
Analyzing Data Streams by Online DFT

Alexander Hinneburg1, Dirk Habich2, and Marcel Karnstedt3

1 Martin-Luther University of Halle-Wittenberg, Germany
hinneburg@informatik.uni-halle.de

2 Dresden University of Technology, Germany
dirk.habich@tu-dresden.de

3 Technical University of Ilmenau, Germany
marcel.karnstedt@tu-ilmenau.de

Abstract. Sensor data have become very huge and single measures are
produced at high rates, resulting in streaming sensor data. In this paper,
we present a new mining tool called Online DFT, which is particularly
powerful for estimating the spectrum of a data stream. Unique features
of our new method include low update complexity with high-accuracy
estimations for very long periods, and the ability of long-range forecasting
based on our Online DFT. Furthermore, we describe some applications
of our Online DFT.

1 Motivation

Physical sensor environments can be found all over the world, and they are
involved in a wide range of applications. In recent time, sensor data have become
very huge and single measures are produced at high rates, resulting in streaming
sensor data. Examples of this can be found in financial applications dealing
with time series for various stocks, in applications monitoring sensors to detect
failures and problems in large buildings at an early stage, or in real-time market
analyses of supermarket customer data.

Aside from application-related issues, interesting general questions in data
stream environments are: What are the dominant frequencies of a streaming
signal? Which of them are currently most active in the stream? Is the stream
very volatile (mostly high frequencies are active) or more stable (low frequencies
are active)? How does the stream look like in the near future? To analyze the
frequencies in a data stream, the discrete Fourier transform (DFT) in its original
form is an unqualified tool, because the Fourier coefficients do not contain any
information about the temporal location of the frequencies. To overcome this dis-
advantage, the Short Time Fourier transform (STFT) can be used, which chops
the stream into overlapping pieces and estimates frequencies from these pieces.
The STFT represents a compromise between the resolution in the frequency do-
main and the time domain. But, due to the processing of pieces, it is difficult to
use the frequency information to derive a forecast of the stream. Wavelets have
been used to analyze streams as well. Aside from many advantages of wavelets,
such as fast online decomposition, there are also some disadvantages. First, there
is no one-to-one relation between wavelet coefficients and frequency intervals.

This complicates the task of interpreting the results of a wavelet transform.
Second, the wavelet transform is not shift-invariant; that means, the wavelet
coefficients of a stationary signal (i.e., frequencies do not change) also depend
on the starting point of the transformation. This is not the case for the DFT,
and therefore, we decided not to use a wavelet model as starting point.

Our main contribution is a one-pass method with sublinear runtime for esti-
mating the frequencies of a data stream. Our Online DFT approach partitions
the frequency range into subintervals of increasing size. Low frequencies are esti-
mated with higher resolution, while high frequencies are estimated more coarsely.
This is justified by the observation that many data streams are driven mainly
by low frequencies. Frequencies within the subintervals are estimated separately,
which allows using different sample rates for different frequency subintervals.
This leads to enormous savings in runtime, because the sample rates can be
adjusted to the estimated frequencies (low frequencies need only low sample
rates). The second feature of the new Online DFT is the adaptive choice of
sample points, which increases the power of our approach. The properties of the
Online DFT lead to a number of interesting applications, e.g., forecasting, clean-
ing, and monitoring of streams, which are described in detail in the experiment
section.

Related Work Stream mining is related to time series analysis and fore-
casting (e.g., [5]), which is based on discovering patterns and periodicity [3, 6].
Traditional generative time series models include auto-regressive (AR) models
and their generalizations (ARMA etc.). They can be used for forecasting, but
usually they fail in streaming environments and often have a number of limita-
tions (see [11] for more details on this). There are also approaches for nonlinear
forecasting, but they always require human intervention [12]. Papadimitriou et
al. [11] utilize incremental DWT [4] in order to find periods in streams and to do
long-range forecasting. In their AWSOM method, the authors model the wavelet
coefficients by an online linear auto-regression model [2]. This work focuses on
forecasting and thus, it is related to the proposed Online DFT, but it is based
on completely different methods. In this work, we focus on the DFT approach
and its characteristics only.

The Fourier transform has successfully been applied to numerous tasks. Re-
cent work deals with the approximation of large Fourier coefficients [9] by sam-
pling only a part of a time series. [5] discover representative trends using sketches
and they utilize FFT to compute distances between stream sections. Based on
this, [1] defines approximate periodicity and applies efficient sampling techniques
in order to find potential periods. Most relevant to our work is indexing of time
series (e.g., [8]), which would benefit from the availability of a fast Online DFT.
An approach closely related to the presented Online DFT is the incremental algo-
rithm introduced by Zhu and Shasha [13]. They use DFT to summarize streams
within a finite window. In contrast to our work, they focus on finding correlations
between different streams, instead of forecasting. Moreover, they uniformly dis-
cretize the frequency domain, whereas we represent lower frequencies with higher
accuracy.

The remainder of this paper is organized as follows: After presenting neces-
sary prerequisites in Section 2, we introduce our novel Online DFT approach in
Section 3. In Section 4 and 5 we discuss some complexity aspects and present
some data stream experiments. The paper ends with conclusion in Section 6.

2 Prerequisites

Discrete Fourier Transform The n-point discrete Fourier transform of a time
sequence x = x0, . . . , xn−1 is a sequence X = X0, . . . , Xn−1 of complex numbers
given by

Xf = 1/√n

n−1X
t=0

xt · e−j2πf ·t/n, f = 0, . . . , n− 1

where j is the imaginary unit j =
√−1. The original signal x can be recovered

by the inverse Fourier transform. The runtime complexity of the discrete Fourier
transform is O(n2). The fast Fourier transform (FFT) can compute the DFT
coefficients in O(n log n).
Filtering When estimating a frequency spectrum from a finite sample, alias-
ing becomes an issue. Aliasing happens if the stream contains frequencies larger
than half the sample rate. Those frequencies distort the spectrum in an unpre-
dictable way and cannot be removed afterwards. To be on the save side, high
frequencies are removed from the stream by a low pass filter before applying
the DFT. Filtering can be done in the frequency as well as in the time do-
main. The advantage of a time-domain filter is that the output values have the
same rate as the input data. Linear filters in the time domain take a sequence
xt of input values and produce a sequence yt of output values by the formula:
yt =

∑M
k=0 ck · xt−k +

∑N
j=1 dj · yt−j . The M + 1 coefficients ck and the N co-

efficients dj are fixed and define the filter response. There exists an elaborate
theory on how to determine the coefficients ck and dj for a given pass band. In
the later sections we use Chebyshev filters, but any other filter can be used as
well. We observed that the setting M = 5 and N = 5 gives good results in the
experiments. However, the results are not sensitive to the particular setting.

Any filter delays the signal. Note that the delay is in general not a constant,
but a function depending on the frequency. The delay for specific frequencies
can be determined from the filter coefficients. We denote the phase delay by
τ(f), where f is the normalized frequency. Details on how to determine the
filter coefficients and the delay can be found in [7].

3 Online DFT

Now, we propose our novel data analyzing approach for streams based on Online
DFT. We introduce a model for the stream which is based on Fourier coefficients.
The approach is well-suited for streaming scenarios as it has sublinear runtime
complexity.

The method slides a window over the stream, which includes the last T
elements. The straight-forward estimation of the frequencies from the window
using the fast Fourier transform (FFT) runs in O(T log T). For large T , online
processing is not feasible, since the FFT has to be re-applied when new data
arrives. Our solution to the problem is to break up the frequency domain into
smaller intervals. The frequency intensities in each subinterval are estimated
from a small sample.

3.1 Online DFT Streaming Model

The stream elements S = x0, x1, . . . , xt−1, xt are measured at an even rate. The
window of the last T stream elements at the current time index t is denoted by
Wt = xt−T−1, . . . , xt−1, xt. We assume that (i) the duration between the arrival
of two consecutive data stream elements is one standard time unit, and (ii)
the stream does not contain frequencies above the critical Nyquist frequency4

fc = 1/2.
The goal is to estimate all frequencies between zero and 1/2 of the window

Wt to model the stream. Our idea is to partition the frequency range (0, 1/2)
into L subintervals. The l-th interval is (1/2l+1, 1/2l) for 1 ≤ l < L and (0, 1/2l)
for l = L. So, the numbering goes from right to left as shown below:

(0, 1/2L), (1/2L, 1/2L−1), . . . , (1/22+1, 1/22), (1/21+1, 1/21)

The intervals can be estimated separately. We use short sliding windows for high
frequencies and long sliding windows for low frequencies. Using filters, the input
for the estimation of the l-th frequency interval (1/2l+1, 1/2l) is bandwidth-limited
to 1/2l. Due to the Nyquist theorem, the sample rate for the input can be much
lower without loss of information. We use a bandpass filter with a pass band
(1/2l+1, 1/2l) for 1 ≤ l < L and a lowpass filter (0, 1/2l) when l = L, respectively.
The filter used for the l-th interval is denoted by Hl and the filtered stream by
Hl(S) = y

(l)
1 , y

(l)
2 , . . . , y

(l)
t−1, y

(l)
t .

The distance between sample points, δl, increases with l. Thus, for high
frequencies, the sample points are close, while for low frequencies, they lie more
apart: δl = 2l−1, 1 ≤ l ≤ L. To determine the frequencies in the l-th interval,
we consider only the filtered data stream sample points with a distance of δl.
This is an enormous saving, e.g., when l = 8, only every δl = 28−1 = 128th point
has to be used as sample point, instead of having to use all points. As explained
before, this saving comes without loss of information.

The number of sample points for each frequency interval is upper-bounded
by Nmax, where Nmax ¿ T and δL ·Nmax ≤ T . The sample points are the points
that arrived last in the stream. The actual number of sample points, Nl, for each
frequency subinterval l is adaptively chosen with respect to the data stream in
order to avoid artifacts. The adaptive choice of Nl is crucial for the power of our
approach. Details on how to choose Nl will be explained in subsection 3.2.

4 Filtering can be used to guarantee this assumption.

The number of intervals, L, depends on the maximal number of sample points,
Nmax, and the size of the sliding window, T : L = max{i ∈ N : 2i−1 ·Nmax ≤ T} =
blog T−1/Nmax−1c+1. The input for the frequency estimation in the l-th subinter-
val is the sequence of sample points taken from the output of the filter Hl: S(l) =
y
(l)
t−(Nl−1)δl

, y
(l)
t−(Nl−2)δl

, . . . , y
(l)
t−δl

, y
(l)
t ,

Subinterval 3

Frequency
1/41/8 1/2

Subinterval 1

Subinterval 2

Fig. 1. Results of the DFT of
S(1), S(2), S(3) in the frequency domain,
(L = 3, Nmax = 16). Each rectangle
represents a Fourier coefficient, the
shaded coefficients are non-zero.

where Nl ≤ Nmax. The frequencies in
the l-th subinterval are estimated from
S(l) by DFT. The output consists of Nl

Fourier coefficients, from which those
between bNl/4c and dNl/2e estimate fre-
quencies in the desired interval. The
first quarter of coefficients is zero due
to the band pass filter. An exception is
the estimate of the L-th interval, from
which the Fourier coefficients between
1 and dNl/2e are used. Figure 1 illus-
trates the interplay of the frequency
estimation for different subintervals.

After this overview of the Online DFT model, the next sections discuss some
further details and explain how the model is used for several example applications
on data streams. In subsection 3.2, we explain how to choose the number of
sample points per level. In subsection 3.3, we introduce the inverse Online DFT.

3.2 The Difficult Choice of Sample Points

The estimation of dominant frequencies by the DFT from a finite set of sample
points is very sensitive to the choice of actual sample points. As the DFT needs
infinite support of the signal, it must be possible to cyclically continue to sample
points. Otherwise, the Fourier spectrum would include some artificial frequen-
cies. For example, let the signal be a pure sinus s(t) = sin(2π/20 · t), and the

0 10 20 30 40 50 60
−1

−0.5

0

0.5

1

time

si
gn

al

Signal with Sample Points

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency

In
te

ns
ity

Fourier Spectrum, 13 Sample Points

1 2 3 4 5
0

0.5

1

1.5

2
Fourier Spectrum, 10 Sample Points

Frequency

In
te

ns
ity

0 5 10 15
0

2

4

6

8

10

12

Suffix

S
co

re

Score Function

(a) (b) (c) (d)

Fig. 2. (a) Signal with sample points, (b) spectrum when all 13 points are used, (c)
spectrum when only the last 10 points are used, (d) score function.

current time point t = 60. If 13 sample points are used with δ = 4 (Figure 2(a)),
the spectrum based on this choice of sample points includes more than one non-
zero component (Figure 2(b)). Ideally, the spectrum should include exactly one
non-zero component, because the signal is a pure tone. In case the right-most

three sample points are discarded, the DFT gives the desired spectrum (shown
in Figure 2(c)).

When Nmax sample points of the filtered signal yt−(Nmax−1)δl
, yt−(Nmax−2)δl

,
. . . , yt−δl

, yt are available, it remains to be decided which suffix of that sequence
is the best choice to determine the spectrum by the DFT. The first observation
is: if the sample points cannot be cyclically continued, some extra effort has to be
applied to compensate the jumps at the borders.

0 500 1000 1500 2000 2500 3000
−6

−4

−2

0

2

4

6

time

si
gn

al

0 100 200 300 400
0

5

10

15

20

25

Prefix

S
co

re

(a) (b)

Fig. 3. (a) Complex signal and (b) the
score function for the suffixes.

We call the sum of the absolute Fourier
coefficients the energy E of the DFT,
E =

∑Nmax
i=1 |Yi|. If some compensa-

tions at the borders are necessary, this
is reflected by increased energy. Thus,
a criterion for the choice of a good suf-
fix is to take one with low energy. As
a second observation, the suffix needs
a certain length to include informa-
tion about all relevant vibrations. Very
short suffixes may have low energy, but
do not reveal much about the signal’s spectrum. The length of a suffix is denoted
by Ni ≤ Nmax and its energy by Ei, which is computed by a DFT of that partic-
ular suffix of sample points. So, we are looking for a long suffix with low energy.
We combine both requirements to a scoring function

sc(Ni) =
Ni · log Ni

Ei
=

Ni · log Ni∑Ni

i=1 |Yi|
The scoring function of our example (Figure 2(d)) has a local maximum at suffix
length 10, which gives the ideal spectrum, as shown in Figure 2(c). The figure
shows that also small, non-informative suffixes can get a high score. To exclude
those from further considerations, we set a lower bound Nmin for the minimum
length of a suffix.

A more complex signal is shown in Figure 3(a). Our proposed scoring function
(Figure 3(b)) has two clear peaks for the suffixes of length 150 and 300, which
are exactly the positions at which the true spectrum of the signal is revealed.

3.3 Inverse Online DFT

The main obstacle for the inverse Online DFT is the delay from the used filters.
We only gain from the splitting strategy if the bandpass filters can be applied at
little runtime costs. Therefore, we use fast linear filters, e.g., Chebyshev filters,
where filter delay is unavoidable. The example in Figure 4(a) shows the original
stream (solid curve), which consists of two sinuses x = sin(2π/300)+1/2 sin(2π/40).
The output of the filter is the dotted curve, which is delayed with respect to the
original curve. The phase delay is not a constant, but a function τ(f) depending
on the normalized frequency (see Figure 4b).

Our idea is to correct the phase delay during the inverse DFT. In the example,
the corrected result is the dashed curve, which is reconstructed also between the

sample points. The reconstructed curve (dashed) matches almost perfectly with
the original sin(2π/300).

0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1

−0.5

0

0.5

1

1.5

Original Stream
Filtered Stream with Delay
Corrected Reconstructed Stream

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

90

100

Normalized Frequency (×π rad/sample)

P
ha

se
 d

el
ay

 (
sa

m
pl

es
)

(a) (b)

Fig. 4. The left plot shows the original stream consisting of two sinuses, the filtered
stream from which sample points (x) are taken, and the reconstructed stream with
phase delay correction. The right plot shows the phase delay depending on the fre-
quency.

To explain our example formally, we assume n sample points y1, . . . , yn with
sample distance δ. From the sample points, we get n complex Fourier coefficients
Y1, . . . , Yn by DFT. The reconstruction of the n sample points with corrected
phase delay works as follows:

ỹi = re

(
2√
n
·
dn

2 e−1∑

k=0

Yk · exp
(
j · 2π · k · (i + τ(2π/knδ))/n

))

with i = 0, . . . , n − 1. The function re() returns the real part of a complex
number. In general, an inverse DFT of a real-valued stream does not need to
use the re() function, since – due to the symmetry property – each coefficient in
the lower half has a counterpart in the upper half with the same real part, but
with a negative imaginary part. Thus, the imaginary parts would be canceled
out, while the real part is doubled. Here, we are additionally dealing with the
phase delay correction. It is simpler to double the real part and to cut off the
imaginary part explicitly.

When i is incremented in steps smaller than one, intermediate points between
the sample points are computed. By that strategy, the reconstructed stream can
be refined to the original resolution, or when i > n − 1, even future stream
values can be predicted. For the final inverse Online DFT, the inverse DFTs
with phase delay correction from different levels are added up at the streams
original resolution.

4 Complexity Consideration

In this section, we conduct some runtime and space complexity considerations.
As presented previously, when a new stream element arrives the L subinter-
vals are completely recomputed and the sliding window is shifted. This is the
most simple implementation. The main runtime factor is formed by choosing the

best of all Nmax −Nmin suffixes for each subinterval. When the DFT is imple-
mented by FFT, this step takes time

∑Nmax
i=Nmin

Ni · log Ni = O(N2
max log Nmax)

in each subinterval l , where Ni is the length of each possible suffix of sam-
ple points. Thus, the update runtime complexity of the core algorithm is O(L ·
N2

max log Nmax), which can be simplified to O(blog T−1/Nmax−1c·N2
max log Nmax).

This shows that the update runtime complexity is sublinear in the size of the
sliding window.

0 1 2 3 4 5

x 10
4

0

0.5

1

1.5

2

Sliding Window Size
tim

e
[in

 s
ec

]

Original DFT
Online DFT with Nmax=50
Online DFT with Nmax=100

Fig. 5. Runtime Comparison of our
Core Algorithm against the DFT ap-
plied on the entire sliding window.

Figure 5 illustrates these results on
an empirical basis. We figure the run-
time of the core algorithm (for Nmax =
50 and Nmax = 100) in comparison
to the FFT applied to the entire slid-
ing window, where T is varied and
Nmin = 1. In both cases, the runtime
grows sublinearly with the size T of
the sliding window. The runtime of the
Online DFT is a stair-case function:
each step indicates the introduction of
an additional subinterval. A better im-
plementation is to investigate the best
suffix only when the score for that suf-
fix drops. We conducted an experiment
on the sunspot data stream (see Figure 6) and computed the length of the best
suffixes for each subinterval, where the window slided from time 1000 till 1500.
The percentage of how often the score dropped and the suffix length changed
with the next stream element is l = 1 : 20%, l = 2 : 76%, l = 3 : 35%, l = 4 : 19%.
This shows that there is still room for optimization.

The space complexity of our algorithm depends on the size of the sliding
window. In order to be able to shift the window by one element, all elements
have to be stored. We have to store δlNmax elements per subinterval, where the
sum over all subintervals is in O(T ·Nmax). The space needed can be reduced by
applying time series compression techniques, e.g., piecewise linear approximation
[10]. More optimization issues are focus of our ongoing work.

5 Experiments

In this section, we present some applications of our Online DFT. Prediction of
future behaviors of data streams and time series is important for various appli-
cations. With the Online DFT, any time forecasting is possible using the inverse
transformation. Figure 6 shows the original sunspot data stream, the forecasts
based on our Online DFT, and the AWSOM forecast. As code of AWSOM is
not available, we took the best plot for AWSOM for that experiment from [11].
The part to be forecasted (starting at time point 1000) shows 7 peaks in the
original stream. AWSOMs forecast contains 5 peaks, while the forecast of our
Online DFT includes 8 peaks. Both forecasts find the average peak width quite

well, even they are based on different approaches. Using the Online DFT, the
average peak height is predicted more accurate.

0 500 1000 2000
0

50

100

150

200

Sunspot − Original

Time

S
u

n
s
p

o
t

0 500 1000 2000
0

50

100

150

200

Sunspot − Online DFT

Time

S
u

n
s
p

o
t

(a) (b) (c)

Fig. 6. Experiment for forecasting data streams; (a) Original Sunspot Stream; (b)
Forecasting based on Online DFT; (c) Forecasting based on AWSOM.

Based on such prediction property, we are also able to detect outliers and
other kinds of deviations by comparing the current element with the predic-
tion for that element. In general, outlier detection in data streams is a further
important issue, e.g., to quickly detect situations when something unexpected
happens. Furthermore, knowledge about the frequency distribution in a data
stream can be used for cleaning tasks. In particular, several anomalies are easier
to correct in the frequency domain than in the time domain. There are many
possible reasons for dirty sensor data. This includes missing and/or incorrect
values (often forming noise). Reasons for those errors may be sensors low on
power, network or communication problems, inaccurate sensors, etc. Therefore,
streaming sensor data must be appropriately cleaned with respect to errors.

0 200 400 600 800 1000
−5

0

5

Time

V
al

ue

Original Data Stream

0 200 400 600 800 1000
−5

0

5

Time

V
al

ue

Cleaned Data Stream
Uncleaned Data Stream

0 0.5 1 1.5 2
0

200

400

600

800

σ2

R
M

S

Cleaned Data Stream
Uncleaned Data Stream

(a) (b) (c)

Fig. 7. Experiment for noise reduction; (a) original data stream, (b) data stream after
cleaning, and (c) data stream after cleaning.

To demonstrate the utilization of our Online DFT for cleaning tasks, we
generated a synthetic data stream consisting of two sinuses. The original data
stream is depicted in Figure 7(a). We simulated noise by adding a Gaussian
distributed random number to each stream element. We investigated this noisy
data stream with our proposed Online DFT approach. Figure 7(b) depicts the
result of the noise reduction starting at time point 610. The noise cleaning task is
processed by neglecting high frequencies and frequencies with small intensities.
Using the inverse Online DFT, we are able to reconstruct a data stream with

reduced noise. As the figures show, the cleaned data stream is close to the original
generated data stream without noise.

To highlight the quality of this cleaning process, we determined the root mean
square values (RMS) as error measures of (i) the cleaned data stream, and (ii)
the data stream with noise, against the pure data stream without noise. Figure
7(c) shows the RMS depending on different variances. The higher the variance,
the more noise is included in the generated data stream. With our proposed
Online DFT approach, we are able to significantly reduce noise in data streams.

6 Conclusion

In this paper, we proposed a novel online model for data streams called Online
DFT for estimating the frequencies of a data stream. Characteristics of our On-
line DFT are low update complexity with high-accuracy estimations for periods
and the ability of long-range forecasting. Furthermore, we described some ap-
plications of our approach. Beside forecasting of data streams, Online DFT can
be applied to detect outliers by comparing the current arriving element with
the prediction. We demonstrated how to use our Online DFT for data stream
cleaning tasks. Open issues for future research are specialized implementations
for sensor applications as well as cost- and quality-based optimizations of the
used algorithms. Additionally, we plan to do performance comparisons to related
methods based on more real-world data sets.

References

1. F. Ergün, S. Muthukrishnan, and S. C. Sahinalp. Sublinear methods for detecting
periodic trends in data streams. In LATIN, 2004.

2. Box et al. Time Series Analysis: Forecasting and control. Prentice Hall, 1994.
3. Elfeky et al. Periodicity detection in time series databases. IEEE Trans. Knowl.

Data Eng., 17(7), 2005.
4. Gilbert et al. Surfing wavelets on streams: One-pass summaries for approximate

aggregate queries. In VLDB, 2001.
5. Indyk et al. Identifying representative trends in massive time series data sets using

sketches. In VLDB, 2000.
6. Keogh et al. Finding surprising patterns in a time series database in linear time

and space. In Proc. of the ACM SIGKDD, 2002.
7. Oppenheim et al. Discrete-time signal processing. Prentice-Hall, Inc., 1989.
8. Ch. Faloutsos, M. Ranganathan, and Y. Manolopoulos. Fast subsequence matching

in time-series databases. In SIGMOD, 1994.
9. A. C. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, and M. Strauss. Near-optimal

sparse fourier representations via sampling. In STOC, 2002.
10. D. P. Kacso. Approximation by means of piecewise linear functions. Results in

Mathematics, 35, 1999.
11. S. Papadimitriou, A. Brockwell, and Ch. Faloutsos. Adaptive, unsupervised stream

mining. The VLDB Journal, 13(3), 2004.
12. A. S. Weigend and N. A. Gerschenfeld. Time Series Prediction: Forecasting the

Future and Understanding the Past. Addison-Wesley, 1994.
13. Y. Zhu and D. Shasha. StatStream: Statistical Monitoring of Thousands of Data

Streams in Real Time. In VLDB, 2002.

