
ABSTRACT
Decision trees have been successfully used for the task of classifi-
cation. However, state-of-the-art algorithms do not incorporate the
user in the tree construction process. This paper presents a new
user-centered approach to this process where the user and the com-
puter can both contribute their strengths: the user provides domain
knowledge and evaluates intermediate results of the algorithm, the
computer automatically creates patterns satisfying user constraints
and generates appropriate visualizations of these patterns. In this
cooperative approach, domain knowledge of the user can direct the
search of the algorithm. Additionally, by providing adequate data
and knowledge visualizations, the pattern recognition capabilities
of the human can be used to increase the effectivity of decision tree
construction. Furthermore, the user gets a deeper understanding of
the decision tree than just obtaining it as a result of an algorithm. To
achieve the intended level of cooperation, we introduce a new visu-
alization of data with categorical and numerical attributes. A novel
technique for visualizing decision trees is presented which provides
deep insights into the process of decision tree construction. As a
key contribution, we integrate a state-of-the-art algorithm for deci-
sion tree construction such that many different styles of cooperation
- ranging from completely manual over combined to completely
automatic classification - are supported. An experimental perfor-
mance evaluation demonstrates that our cooperative approach
yields an efficient construction of decision trees that have a small
size, but a high accuracy.

1.  INTRODUCTION
Classification is one of the major tasks of data mining. The goal of
classification [12] is to assign a new object to a class from a given
set of classes based on the attribute values of this object.
Furthermore, classification is based on some discovered model
which forms an important piece of knowledge about the application
domain. Over the years, many classification algorithms have been
proposed such as decision tree classifiers which have become very
popular. From a training set, i.e. a set of objects for which their
attribute values and their correct class is known, a decision tree
classifier learns a discrete-valued classification function which is
represented by a decision tree. 

Although classification is sometimes also called “supervised”
learning, in general, the present classification algorithms provide
only very limited forms of guidance or “supervision” by the user.
Typically, the user selects the dataset and sets the values for some

parameters of the algorithm - which are often difficult to determine
a priori. Then the algorithm runs for some considerable time and
returns a pretty large set of patterns. The user does not obtain any
intermediate results and has no possibility to intervene during the
execution of the algorithm. We argue that the user should be
involved more interactively in the process of classification because
of the following reasons:

(1) By providing adequate data and knowledge visualizations, the
pattern recognition capabilities of the human can be used to
increase the effectivity of decision tree construction.

(2) Due to their active envolvement, the users have a deeper
understanding of the resulting decision tree. Thus, the trust into the
data mining system can be greatly improved (c.f. [15] which argue
analogously in favour of boosted naive Bayes classification).

(3) When obtaining intermediate results from the algorithm, the
user can provide domain knowledge to focus the further search of
the algorithm. Using domain knowledge has been recognized as a
promising approach for constraining knowledge discovery and for
avoiding overfitting [6].

Our goal is an effective cooperation between the user and the
computer so that both contribute what they do best:

• The user specifies the task, focuses the search, evaluates the
(intermediate) results of the algorithm and provides his domain
knowledge which is difficult to formalize and to incorporate into
an algorithm.

• The computer runs an algorithm to automatically create (interme-
diate) patterns satisfying the specified user constraints and cre-
ates appropriate visualizations of these patterns for the user. 

We believe that this cooperation will greatly improve the
effectiveness as well as the efficiency of classification and other
data mining algorithms. For example, [8] explored this approach for
the task of mining association rules. The user specifies a set of
constraints which are pushed deeply into the data mining algorithm
to focus its search as far as possible. In a recent paper [1], a new
approach for the task of classification was presented. PBC
(Perception-Based Classification) was introduced as an interactive
decision tree classifier based on a multidimensional visualization
technique. However, the only task of the computer was to visualize
the training data, and the user selected the split attributes and split
points and thus constructed the decision tree manually.

In this paper, we explore the full potential of an effective
cooperation between the user and the computer. While the first
version of PBC supported only numerical attributes, PBC now also
handles categorical attributes and thus supports a much broader
range of applications. We present a new technique for visualizing
decision trees which provides more insights into the process of
decision tree construction than previous techniques. Most
importantly, we integrate a state-of-the-art algorithm for decision
tree construction such that many different styles of cooperation
(ranging from completely manual over combined to completely
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automatic classification) are supported. For example, the user may
choose to construct the most important top levels of the decision
tree manually and run an algorithm for the further tree expansion
to speed-up the decision tree construction. To demonstrate the
practical impact, we conduct an extensive performance evaluation
comparing different styles of cooperation. 

The rest of this paper is organized as follows. Section 2 reviews
related work from the areas of decision tree classification and
visualization. In section 3, we introduce our techniques of
visualizing the data and the knowledge. Section 4 presents the
integration of an algorithm for cooperative decision tree
construction. Section 5 reports the results of an extensive
experimental evaluation on several well-known datasets. The last
section summarizes this paper and discusses some directions for
future research.

2.  RELATED WORK
A decision tree classifier constructs a tree in a top-down fashion
performing a greedy search through the very large space of all
possible decision trees. At each current node, the attribute that is
most useful for the task of classification (with respect to the subset
of all training objects having passed all tests on the path to the
current node) is selected. Criteria such as the information gain or
the gini index have been used to measure the usefulness of an
attribute. Domain knowledge about the semantics of the attributes
and the attribute values is not considered by the criteria. Note that
greedy algorithms for decision tree construction do not allow to
backtrack to a previous choice of an attribute when it finally turns
out to be suboptimal.

Many different algorithms for learning decision trees have been
developed over the last 20 years. For instance, CART [4] was one
of the earliest systems which, in particular, encorporates an
effective pruning phase. Their so-called minimum cost complexity
pruning cuts off branches that have a large number of leaf nodes
yielding just a small reduction of the apparent error. 

SLIQ [11] is a scalable decision tree classifier that can handle both
numerical and categorical attributes. In order to make SLIQ
scalable for large training sets, special data structures called
attribute lists are introduced which avoid sorting the numerical
attributes for each selection of the next split. Furthermore, a greedy
algorithm for efficient selection of splits of categorical attributes is
presented. An experimental evaluation demonstrates that SLIQ
produces decision trees with state-of-the-art accuracy and tree size
with a much better efficiency for large training sets. 

Visual representation of data as a basis for the human-computer
interface has evolved rapidly in recent years. The increasing
amount of available digital information in all kinds of applications
has led to the challenge of dealing with both high dimensionality
and large amounts of data. [9] gives a comprehensive overview
over existing visualization techniques for large amounts of
multidimensional data which have no standard mapping into the
Cartesian coordinate system. 

Recently, several techniques of visual data mining have been
introduced. [5] presents the technique of Independence Diagrams
for visualizing dependencies between two attributes. The
brightness of a cell in the two-dimensional grid is set proportional
to the density of corresponding data objects. This is one of the few
techniques which does not visualize the discovered knowledge but
the underlying data. However, the proposed technique is limited to
two attributes at the same time. [10] presents a decision table
classifier and a mechanism to visualize the resulting decision
tables. It is argued that the visualization is appropriate for business

users not familiar with machine learning concepts. 

A commercial system for interactive decision tree construction is
SPSS AnswerTree [16] which - in contrast to our approach - does
not visualize the training data but only the decision tree.
Furthermore, the interaction happens before the tree construction,
i.e. the user defines values for global parameters such as maximum
tree depth or minimum support for a node of the decision tree.

KnowledgeSEEKER [3] is another commercial system for
interactive decision tree construction. It offers an intuitive
graphical user interface and the results are displayed in the form of
a clear and interactive decision tree. Both the sensitivity of the
correlation finding and the volume of the information displayed are
user-defined. In KnowledgeSEEKER, however, the frequency of
class labels is not visualized in connection with the attribute values
which severely limits the incorporation of domain knowledge. 

PBC (Perception Based Classification) [1] is a prototype system
which visualizes the training data in order to support interactive
decision tree construction. A novel method is introduced for
visualizing multi-dimensional data with a class label such that their
degree of impurity with respect to class membership can be easily
perceived by a user. The method performs pixel-oriented
visualization and maps the classes to colors in an appropriate way.
The basic steps of one interaction loop may be divided into the
data interaction steps and the knowledge interaction steps. The
data interaction steps include the visualization of the data and the
methods for manually selecting an attribute and its split points. The
knowledge interaction steps cover the representation of the current
decision tree which is expanded after every attribute split and
enable the user to operate on the nodes in terms of assigning a class
label, invoking the visualization of any other node or backtracking
to some previously created node of the decision tree.

Recently, several papers have investigated the relation between
accuracy and comprehensibility in data mining and the approach of
integrating the user into the process of knowledge discovery. [15]
stresses the importance of the comprehensibility of discovered
knowledge in order to build trust into the data mining system. A
variant of the boosted naive Bayes classifier is introduced which
creates understandable explanations of the results while retaining a
high predictive performance. [6] concludes that greater simplicity
does not typically lead to greater accuracy in data mining.
Therefore, the search space cannot be simply restricted to simple
models and it is proposed to use domain knowledge for
constraining the search of a data mining algorithm. It is argued that
often even weak and general domain knowledge is sufficient for
this purpose. [8] presents a general approach to constrained
association rule mining. The user specifies a set of constraints on
the data, the level of abstraction, the rules and their interestingness.
These constraints are pushed deeply into the data mining algorithm
to focus its search as far as possible. 

3.  VISUALIZING THE DATA AND THE 
KNOWLEDGE
The techniques of visualization introduced in [1] have two major
shortcomings: First, only data with numerical attributes can be
visualized. Second, the decision tree is visualized in a standard
way which is not related to the data visualization. In this chapter,
we present new techniques overcoming these drawbacks and
offering a much broader functionality. Categorical attributes rise
special problems and a method for their visualization is outlined in
section 3.1. In section 3.2, a new technique of visualizing decision
trees is introduced which is based on our technique of data
visualization.



3.1 Techniques for Data Visualization
Our technique for data visualization is based on two main
concepts:

• Each attribute of the training data is visualized in a separate area
of the screen.

• The different class labels of the training objects are represented
by different colors.

In the following, these conecpts are elaborated in more detail.

In our approach, the training data records are mapped to attribute
lists containing one entry (attribute value, class label) for each of
the training records (cf. figure 1). Note that the entries of each
attribute list are sorted in ascending order of attribute values.
Figure 1 also illustrates a possible color coding of the different
class labels. Thus, sequences of consecutive attribute values
sharing the same class label can be easily identified. For example,
we observe that attribute 1 is a better candidate for a split than
attribute 2 and “attribute 1 < 0.4” yields a good split w.r.t. the
training data. 

Bar visualization of the data

For the data visualization, the different attributes have to be
mapped to different areas of the screen. The Circle Segments
technique [2] has been proposed to arrange the attribute values of
different attributes in different segments. To better support the
cooperation of the user and the computer, we introduce a new
visualization of the data which has two advantages. The first
advantage is based on a perceptional issue. When the user selects a
splitting attribute based on his perception, he often has to consider
the size of a partition for comparison with the size of another
partition. Due to the constant height of the bars, it is much easier to
estimate the partition size using the bar visualization than using the
circle segments visualization. The second reason is that our new
decision tree visualization is based on a bar visualization and,
consequently, it is convenient to provide similar data visualizations
in order to decrease the learning time for the user. 

The bar visualization is performed as follows. Within a bar, the
sorted attribute values are mapped to pixels in a line-by-line
fashion according to their order. Each attribute is visualized
independently from the other attributes in a separate bar. Figure 2
illustrates the method of the bar visualization for the case of two
attributes.

The amount of training data that can be visualized by the bar
technique is determined by the product of the number of data
records and the number of attributes. For representing all attributes
at the same time (without scroll-bars), this product minus the
number of pixels used for the border lines of the bars may not
exceed the resolution of the window. All the STATLOG datasets
used in our experimental evaluation (see section 5) can be easily
visualized with the bar technique, for example, the DNA training
data consisting of 2000 data records can be visualized with all their
180 attributes. 

Handling categorical attributes

Each attribute is sorted separately and the induced order is used for
the arrangement of the pixels. This approach is natural for
numerical attributes, but in the case of categorical attributes with
no implicit order the same approach is obviously suffering several
drawbacks. In a naive approach, we would simply map different
categories to different numbers and as a consequence the induced
order would have a major impact on the user’s capability to
perceive the goodness of split points in this attribute. Furthermore,
even if a cluster in a set of non adjacent categories could be
perceived it would not be possible to select these categories for one
subtree of the current node. Instead, this attribute would have to be
split in many categories yielding an unnecessary number of son
nodes.

Hence a crucial question for the visualization of categorical
attributes is the sorting of the categories. Algorithmically
searching for the best split point within a categorical attribute is
expensive. For an attribute with n different categories, several
heuristics have been proposed to find a solution in the space of

possible binary partitions (if we limit the search space to
binary splits). In [7], SLIQext, an extension of a previously
proposed algorithm for splitting categorical attributes is evaluated.
SLIQext searches for the best binary split by starting with an
empty first set and a second set containing all categories. Then, it
moves in a greedy fashion that element from the second set to the
first set which yields the best split. This process iterates until the
second set becomes empty and finally the best partition among all
the considered partitions is chosen. 

Since good results were reported for SLIQext, we use this order in
which the categorical values are moved from the second set to the
first set. Thus, we group the categories together that belong to the
same set and support the user in detecting and evaluating the
goodness of a split in that attribute. Since this order serves as a
default order of the categories, the user can always select the split
point that would be computed by SLIQext by exactly setting one
split point. On demand, the category borders can be highlighted.
Furthermore, we increase the power in two ways: First, the user is
enabled to change the sorting of the categories by manually
dragging them to a desired position. Second, as for numerical
attributes, the user is not restricted to set just one split point for one
attribute, but he can set an arbitrary number of split points.
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Figure 3 depicts the visualization of the DNA training data from
the STATLOG benchmark [13] which have only categorical
attributes (note that this figure has been scaled down). As
suggested in the description of the training data, only 60 of the 180
attributes were used. The visualization indicates that attributes 85
and 90 are good candidates for splitting. In fact, attribute 90 is
chosen as the optimal one if using the gini-index to measure the
purity of the resulting partitions.

3.2 A New Technique for Knowledge Visualization
We propose a new visualization technique for decision trees which
is based on the bar visualization of the data. This visualization
technique does not only depict the decision tree in a clear way but
it also provides a lot of explanations why the tree was constructed
this way. Furthermore, the proposed technique offers a new
possibility to analyze and compare different decision trees
constructed by any algorithm performing univariate splits. 

In our new visualization technique, each node is represented by the
data visualization of the chosen splitting attribute of that node. For
each level of the tree, a bar is drawn representing all nodes of this
level. The top level bar corresponds to the root node of the decision
tree. On lower levels of the tree the number of records and thus the
number of pixels is reduced if there are leaves in upper levels -

leaves are underlined with a black line. Black vertical lines
indicate the split points set in the current bar. On lower levels,
partitions of the data inherited from upper levels are marked by
white vertical lines at the same horizontal position as the original
split point. Attribute and node information at the mouse pointer
position (attribute name, attribute value, min., max. value and
number of records in this node,...) is displayed on demand. Upon a
mouse click, the system switches back to the data visualization of
the corresponding node. 

Compared to a standard visualization of a decision tree, a lot of
additional information is provided which is very helpful in
explaining and analyzing the decision tree:

• size of the node (number of training records corresponding to
the node)

• quality of the split (purity of the resulting partitions)
• class distribution (frequency and location of the training

instances of all classes).
Some of this information might also be provided by annotating the
standard visualization of a decision tree (for example, annotating
the nodes with the number of records or the gini-index), but this
approach clearly fails for more complex information such as the
class distribution. We argue that the proposed visualization
provides a lot of additional information in a rather compact way.

Figure 4 illustrates the visualization of a decision tree for the
Segment training data from the Statlog benchmark [13] having 19
numerical attributes. 

4.  INTEGRATING ALGORITHMS INTO 
COOPERATIVE DECISION TREE 
CONSTRUCTION
We have argued for an effective cooperation between the user and
the computer so that both contribute what they do best. Our
fundamental paradigm is “the user as the supervisor”, i.e. the
system supports the user and the user always has the final decision.
In [1], the user has to select the splitting attribute as well as the
split points for each node. The approach of interactive (manual)
decision tree construction is briefly reviewed in section 4.1. In this
approach, the users can incorporate their domain knowledge, but
for large decision trees a completely manual construction may
become rather tedious. Instead, the strengths of the computer
should be fully exploited to unburden the user as far as reasonable.
Therefore, in section 4.2 we present several functions of
algorithmic support for the user and in section 4.3 we discuss the
process of cooperative classification.

4.1 Interactive Decision Tree Construction
Interactive decision tree construction works as follows. Initially,
the complete training set is visualized in the Data Interaction
Window together with an empty decision tree in the Knowledge
Interaction Window. The user selects a splitting attribute and an
arbitrary number of split points. Then the current decision tree in
the Knowledge Interaction Window is expanded. If the user does
not want to remove a level of the decision tree, he selects a node of
the decision tree. Either he assigns a class label to this node (which
yields a leaf node) or he requests the visualization of the training
data corresponding to this node. The latter case leads to a new
visualization of every attribute except the ones used for splitting
criteria on the same path from the root. Thus the user returns to the
start of the interaction loop. The interaction is finished when a
class has been assigned to each leaf of the decision tree.

attr. 61

attr. 120

attr. 90

attr. 85

Figure 3.  Visualization of the DNA training data



Interactive decision tree construction allows to transfer knowledge
in both directions. On one hand, domain knowledge of an expert
can be profitably included in the tree construction phase. On the
other hand, after going through the interactive construction of a
decision tree, the user has a much deeper understanding of the data
than just knowing the decision tree generated by an arbitrary
algorithm. Interactive visual classification is very effective
whenever understandability of the discovered model is as
important as classification accuracy. Note that in many situations,
for example if the attribute values are measured automatically,
accurate classification of new objects is not the only goal but users
seek a general understanding of the characteristics and the
differences of the classes.

The approach of interactive classification has several additional
advantages compared to algorithmic approaches. First, the user
may set an arbitrary number of split points which can reduce the
tree size in comparison to binary decision trees which are
generated by most state-of-the-art algorithms. Furthermore, in
contrast to the greedy search performed by algorithmic
approaches, the user can backtrack to any node of the tree when a
subtree turns out not to be optimal. 

Figure 5 illustrates a case where an n-ary split is clearly superior to
a binary split. 50,000 synthetic data records from two different
classes with two numerical attributes are visualized. The
visualization of attribute 1 reveals three pure partitions: 1/3 of the
data records from class A, 1/4 of the data records belonging to
class B and 5/12 of the data records from class A. The visualization
of attribute 2 indicates one pure partition (1/2 of the data records
all belonging to class A) and a mixed partition (1/2 of the data
records, 50% from class A and 50% from class B). When
performing binary splits and using the gini-index to evaluate their
quality, the second attribute would be selected and split in the

middle. On the other hand, when manually performing n-ary splits,
we would choose attribute 1 and split it into the three pure
partitions. The ternary split of attribute 1 exploits the whole
information contained in this attribute and results in three leaf
nodes with 100% purity. The binary split, however, creates only
one leaf node and the other subtree has to be further expanded
which may result in a considerably larger decision tree.

4.2 Algorithmic Support for the User
An algorithm automatically creates a decision tree for the given
training data. This complete functionality as well as parts of this
functionality may support the user in interactively constructing a
decision tree. Note that any algorithm performing univariate splits,
i.e. considering one split attribute at a time, may be integrated into
PBC. In the following, we present several types of algorithmic
support and discuss their potential benefits. Some of these
functions are applied to the so-called active node, i.e. the unique
node of the decision tree which the user has selected for
visualization.

propose split

For a set of attributes selected by the user, the attribute with the
best split together with the optimum split point of this attribute is
calculated and visualized. If a singleton attribute is specified as
input, only the optimum split point for this attribute is determined. 

The function propose split turns out to be useful in two cases: first,
whenever there are several candidate attributes with very similar
class distributions and, second, when none of the attributes yields a
good split which can be perceived from the visualisation.

look-ahead 

For some hypothetical split of the active node of the decision tree,
the subtree of a given maximum depth is calculated and visualized
with the new visualization technique for decision trees (see
section 3.2). This function offers a view on the hypothetical
expansion up to a user specified number of levels or until a user
specified minimum number of records per node. If the look-ahead
function is invoked for a limited number of levels, it is very fast
(some seconds of runtime) because no pruning is performed in this
case.

The look-ahead function may provide valuable insights for
selecting the next split attribute. Without the look-ahead function,
when there are several candidate attributes the user selects one of
them, chooses one or several split points and continues the tree

Figure 4.  Visualization of a decision tree for the Segment training data 
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construction. If at a later stage the expanded branch does not yield
a satisfying subtree, the user will backtrack to the root node of this
branch and will remove the previously expanded subtree. He will
select another candidate attribute, split it and proceed. Utilizing the
new function, however, the user requests a look-ahead for each
candidate attribute before actually performing a split. Thus, the
necessity of backtracking may be avoided.

expand subtree

For the active node of the decision tree, the algorithm
automatically expands the tree. Several parameters may be
provided to restrict the algorithmic expansion such as the
maximum number of levels and the minimum number of data
records or the minimum purity per leaf node. 
The pruning of automatically created subtrees rises some
questions. Should we only prune the subtree created automatically
or prune the whole tree - including the subtrees created manually?
According to our paradigm of the user as a supervisor, pruning is
only applied to automatically created trees. We distinguish two
different uses of the expand subtree function: the maximum
number of levels is either specified or it is unspecified. In the first
case, the decision tree is usually post-processed by the user. No
pruning is performed if a maximum number of levels is specified.
Otherwise, if no maximum number of levels is specified, the user
wants the system to complete this subtree for him and pruning of
the automatically created subtree is performed if desired.
The function expand subtree is useful in particular if the number of

records of the active node is relatively small. Furthermore, this
function can save a lot of user time because the manual creation of
a subtree may take much more time than the automatic creation. 

4.3 The Process of Cooperative Decision Tree Con-
struction

Depending on the user and on the application, different styles of
cooperation between the user and the system may be preferred. In
the extreme cases, either the user or the computer would do all the
work of decision tree construction, but typically a balance between
the two partners is sought. In the following, we discuss different
styles of using the PBC system. Figure 6 depicts the process of
cooperative decision tree construction with its different steps and
their dependencies. Operations of the user and operations of the
system are clearly distinguished. Note the central circle marked
“User” which can be reached either directly after the visualization
of the current decision tree or after the selection of a new active
node or after a system provided look-ahead. At this stage, the user
has the choice between five different options: (1) remove the active
node, (2) assign a class label to the active node, (3) select a split
attribute and split points, (4) let the system propose a split attribute
and split point or (5) let the system expand the active node. In the
following, the process is explained in more detail.

The system is initialized with a decision tree consisting only of the
root node as the active node. Later, the active node may be changed
by the user at each time. The user always has several alternative
options to proceed which can be categorized into two groups:
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Figure 6.  The process of cooperative decision tree construction
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• local functions
Local functions are functions local w.r.t. the active node and do
not impact other nodes of the decision tree. These functions
include propose split, look-ahead and split the active node. The
user splits the active node, either according to his visual impres-
sion or according to the algorithmic proposal. While in the first
version of PBC an attribute could be used only once on each
path as a split attribute, now it can be used several times as in the
standard algorithms. 

• global functions
Global functions change the global structure of the decision tree.
These functions either remove the active node, make the active
node a leaf node by assigning a class label to it or let the system
expand the active node up to a given maximum number of lev-
els. 

The process of decision tree construction can be terminated by the
user whenever he is satisfied with the quality (e.g., the
classification accuracy and the tree size) of the result.

Figure 7 depicts screen shots of the PBC system when constructing
a decision tree for the Shuttle data [13] (see also section 5.1). The
main window visualizes the data of the active node and depicts the
whole decision tree in standard representation. The local functions
can be applied on the visualization of the data on the left side,
while the global functions can be invoked in the visualization of

the decision tree on the right side. The additional window in the
foreground depicts the same decision tree using the new technique
of visualization.

To conclude this section, our approach of cooperative decision tree
construction extends the power of state-of-the-art purely
algorithmic approaches in two important ways:

• look-ahead and backtracking
Due to efficiency reasons, decision tree algorithms choose one
split attribute after the other and they do not perform backtrack-
ing. In cooperative tree construction, however, the look-ahead
function provides an estimate for the global goodness of a split
and, furthermore, the user may backtrack to any node of the
decision tree as soon as he realizes that some suboptimal subtree
has been generated.

• n-ary splits
State-of-the-art algorithms always perform binary splits. In
cooperative tree construction, however, the user may set an arbi-
trary number of split points which can significantly reduce the
tree size and improve the accuracy in comparison to binary deci-
sion trees. Of course, binary splits are supported as an important
special case.

Figure 7.  Screen shots of the PBC system
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5.  EXPERIMENTAL EVALUATION
We performed an experimental evaluation of cooperative decision
tree construction on several well-known benchmark datasets. The
implementation of the PBC system and the whole test environment
is described in section 5.1. In section 5.2, we compare manual
decision tree construction using PBC with standard algorithmic
approaches and in section 5.3 we compare some different styles of
cooperative classification supported by PBC.

5.1 Test Environment
The complete PBC system was implemented in Java using version
2 of the Java Virtual Machine. We could not reasonably integrate
some existing software but reimplemented a classification
algorithm for proper integration into the PBC system using the
existing data structures. Our algorithm realizes the SLIQ tree
growth phase (which effectively handles numerical and categorical
attributes) and the CART pruning phase (which can be applied
using cross-validation as well as using train and test). 

For the experimental evaluation, we chose several well-known
training data sets used as benchmark data in the STATLOG project
[13]. We selected the following data sets representing a good mix
of numerical and categorical attributes:

• Shuttle
43,500 training records with 9 numerical attributes, 7 different
classes, train and test.

• Satimage 
4,435 training records with 36 numerical attributes, 6 different
classes, train and test.

• Segment 
2,310 training records with 19 numerical attributes, 7 different
classes, 10-fold cross-validation.

• Australian 
690 training records with 6 numerical and 8 categorical
attributes, 2 different classes, 10-fold cross-validation.

• DNA 
2,000 training records with 60 categorical attributes (as recom-
mended in the dataset description, 60 of the 180 available
attributes were used), 3 different classes, train and test.

All experiments were performed on a Pentium Pro 180MHz with
192 MB main memory. For the growth phase of the algorithm, we
set the parameters minimum purity to 99 % and minimum number
of records per leaf to 5. We experimented with several different
settings of these parameters and found that they had a rather strong
impact on the resulting accuracy and tree size. The above
parameter settings were chosen in order to obtain a performance of
our algorithm which is comparable to the performance of
algorithms reported in the literature for these datasets.

5.2 Comparison with Standard Algorithms
In this section, we compare manual PBC with standard algorithms
in order to demonstrate that interactive manual decision tree
construction is competitive to automatic approaches. The state-of-
the-art algorithms IND-CART and IND-C4 [14] as well as SLIQ
were chosen as comparison partners. The performance results for
these algorithms were taken from [11] but similar results were
reported, e.g., in the documentation of the STATLOG project [13]. 

Table 1 presents the accuracy of the standard algorithms and
manual PBC. We observe that the accuracy of manual PBC is
similar to the accuracy obtained by the algorithms for the first
three datasets having only numerical attributes. For the latter two
datasets with categorical attributes, the accuracy of manual PBC is
somewhat lower. This result shows that categorical attributes are

more difficult to visualize and it also motivates the integration of
algorithms to improve the accuracy.

Table 2 depicts the tree size of the standard algorithms and manual
PBC. Note that the tree size is defined as the number of all leaf
nodes while in [1] the number of all decision tree nodes was
considered. For nearly all combinations of datasets and algorithms,
the tree size obtained by manual PBC is signficantly smaller than
the size of the trees automatically constructed by algorithms. The
reduction of the tree size ranges up to a factor of 10 indicating that
the manually constructed decision trees are generally more
comprehensible. 

To conclude this comparison of manual PBC with standard
algorithms, interactive manual decision tree construction obtains
similar accuracy for numerical attributes and somewhat lower
accuracy for categorical attributes. On the other hand, the manually
constructed trees are in general significantly smaller than
automatically created decision trees. 

5.3 Comparison of Different Styles of Cooperation
The PBC system supports many different styles of cooperation
between the user and the computer as discussed in section 4.3. To
evaluate and compare the performance of different styles, we
defined some prototypical styles of cooperation as follows:

• automatic: the decision tree is built completely automatic with-
out any human interaction.

• automatic-manual: the top two levels (the root and its direct
descendants) of the decision tree are constructed by the algo-
rithm (without pruning), then the tree is completed manually by
the user.

• manual-automatic: the top two levels (the root and its direct
descendants) of the decision tree are constructed manually and
the resulting leaves are finally expanded by the algorithm (with
pruning).

• manual: the decision tree is constructed completely manually
without any algorithmic support.

Dataset IND-CART IND-C4 SLIQ PBC

Satimage 85.3 85.2 86.3 83.5

Segment 94.9 95.9 94.6 94.8

Shuttle 99.9 99.9 99.9 99.9

Australian 85.3 84.4 84.9 82.7

DNA 92.2 92.5 92.1 89.2

Table 1. Accuracy of standard algorithms and manual PBC

Dataset IND-CART IND-C4 SLIQ PBC

Satimage 90 563.0 133 33

Segment 52 102.0 16.2 21.5

Shuttle 27 57 27 8.9

Australian 5.2 85 10.6 9.3

DNA 35.0 171 45.0 18

Table 2. Tree size of standard algorithms and manual PBC



Table 3 presents the accuracy obtained for the different styles of
cooperation. We find that manual-automatic in general yields the
best accuracy and automatic yields the second best results. Both
styles are significantly better w.r.t. accuracy than the other two
styles. We conclude that algorithmic support is necessary to obtain
an optimum accuracy, in particular for data with categorical
attributes. On the other hand, the combined manual-automatic style
outperforms the completely automatic decision tree construction
for most of the datasets especially when incorporating domain
knowledge of the user. 

Table 4 reports the tree size (number of leaf nodes) for the four
different styles of cooperative decision tree construction.
Automatic-manual has in general a low tree size, but it is
outperformed by the automatic style on the Shuttle and Australian
datasets and by the manual style on the Satimage dataset. Manual-
automatic turns out to be the worst approach w.r.t. tree size and, in
particular, typically creates larger trees than the manual approach.

Table 5 depicts the training time (in sec.) for the different styles of
cooperation. We measured the total time for decision tree
construction including the runtime of the algorithm and the time
needed by the user for manual interaction. Automatic is the clear
winner for all datasets except Shuttle. Interestingly, automatic-
manual is the fastest style for the Shuttle data since the automatic
part on the first two levels does not perform pruning and the manual
part is considerably faster than the purely algorithmic construction
with pruning. Manual-automatic is the second fastest style
outperforming manual by a factor of up to 7. Thus, algorithmic
support is very successful in speeding up interactive decision tree
construction.

To conclude the comparison of different styles of cooperation,
there is no clear overall winner because the results vary greatly for
different datasets. Often, neither the completely automatic style
nor the completely manual style yield the best results but they are
outperformed by one of the combined styles (automatic-manual or
manual-automatic). The manual-automatic style, for example,
offers a good trade-off between accuracy, tree size and learning
time for most of the datasets. We argue that a system for
cooperative classification must support all these and further styles
of cooperation of the user and the computer.

6.  CONCLUSIONS
Current classification algorithms provide only very limited forms
of guidance or “supervision” by the user. In this paper, we made
the point for a cooperative approach to classification where both
the user and the computer contribute what they do best. The goal is
to exploit the human pattern recognition capabilities, to obtain a
deeper understanding of the resulting decision tree and to constrain
the search for knowledge using domain knowledge provided by the
user. 

We introduced novel techniques for visualizing training data and
decision trees providing a lot of insights into the process of
decision tree construction. Furthermore, we presented the
integration of a state-of-the-art algorithm for decision tree
construction supporting different styles of cooperation of the user
and the computer. An extensive performance evaluation on several
well-known benchmark datasets was conducted demonstrating that
often neither the completely automatic style nor the completely
manual style yield the best results but they are outperformed by
one of the combined styles. We concluded that a system for
cooperative classification should support many different styles of
cooperation of the user and the computer.

Future work includes the following issues. In real applications,
typically the cost of misclassification varies significantly for the
different classes. It is an interesting question how to visualize
different weights for the different class labels. Another issue in
such applications is scalability w.r.t. training set size. Therefore,
we want to investigate methods of visualizing very large training
sets (having more records than the number of available pixels) on
the screen with limited resolution and methods of efficiently
integrating PBC into a database system (using secondary storage).
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Dataset Automatic
Automatic-

Manual
Manual-

Automatic
Manual

Satimage 86.4 84.1 86.8 83.5

Segment 95.5 95.0 96.3 94.8

Shuttle 99.5 99.6 99.7 99.9

Australian 84.9 80.9 86.8 82.7

DNA 93.8 89.2 93.3 89.2

Table 3. Accuracy of PBC for different styles of cooperation

Dataset Automatic
Automatic-

Manual
Manual-

Automatic
Manual

Satimage 68 37 102 33

Segment 46.5 20.3 47.9 21.5

Shuttle 4 5 8 8.9

Australian 3.9 7.7 9.3 9.3

DNA 46 14 59 18

Table 4. Tree size of PBC for different styles of cooperation

Dataset Automatic
Automatic-

Manual
Manual-

Automatic
Manual

Satimage 232 857 269 1160

Segment 33 415 113 552

Shuttle 183 82 306 241

Australian 18 130 67 422

DNA 189 361 232 784

Table 5. Training time (in sec.) of PBC for different styles of 
cooperation
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