As examples we mention L#L, PL, C=L, ModmL,
SPL, and NL. We think that existing techniques may su�ce to �nd new rela-
tionships among these classes (at least in the nonuniform setting). As a start
in this direction, we show that if an NL machine has only a polynomial number
of accepting computations, then counting the number of accepting paths can
be done in NL. First, we show that this holds in the nonuniform setting, and
then we derandomize this construction to show that it holds also in the uniform
setting.

2 Preliminaries

A matching in a graph is a set of edges, such that no two of these edges share
a vertex. A matching is perfect if every vertex is adjacent to an edge in the
matching.

#L (�rst studied by [AJ93]) is the class of functions of the form #accM(x) :
�� ! N (counting the number of accepting computations of an NL machine
M on input x). GapL consists of functions that are the di�erence of two #L
functions. Alternatively, GapL is the class of all functions that are logspace
many-one reducible to computing the determinant of integer matrices. (See,
e.g. [AO96, MV97].)

By analogy with the class GapP [FFK94], one may de�ne a number of lan-
guage classes by means of GapL functions. We mention in particular the follow-
ing three complexity classes, of which the �rst two have been studied previously.

� PL = fA : 9f 2 GapL; x 2 A , f(x) > 0g (See, e.g., [Gil77, RST84,
BCP83, Ogi98, BF97].)

� C=L = fA : 9f 2 GapL; x 2 A, f(x) = 0g [AO96, ABO, ST98].

� SPL = fA : �A 2 GapLg.

It seems that this is the �rst time that SPL has been singled out for study. In
the remainder of this section, we state some of the basic properties of SPL.

Proposition 2.1 8m UL � SPL � ModmL \C=L \ co-C=L.

(The second inclusion holds because SPL is easily seen to be closed under com-
plement.)

Proposition 2.2 SPL = fA : GapLA = GapLg (using the Ruzzo-Simon-
Tompa notion of space-bounded Turing reducibility for nondeterministic ma-
chines [RST84]).
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Figure 1: Previously-known inclusions among some logspace-counting problems
and classes
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Figure 2: Inclusions established here assuming secure pseudorandom generators.
(These inclusions also hold in the nonuniform setting.)
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Figure 3: Uniform inclusions among these classes.

(This is proved very similarly to the analogous result in [FFK94]. In showing
that GapLA � GapL if A 2 SPL, we need only to observe that in the simulation
of an oracle Turing machine given in [FFK94], it is not necessary to guess all of
the oracle queries and answers at the start of the computation, but that instead
these can be guessed one-by-one as needed.)

Since UL/poly = NL/poly [RA97], it follows that, in the nonuniform setting,
NL is contained in SPL. However, it needs to be noted at this point that it is
not quite clear what the \nonuniform version of SPL" should be. Here are two
natural candidates:

� SPL/poly = fA : 9B 2 SPL 9k9(�n)j�nj � nk and x 2 A , (x; �jxj) 2
Bg.

� nonuniform SPL = fA : �A 2 GapL/polyg.

It is easy to verify that SPL/poly is contained in nonuniform SPL. Containment
in the other direction remains an open question. We will use the second class
as the nonuniform version of SPL for the following reasons:

� The study of nonuniform complexity classes is motivated by questions
of circuit complexity. GapL/poly has a natural de�nition in terms of
skew arithmetic circuits. (See [All97] for a survey and discussion. Skew
circuits were de�ned in [Ven91] and have received study in [Tod92].) Thus
a natural de�nition of SPL is in terms of skew arithmetic circuits over
the integers, which produce an output value in f0,1g. If the circuits are
nonuniform, then this corresponds to the de�nition of nonuniform SPL
given above.
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� We are not able to show that the matching problem is in SPL/poly; we
show only that it is in nonuniform SPL. (However, note that Theorem
5.4 shows that, under a plausible complexity-theoretic hypothesis, the
matching problem is in uniform SPL.)

In addition to proving new results about the matching problem, we also prove
new inclusions for the complexity class LFew, which was originally de�ned and
studied in [BDHM91, BJLR91]. We defer the de�nition of this class until Section
5.1.1, but we note here that it is immediate from the de�nitions that LFew is
closed under complement, and it was observed in [AO96] that LFew is contained
in C=L.

3 Matching

We will �nd it very helpful to make use of the GapL algorithm of [MV97] for
computing the determinant of a matrix. (For our purposes, it is su�cient to
consider only matrices with entries in f0; 1g.) The following de�nitions are from
[MV97]:

A clow (clow for clo-sed w-alk) is a walk hw1; : : : ; wli starting from
vertex w1 and ending at the same vertex, where any hwi; wi+1i is
an edge in the graph. w1 is the least numbered vertex in the clow,
and is called the head of the clow. We also require that the head
occurs only once in the clow. This means that there is exactly one
incoming edge (hwl; w1i) and one outgoing edge (hw1; w2i) at w1 in
the clow.

A clow sequence is a sequence of clows hC1; : : : ; Cki with two prop-
erties.
The sequence is ordered: head(C1) < head(C2) < : : : < head(Ck).
The total number of edges (counted with multiplicity) adds to ex-
actly n.

The main result of [MV97] is that the determinant of a matrix A is equal
to the number of accepting computations of M minus the number of rejecting
computations of M , where M is the nondeterministic logspace-bounded Turing
machine that, when given a matrixA, tries to guess a clow sequence C1; : : : ; Ck.
(If M fails in this task, then M 
ips a coin and accepts/rejects with probability
one-half. Otherwise, M does �nd a clow sequence C1; : : : ; Ck.) If k is odd, M
rejects, and otherwise M accepts.

The crucial insight that makes the construction of [MV97] work correctly is
this: If C1; : : : ; Ck is not a cycle cover (that is, a collection of disjoint cycles
covering all of the vertices of M ), then there is a corresponding distinct \twin"
clow sequence D1; : : : ; Dk

+
�
1 using exactly the same multiset of edges as that

of C1; : : : ; Ck. Note that the parity of the number of clows in this \twin" clow
sequence is the opposite of that of C1; : : : ; Ck, and thus their contributions to
the count of the number of accepting computations cancel each other. The only
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clow sequences that survive this cancellation are the cycle covers. Since cycle
covers correspond to permutations, this yields exactly the determinant of A.

Here is an algorithm showing that the perfect matching problem is in SPL
(nonuniformly). For simplicity, we consider only the bipartite case here. The
general case follows as in [MVV87].

First, note that there is a sequence

(w1; w2; : : : ; wr)

having length nO(1) with the property that, for every bipartite graph G on 2n
vertices, either G has no perfect matching, or there is some i and some j � n6

such that, under weight function wi, the minimum-weight matching in G is
unique and has weight j. (To see this, note that [MVV87] shows that if a weight
function is chosen at random, giving each edge a weight in the range [1; 4n2],
then with probability at least 3

4 there is at most one minimum-weight matching.
Now pick a sequence of n2 such weight functions independently at random. The
probability that (w1; w2; : : : ; wn2) is \bad" for all G is � (14)

n2 � 2n
2

< 1. Thus
some sequence does satisfy the required property.)

Thus there is a function f in GapL/poly with the following properties:

� If G has a perfect matching, then for some i; j, jf(G; i; j)j = 1.

� If G has no perfect matching, then for all i; j, f(G; i; j) = 0.

To see this, consider the machine that, on input G; i; j, attempts to �nd a clow
sequence in G having weight j under weight function wi. (The weight function
wi is given as \advice" to the machine.) If there is no perfect matching then
for all i; j, the only clow sequences that the machine �nds will be cancelled
by their \twins", and the value of f(G; i; j) will be zero. If there is a unique
perfect matching having weight j, then only one computation path will remain
uncanceled (and thus f(G; i; j) will be either 1 or �1).

Now consider the function g(G) =
Q

i;j(1 � (f(G; i; j))2). This function is
in GapL/poly (See, e.g. [AO96]). If G has a perfect matching, then g(G) = 0.
Otherwise, g(G) = 1. This completes the proof of the following theorem.

Theorem 3.1 The perfect matching problem is in nonuniform SPL.

3.1 Construction algorithm

So far we have described the decision algorithm for the existence of a perfect
matching. As shown in [KUW86], there is a function that �nds a perfect match-
ing (if it exists) in Random-NC.We will now show that this can be done in SPL.
However, �rst, we must de�ne what it means for a function to be in SPL.

One natural way to de�ne a class of functions computable in SPL is to �rst

consider FLSPL, which is the set of functions calculated by a logspace machine
with an SPL oracle. This class of functions can be de�ned equivalently as the
set of all functions where jf(x)j = jxjO(1) and the language f(x; i; b) : the ith
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bit of f(x) is bg is in LSPL. However, by Proposition 2.2, LSPL = SPL, so
there is no need to consider logspace-reductions at all (although this turns out
to be a convenient way to present the algorithms). An equivalent de�nition can
be formulated in terms of arithmetic circuits, or using NC1 reductions to SPL.
Since all of these de�nitions are equivalent, we feel justi�ed in denoting this
class of functions by FSPL.

In order to build a perfect matching, we will construct an oracle machine
that �nds an (i; j) such that jf(G; i; j)j = 1 (which means that there is a unique
matching with minimum-weight j under the weight function wi). If we can �nd
such an (i; j), then the machine can output all edges e with jf(G�e; i; j)j = 0,
where G�e is the result of deleting e from G. (We know that jf(G�e; i; j)j = 1 if
e does not belong to the perfect matching.) The obvious approach would be to
ask the oracle the value of f(G; i; j) for each value of i and j { but the problem
is that, for some \bad" values of i and j, the value of f would not be zero-one
valued and thus the oracle would not be in SPL. The proof consists of avoiding
this problem.

Theorem 3.2 Constructing a perfect matching is in nonuniform FSPL.

Proof: By analogy to the proof of the previous theorem, note that there is a
sequence

(w0
1; w

0
2; : : : ; w

0
r0)

having length nO(1) with the property that, for every i � r and j � n6 and
every bipartite graph G on 2n vertices, either G has no perfect matching with
weight j under the weight function wi, or there is some i0 � r0 and some j0 � n6

such that, among those matchings having weight j under the weight function
wi, under weight function w0

i0 , the minimum-weight matching in G is unique
and has weight j0.

(Randomly choose each weight between 0 and 4n2 for each of the weight
functions w0

i0 . For �xed G; i; j, the probability p(G; i; j) that, among those
matchings having weight j under the weight function wi, under weight function
w0
i0 , there is more than one minimum-weight matching in G is upper bounded

by the sum over all edges e of the probability of the event Bad(e) that e occurs
in one minimum-weight matching but not in another. As shown in [MVV87],
given any weight assignment w0

�e to the edges in G other than e, there is at
most one value for the weight of e that can cause the event Bad(e) occur. Thus
the probability p(G; i; j) is at most

P
e

P
w0

�e
Prob(Bad(e)jw0

�e)Prob(w
0
�e) �P

e

P
w0

�e
1=(4n2)Prob(w0

�e) =
P

e 1=(4n
2) � 1=4. For �xed G; i; j, the prob-

ability that all w0
i0 are \bad" is � (1=4)r

0

= 2�2r
0

. The probability that

(w0
1; w

0
2; : : : ; w

0
r0) is \bad" for all G; i; j is � 2�2r

0

� 2n
2

� r � n6 < 1 for r0 =
n2 + log r + 6 logn.)

By using a machine that, on input G; i; j; i0; j0, looks for a clow sequence
having weight j under wi and simultaneously having weight j0 under w0

i0 , we
obtain a function in GapL/poly with the following properties:
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� If G has a perfect matching with weight j under the weight function wi,
then for some (i0; j0), jf(G; i; j; i0; j0)j = 1.

� If G has no perfect matching with weight j under the weight function wi,
then for all (i0; j0), f(G; i; j; i0; j0) = 0.

Here again if there is no perfect matching with weight j under the weight
function wi, then the only clow sequences that the machine �nds will be can-
celled by their \twins", and the value of f(G; i; j; i0; j0) will be zero. If there
is a unique perfect matching having weight j under wi and simultaneously j0

under w0
i0 , then only one computation path will remain uncanceled (and thus

f(G; i; j; i0; j0) will be either 1 or �1).
If G has a perfect matching with weight j under the weight function wi, then

g(G; i; j) =
Q

i0;j0
(1� (f(G; i; j; i0; j0))2) = 0. Otherwise, g(G; i; j) = 1.

If g(G; i; j) = 0, this does not necessarily mean that there is a unique
matching with minimum weight j, and thus we still need to check that the
set fe : g(G�e; i; j) = 1g really is a perfect matching (meaning that each vertex
is adjacent to exactly one edge). However, the logspace oracle machine can
easily check this condition until a good pair (i; j) is found.

To ensure keeping to the same advice string (consisting of r(jGj) + r0(jGj)
weight functions and weights) for all calculations of the oracle answers, the
encoding of the oracle question is chosen in a way such that the length of an
oracle question stays always the same for a given graph G.

By adding an increasing number of vertices having edges to every vertex
until a perfect matching is found (and eliminating these vertices afterwards),
we get:

Corollary 3.3 Constructing a maximum matching is in nonuniform FSPL.

Since by [KUW86], constructing a maximum 
ow in a graph with unary
weights can be reduced to constructing a maximummatching, we get:

Corollary 3.4 Constructing a maximum 
ow in a graph with unary weights is
in nonuniform FSPL.

Corollary 3.5 Deciding the existence of 
ow � k in a graph with unary weights
is in nonuniform SPL.

As Steven Rudich has pointed out (personal communication), a standard
reduction shows that this latter problem is in fact equivalent to testing for the
existence of a matching of size � k in a bipartite graph, under AC0 many-
one reducibility. More precisely, given a bipartite graph G = (V1; V2; E) (with
E � V1 � V2) one can build a new graph G0 by adding two new vertices s
(connected to all vertices of V1) and t (connected to all vertices of V2); note
that G has a matching of size k if and only if G0 has a 
ow of size k. Conversely,
given a directed graph G = (V;E) with unary weights on the edges, and with
distinguished vertices s and t, build a bipartite graph G0 � V1�V2, where for i 2
f1; 2g, if edge e of G has weight j, then Vi contains vertices (e; 1; i); : : : ; (e; j; i).
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Let ms be the sum of the weights of all edges adjacent to s in G, and let mt be
the sum of the weights of all edges adjacent to t in G. Let m be the maximum
of ms and mt. V1 contains vertices (s; 1) : : : (s;m), and V2 contains vertices
(t; 1) : : : (t;m). The vertices (e; j; 1) and (e; j; 2) are adjacent (for all e and j),
and also the vertices (e; j; 2) and (e0; j; 1) are adjacent if e; e0 is a path of length
two in G. Similarly, there is an edge between (s; j) and (e; j; 2) if e is an edge
starting at s in G, and there is an edge between (t; j) and (e; j; 1) if e is an edge
ending at s in G. It is straightforward to verify that G has a 
ow of size k if
and only if G0 has a matching of size k + jEj. (Similar observations are made
in [CSV84].)

4 Machines with Few Accepting Computations

The main result of this section can be stated as follows:

Theorem 4.1 Let f be in #L. Then the language f(x; 0i) : f(x) = ig is in
NL/poly.

In particular, if f is a #L function such that f(x) is bounded by a polynomial
in jxj, then in the nonuniform setting, computing f is no harder than NL.
Proof: First we use the Isolation Lemmaof [MVV87] to show that, if we choose
a weight function w : (V �V ) ! [1::4p(n)2n2] at random, then with probability
� 3

4 , any graph with at most p(n) accepting paths will have no two accepting
paths with the same weight. To see this, note that this property fails to hold if
and only if there exist some i; j and (v; w) such that the i-th accepting path (in
lexicographic order) has the same weight as the j-th accepting path, and (v; w)
is on the i-th path and not on the j-th path. Call this event Bad(i; j; v; w).
Thus it su�ces to bound

X

i

X

j

X

v

X

w

Prob(Bad(i; j; v; w)):

Now just as in [MVV87] (or as in our application of the Isolation Lemma in
[RA97]), Prob(Bad(i; j; v; w)) is at most 1=(4p(n)2n2), which completes the
proof.

Thus, just as in [RA97], there must exist some sequence (w1; w2; : : : ; wn2) of
weight functions such that, for all graphs G on n vertices, if G has at most p(n)
accepting paths, then there is some i such that, when wi is used as the weight
function, then G will not have two accepting paths with the same weight.

Now it is easy to see that the language f(x; 0j) : f(x) � jg is in NL/poly.
On input x, for each i, for each t � 4p(n)2n3, try to guess an accepting path
having weight t using weight function wi, and remember the number of t's for
which such a path can be found. If there is some i for which this number is at
least j, then halt and accept.

The theorem now follows by closure of NL/poly under complement [Imm88,
Sze88].
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This is also an appropriate place to present two results that improve on a
lemma of [BDHM91] in the nonuniform setting. Lemma 12 of [BDHM91] states
that, ifM is a \weakly unambiguous" logspace machine with f(x) = #accM (x),

and g is computable in logspace, then the function
�
f(x)
g(x)

�
is in #L.

(Although we will not need the de�nition of a \weakly unambiguous ma-
chine" here, we note that as a consequence, f(x) is bounded by a polynomial in
jxj.) Below, we remove the restriction that M be weakly unambiguous, and we
relax the restriction on g, allowing g to be any function in #L { but we obtain
only a nonuniform result.

Theorem 4.2 Let f and g be in #L, where f(x) is bounded by a polynomial in

jxj. Then
�
f(x)
g(x)

�
is in #L/poly.

Proof: Use Theorem 4.1 to �nd the number i = jxjO(1) such that f(x) = i. If,
for all j � i; g(x) 6= j, then output zero. Otherwise, let j = g(x). It is clear that
determining the correct values of i and j can be done in NL/poly. Using the
fact that NL/poly = UL/poly [RA97], we may assume that there is a unique
path that determines the correct values of i and j. Our #L/poly machine will
reject on all the other paths and continue on this unique path to produce

�
i

j

�

accepting paths as follows.
As in the proof of Theorem 4.1, we may assume that our nonuniform advice

consists of a sequence of weight functions, and our algorithm can �nd one of
these weight functions such that each of the i paths of the machine realizing
f(x) have distinct weights. Our #L/poly machine will pick j of these weights
t1; : : : ; tj and attempt to guess j paths of f(x) having these weights. This gives
a total of

�
i

j

�
accepting paths.

The preceding can be improved even to FNL/poly.

Theorem 4.3 Let f and g be in #L, where f(x) is bounded by a polynomial in

jxj. Then
�
f(x)
g(x)

�
is in FNL/poly.

Proof: Compute i = f(x) and j = g(x) as in the preceding proof. Now
note that

�
i

j

�
can be computed using a polynomial number of multiplications

and one division, and thus has P-uniform NC1 circuits [BCH86]. The resulting
algorithm is NC1 reducible to NL, and thus is in FNL/poly.

(Note that, in contrast to Theorem 4.2, Theorem 4.3 cannot be derandomized
using Theorem 5.4, since the construction in [BCH86] does not use a probabilis-
tic argument.)

5 Derandomizing the Constructions

It is natural to wonder if our constructions hold also in the uniform setting. In
this section, we show that Theorem 4.1 does hold in the uniform setting, and
we present reasons to believe that our other results probably do, too.
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5.1 An unconditional derandomization

Theorem 5.1 Let f be in #L. Then the language f(x; 0i) : f(x) = ig is in NL.

Proof: First, we show that the language f(x; 0i) : f(x) � ig is in NL. In
fact, since counting paths in directed acyclic graphs is complete for #L, we
will consider only the problem of taking as input (G; 0i), where G is a directed
acyclic graph with distinguished vertices s and t, and determining if there are
at least i paths from s to t in G.

On input (G; 0i), for all prime numbers p in the range i � p � n4, see if
there are at least i numbers q � p with the property that there is a path from s
to t that is equivalent to q mod p. That is, for each prime p in this range, guess
a sequence of numbers q1; q2; : : : ; qi, and for each j attempt to �nd a path in the
graph (where a path may be viewed as a sequence of bits) such that this path
(again, viewed as a sequence of bits encoding a binary number) is equivalent to
qj mod p.

It is easy to see that the above computation can be done by an NL machine,
since logarithmic space is su�cient to compute the residue class mod p of the
path. By [FKS82][Lemma 2] (see also [Meh82][Theorem B], if there are at least
i distinct paths from s to t, then there is some prime p in this range such
that none of the �rst i paths are equivalent mod p. Thus the nondeterministic
logspace algorithm sketched above will accept if and only if there are at least i
paths.

Now, since NL is closed under complementation, it follows that an NL ma-
chine can determine if there are exactly i paths from s to t, which completes the
proof.

We remark that a more complicated proof of this theorem, using �-biased
probability spaces, was presented in an earlier version of this work [AZ98].

5.1.1 The classes LogFew and LogFewNL

Theorem 5.1 has the following consequences. In [BDHM91], the complexity
classes LogFewNL and LogFew were de�ned. In a companion paper at about
the same time [BJLR91], the class LogFewNL was called FewUL, and we will
follow this latter naming scheme here.

Before we can present the de�nitions of these classes, we need one more
de�nition from [BDHM91]. An NL machine is weakly unambiguous if, for any
two accepting computation paths, the halting con�gurations are distinct.

De�nition 1 [BDHM91, BJLR91] FewUL consists of languages accepted by
weakly unambiguous logspace-bounded machines.

LogFew is the class of languages A for which there exists (a) a logspace-
bounded weakly-unambiguous machine M , and (b) a logspace-computable predi-
cate R, such that x is in A if and only if R(x;#accM (x)) is true.

FewL consists of languages accepted by NL machines having the property
that the number of accepting computations is bounded by a polynomial.
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The de�nitions in [BDHM91, BJLR91] were made in analogy with the com-
plexity classes FewP and Few ([AR88, CH90]). However, in [BDHM91] the
authors considered only the classes FewUL and LogFew (de�ned in terms of
weakly-unambiguousmachines), whereas in [BJLR91], the authors de�ned classes
without the restriction to weakly-unambiguous machines, but did not consider
LogFew or its analog, which here we will call LFew.

De�nition 2 LFew is the class of languages A for which there exists (a) an NL
machine M such that #accM (x) is bounded by a polynomial, and (b) a logspace-
computable predicate R such that x is in A if and only if R(x;#accM (x)) is true.

It is obvious that UL � FewUL � FewL \ LogFew � FewL � NL. FewL
and LogFew are obviously both contained in LFew. Thus it is immediate from
[RA97] that in the nonuniform setting FewUL and FewL coincide with UL. We
conjecture that these classes all coincide in the uniform setting as well, but
this remains open. It was shown in [BDHM91] that LogFew is contained in
ModmL for every m. Although [BDHM91] leaves open the relationship between
LogFew and NL, Buntrock [Bun98] has pointed out that there is a simple direct
argument showing that LogFew is in NL.

It remained open whether LFew is contained in NL. An a�rmative answer
follows from Theorem 5.1.

Theorem 5.2 LFew � NL \ SPL.

Proof: Let N be an NL machine accepting a language A in LFew, and let B
be the logspace-computable predicate such that x 2 A i� (x;#accN(x)) 2 B.
By Theorem 5.1, the language f(x; i) : #accN (x) � ig is in NL. Thus an NL
machine can determine the value of i = #accN (x) exactly, and then check if
(x; i) 2 B. This shows that LFew is in NL.

Let g(x; i) be the #L function that counts the number of accepting compu-
tations of the NL machine that, on input x, tries to �nd at least i paths in the
graph G. Note that if G really has exactly i accepting paths, then g(x; i) = 1
(since there is exactly one sequence of guesses that will cause the NL machine
to �nd the i paths). Also, if i is larger than the number of paths in G, then
g(x; i) = 0.

Now consider the function h(x; i) that is de�ned to be

g(x; i)
Y

i<i0�jxjO(1)

(1� g(x; i0)):

It follows from the standard closure properties of GapL that h is in GapL. (See,
e.g. [AO96].)

For the correct value of i, h(x; i) is equal to 1. For all other values of i,
h(x; i) is equal to 0.

It now follows easily that any LFew language is in LSPL, which is equal to
SPL.
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It is perhaps worth noting that Theorem 5.2 is in some sense the logspace-
analog of the inclusion Few � SPP, which was proved in [KSTT92]. Their proof
relies on the fact that, for any #P function f and any polynomial-time function
g that is bounded by a polynomial in n, the function

�
f(x)
g(x)

�
is in #P. Note that,

in contrast, this closure property is not known to hold for #L or GapL functions
(but compare this with Theorem 4.3).

In contrast, we still do not know how to \derandomize" Theorem 4.3.

5.2 A conditional derandomization

Nisan and Wigderson [NW94] de�ned a notion of \hardness" of languages. A
language A has hardness h(n) if there is no circuit family fCng of size less than
h(n) with the property that, for all input lengths n, Cn(x) agrees with �A(x)
on more than (12 +

1
2h(n) )2

n strings.

The techniques and results of Nisan and Wigderson [NW94], together with
some technical material from [IW97][Lemma18], can be used to show that if
there is a set K in DSPACE(n) having hardness 2�n, then there is a pseudoran-
dom generator g computable in space logn with the property that no statistical
test of size n can distinguish pseudorandom inputs from truly random strings.
In this section, we describe how this can be done.

More precisely, we will show that, given the language K as above, then for
some constant k (depending on �), there is a function g : f0; 1gk logN ! f0; 1gN

computable in space O(logN ) with the property that, for all circuits C of size
N , the following two probabilities di�er by at most 1=N :

Prob(C(x) accepts), where x is a random input of size N .
Prob(C(x) accepts), where x = g(y) for a random y of size k logN .

The desired function g is de�ned as follows. We need that there is a function
h computable in space logN with the following property: h(N ) is a binary
matrix with N rows and l = k logN columns, where each row has m = k0 logN
1's (we'll be more speci�c about the exact values of l and m later on, but
clearly k0 < k), and any two distinct rows (viewed as subsets of f1; : : : ; lg)
intersect in at most logN points. The construction of a function h meeting
these parameters and computable in logspace is not explicit in [NW94], but we
will use a construction communicated to us by Avi Wigderson [Wig97]. (See
also [IW97].) Assume for now that we have the function h.

Here is how to compute g: On input y of length l = k logN , produce a
sequence of N output bits, where the ith bit is produced as follows. Let A
be the subset of f1; : : : ; lg given by the ith row of the matrix h(N ). Let z
be the string of length m corresponding to the bits of y in the positions in A.
Output K(z) as the ith bit of g(y) (where K is the language in DSPACE(n)
with hardness 2�n).

The argument given in [NW94] shows that, given the constant � in the hard-
ness condition for K, then for all large enough constants k0 (where in particular
k0 must be greater than 1=�), then for any k with the property that the desired
function h exists, g has the desired pseudorandomness property.
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For completeness, we need to specify how to compute the function h. In
particular, given any k0 � 3, we show that if we choose k = 1 + 8k02, then h
can be computed in logspace. We shall �rst present a probabilistic logspace
algorithm, and then derandomize it to obtain our deterministic algorithm. We
will need a function set: GF(2l) ! fA � f1; : : : ; lg : jAj = mg so that each
m-set A has a preimage of approximately the same size. A simple way to
do this is the following: Fix some standard enumeration of the elements in
GF(2l). For each a 2 GF(2l), set(a) is de�ned to be the ath item found in
cycling through all possible m-sets in some standard order. That is, if we let
fA0; :::; Aq�1g = fA � f1; : : : ; lg : jAj = mg, then set(a) := A(a mod q). Thus

the preimage of Ai has size d
2l

q
e or b2

l

q
c for every 0 � i � q � 1. To simplify

the subsequent analysis, we shall assume that the preimage of each set A has
exactly the same size. It is straightforward to modify the proof to handle the
necessary approximations.

Here is the probabilistic algorithm. Pick elements a and b from GF(2l)
uniformly at random. Let i1; i2; : : : ; iN be the N �rst elements of GF(2l) in
some standard enumeration. Let S be the set fa + ij � b : 1 � j � Ng, and let
S0 = fset(c) : c 2 Sg. Output the N -by-l matrix whose rows encode the sets
in S0.

Claim 5.3 Prob(no two sets in S0 intersect in more than logN positions) > 0.

Assume for the moment that the claim is true. Here is our deterministic
algorithm to compute h.

By the claim, there must be some choice of the random values a and b
for which the probabilistic algorithm produces a good matrix. Thus we can
simply cycle through all of the choices for a and b, and check whether for each
1 � j1 < j2 � N the sets set(a + ij1 � b) and set(a + ij2 � b) intersect in
at most logN places, until a good pair (a; b) is found, and then simulate the
probabilistic algorithm using the pair (a; b). Clearly all of this computation can
be done in logspace.

It su�ces now to provide the proof of our claim.
Proof: For 1 � j � n, let rj be the random variable with value set(a+ ij � b).
As in [CG88][Section 3] (see also [Wig95]), for each pair of m-sets A and B,
the events ri = A and rj = B are independent (so Prob(ri = A ^ rj = B) =
Prob(ri = A)Prob(rj = B)). Thus

Prob(jri \ rjj > logN )
=
P

A;B Prob(jri \ rjj > logN j ri = A ^ rj = B)

Prob(ri = A ^ rj = B)
=
P

A;B Prob(jri \ rjj > logN j ri = A ^ rj = B)

Prob(ri = A)Prob(rj = B)
=
P

A;B Prob(jA \Bj > logN )Prob(ri = A)2

= ProbA;B(jA \Bj > logN )

where the third equality holds since the events (ri = B) have uniform distribu-
tion, and the fourth equality holds since, for �xed A and B, Prob(jA \ Bj >

15



logN ) is either zero or one.
Assume for the moment that ProbA;B(jA \Bj > logN ) < 1=N2. (We show

below that this is the case.)
Let C be a random variable counting the number of pairs (i; j) (with i 6= j)

such that jri \ rjj > logN . Thus C is the sum of the random variables Ci;j

taking value 1 if (i; j) is such a pair, and 0 otherwise. Since we are assuming
that ProbA;B(jA \ Bj > logN ) < 1=N2, the expected value of each Ci;j is less
than 1=N2. Thus the expected value of C, which is the sum of the expected
values of the variables Ci;j, is less than 1. (In fact, by choosing appropriate
constants k and k0, this value can be made much less than 1.)

It su�ces now to prove that ProbA;B(jA \ Bj > logN ) < 1=N2, where A
and B are randomly-chosen sets of size m. Since this is equal to

X

B

ProbA(jA \Bj > logN jB)Prob(B);

it su�ces to show that, for each given m-set B � f1; : : : ; lg, if we let D denote
the probability that a random m-set A � f1; : : : ; lg intersects B in more than
logN positions, then D < 1=N2.

In order to apply the Cherno� bounds, let us consider a di�erent way of
picking the set A. For each i 2 f1; : : : ; lg, let i be in A independently with
probability m=l. Note that D = ProbA(jA \ Bj > logN jm = jAj), where A is
chosen according to this experiment. Thus

D=(l + 1) � D �Prob(jAj = m)
<
P

iProbA(jA \Bj > logN ji = jAj)Prob(jAj = i)
= ProbA(jA \Bj > logN )

where the �rst inequality holds because the most likely size (out of l + 1 possi-
bilities) for A is m (e.g., see [Fel50][Section VI.3]).

The Cherno� bound can be used to bound this probability, by noting that
the expected size of A \ B is � = m2=l = (k02=k) logN . Since we have picked
k = 1 + 8k02, it follows that � < (logN )=8. Thus

D � (l + 1) � ProbA(jA \Bj > 8�)

< 2(l+1)

e(� ln(e8=99))�

= 2(l+1)

N(log2 e)(� ln(e8=99))k02=(1+8k02 )

= O( logN
N2:03 )

where the second inequality follows by [AS92][Corollary A.14], and the �nal
equality holds since k0 � 3. Thus, for all large N , D < 1=N2, as desired.

Theorem 5.4 If there is a set in DSPACE(n) with hardness 2�n for some � > 0,
then the nonuniform constructions in this paper (and in [RA97]) hold also in
the uniform setting.

Proof: We illustrate with Theorem 3.1. The other constructions can be
derandomized in a similar manner.
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The argument in Theorem 3.1 uses a sequence of weight functions w1; : : : ; wr

with the property that, for each graph G, (G has a perfect matching) implies
(there is some i � r and some j � n6 such that jf(G; i; j)j = 1), where f is
the GapL algorithm that uses weight function i, and looks for clow sequences
of weight j.

Under the hardness assumption about DSPACE(n), we may use the Nisan-
Wigderson pseudorandom generator (as described above), to produce N = n13

bits, and interpret these bits as n10 weight functions (where each weight function
can easily be described using n3 bits).

Assume, for the sake of a contradiction, that these pseudorandom bits do not
produce a correct algorithm. Thus there are in�nitely many values n for which
there is a graph Gn on n vertices for which the algorithm gives an incorrect
answer. This will give us the following statistical test of size N distinguishing
pseudorandom input from random input, in contradiction to [NW94]:

Given an input of length N = n13, check if at least one of the �rst n3 weight
functions works correctly for graph Gn. That is, check if there is some i � n3

and j � n6 such that jf(Gn; i; j)j = 1. The computation of each f(Gn; i; j)
can be done by doing a determinant calculation, and hence can be done in size
< n3. The total number of such tests is n9. Thus the total size of the circuit is
easily bounded by n13 = N .

By hypothesis, this statistical test will reject all of the pseudorandom strings.
However, the analysis of Theorem 3.1 easily can be used to show that truly
random strings are accepted with probability greater than 3=4 (and indeed,
with probability almost 1).

Recently, it was shown by Klivans and vanMelkebeek [KvM99] that the tech-
niques of [IW97] allow for an even weaker assumption than is used in Theorem
5.4.

Theorem 5.5 [KvM99] If there is a set in DSPACE(n) and an � > 0 with the
property that, for all large n, no circuit of size less than 2�n accepts exactly the
strings of length n in A, then the nonuniform constructions in this paper (and
in [RA97]) hold also in the uniform setting.

Although Klivans and van Melkebeek use the techniques of [IW97], an alter-
nate proof is possible using the framework developed by Sudan, Trevisan, and
Vadhan [STV99].

6 Open Problems

Our results sandwich the matching problem between two classes that are closed
under complement (NL and SPL). Is the perfect matching problem reducible to
its complement?

Is the matching problem in NL? Is it complete for SPL? (Does SPL even have
any complete problems?) Is the matching problem complete for some \natural"
class between NL and SPL?
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As in [MVV87], our techniques apply equally well to both the perfect match-
ing problem and to the bipartite perfect matching problem. What is the true
relationship between these two problems? Is the perfect matching problem re-
ducible to the bipartite perfect matching problem?

Can more inclusions be shown among other logspace-counting classes (at
least in the nonuniform setting)? Is C=L contained in �L? Is LogCFL contained
in L#L?

Is SPL/poly equal to nonuniform SPL? Note that in an analogous way one
can de�ne both UL/poly and \nonuniformUL" (where \nonuniformUL is equal
to the class of all languages A such that �A is in #L/poly). However, since
UL/poly � nonuniform UL � NL/poly = UL/poly [RA97], it follows that these
classes all coincide. No similar argument for SPL is known.

Can some of the other probabilistic inclusions relating to NL and UL be
derandomized? Can one show that FewL = UL, or that LFew = UL? Can one
show that UL = coUL? It seems that some of these questions should be in reach
of current methods.
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